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Introduction

In 1976, Di e and Hellman published their groundbreaking pger New Directions

in Cryptography [DH76], in which they introduced the concept of public-key crypte

graphy. By then, the conventional cryptosystems were builbn symmetric tech-

niques, where a common secret key is used to encrypt data séam one party to

another. In contrast to that, Di e and Hellman proposed asymmetric methods: A

user A provides a public key, with which other users encrypt messag destined for
A. The userA holds a corresponding secret key, only known #, with which A can

decrypt those messages. This solves the problem of secumbtributing keys over

insecure channels that always occurs in symmetric, seciaty systems. While sym-
metric methods are still the most e cient choice for encryping data, asymmetric
techniques provide key agreement, digital signatures, araithentication.

The security of cryptosystems as proposed by Di e and Hellmarelies on the exis-
tence of one-way functions. Evaluating such functions is &g while inverting is in-
feasible. Exponentiation of integers modulo a prime numbeyis the most important
example in PH76]. Cryptosystems based on this function rely on the intractaility
of the discrete logarithm problemin the multiplicative group of a nite eld Fq for
su ciently large primes g. The discrete logarithm problem (DLP) is de ned for any
group G as follows: Givena;y 2 G, nd an integer x with y = a* if it exists. For
an abelian group, this problem is often formulated additiig: Given P;Q 2 G with
Q =[x]P being the x-fold sum of P, nd x. If the DLP is hard to solve in a group
G, then G can be used for realizing public-key protocols as indicatdy Di e and
Hellman.

It was suggested independently by Miller\ii86b] and Koblitz [Kob87] to use the
group of rational points on an elliptic curve de ned over a nte eld. Later, Koblitz
[Kob89] also proposed the Picard group of a hyperelliptic curve ava nite eld.
Since then, cryptosystems based on elliptic and hyperellip curves and algorithms
to solve the DLP in the corresponding groups have been studi¢horoughly, and
have been widely used. In practice, one takes subgroups oinpe order. The size
of such groups must be large enough such that with all knowngarithms the DLP
in the group is infeasible to solve. With respect to the bestriown algorithms, the
DLP on a curve group is harder than in a nite- eld group of the same size. Hence
curve groups have the advantage that the same security lewen be achieved with
smaller parameters.



2 Introduction

Pairings in cryptography

The group of points on an elliptic curve or the Picard group o hyperelliptic curve
is equipped with additional structure. With the help of suchcurves, it is possible to
de ne pairings. For two additive groupsG; and G, and a multiplicative group Gs,

a pairing is a bilinear, non-degenerate map

e:G; Gy! G3:

The rst example of a pairing used in cryptography was the Weipairing on an
elliptic curve E over a nite eld F,. For a primer dierent from the characteristic
of Fq, the Weil pairing is a mapW, : E[r] E[r]! . The group E[r] is the
group of r-torsion points onE, and ; is the group ofrth roots of unity, which is
contained in an extension of,. The degreek of the minimal extensionFy  Fq
that contains | is called the embedding degree dE with respect tor. The rst
appearance of the Weil pairing in cryptography was of a desictive nature. Menezes,
Okamoto, and Vanstone [1OV93] applied the Weil pairing for attacking the elliptic-
curve discrete logarithm problem (ECDLP)They showed that for anr-torsion point
P 2 E[r], the Well pairing yields a group isomorphism : hPi! r Py from
the cyclic grouphPi of orderr generated byP to the group of rth roots of unity,
which lies in Fy. Instead of solving the ECDLP given byQ = [X]P, one can solve
the DLP in F, given by (Q) = (P)*. If k is small, this reduction provides
a way of solving the ECDLP more easily because of the subexgotial attacks
on the DLP in nite elds. Elliptic curves which have a small embedding degree
should therefore be avoided for conventional curve-basedygtography. Frey and
Reck [FR94] generalized this to a reduction of the DLP in the Picard grop of an
arbitrary projective, irreducible, non-singular curve byusing another pairing, the
Tate-Lichtenbaum pairing an explicit version of theTate pairing. First constructive
applications of pairings arose in 2000 as key agreement pyobls with new features.
Joux [JouO( proposed a one-round, tripartite key agreement protocognd Sakali,
Ohgishi, and Kasahara$OK0(Q showed how to realize identity-based non-interactive
key agreement. In 2001, Boneh and FranklirB[F01, BFO3] solved a long-standing
open problem by proposing a practical way to realize idenyitbased encryption with
pairings. These papers initialized a variety of constructe applications inpairing-
based cryptographyPaterson Pat05] gives a survey of such applications.

Most of the pairings used in practice are variants of the Tatgairing on elliptic
curves, such as the ate pairing or the twisted ate pairingi5Vv0€g. Many improve-
ments MKHOO07, ZZH08, LLP08] have led to the notion of optimal pairings intro-
duced by Vercauteren Yer08] and the framework of pairing lattices, under which
He [He 08] subsumes all variants of the Tate pairing.

For all applications, the choice of curve parameters is criat. It is important that
in all three groupsG;; G,, and Gs, the DLP is infeasible, i. e. the subgroups of prime
order r must be large enough. The embedding degree then determinée tsize of
g€ and thus the di culty of the DLP in Fy- Computation of pairings is done with
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variants of Miller's algorithm [Mil86a]. It comprises arithmetic on the elliptic curve
or in the Picard group, respectively, and arithmetic inF .. If the embedding degree
is too large, the pairing can not be computed e ciently.

Under these conditions, curves for pairing applications shld be chosen to be as
economical as possible, i. e. the prime divisorof the group order should be as large
as possible in relation to the full group size. The relativeize ofr compared to the
group order is expressed by the-value = glog(g)=log(r), whereg is the genus of
the curve. The optimal -value is 1, which means that the Picard group oveff, has
prime orderr. Since for randomly chosen curves and large primeshe embedding
degree is of the size of which is much too large in generalK98, LMS04], it is
necessary to systematically construgbairing-friendly curves

To improve the e ciency of practical applications of pairings in cryptography, it is
required to solve two closely related problems:

Construct pairing-friendly curves with a small embedding egree and small
-value.

Improve the e ciency and exibility of algorithms to comput e pairings.

These problems suggest the distinction between construgi and computational
aspects. This work contributes to the solution of both prol@ms.

Overview

Chapter 1 provides the foundations for the remaining chapters. We dee Pi-

card groups (Jacobian varieties, respectively) of elligtiand hyperelliptic curves,
which are the groups that are used for cryptographic applit@ns. For that, we

discuss a ne and projective curves, their properties suchsirreducibility and non-

singularity, maps between them, their function elds, and dsisors. In order to give
a geometric interpretation of the group law on elliptic cures in Weierstra form

and Edwards curves as well as to deduce functions for pairiegmputation, we in-

troduce intersection multiplicities and state Bezout's Theorem. In this work, we
mainly consider Weierstra curves, Edwards curves, and hypelliptic curves.

We introduce the Tate-Lichtenbaum pairing and the Weil paimng on the Jacobian
of a hyperelliptic curve and deduce practical relevant vaaints of the Tate pairing.

Detailed discussions are given for pairings on elliptic cugs, including the description
of Miller's algorithm and formulas for line functions. We ilustrate the use of twists
for a more e cient representation of curve points.

Finally, we describe conditions for pairing-friendly cures, and with a focus on elliptic
curves, we describe methods for their construction. This a¢ludes an overview of
the complex multiplication (CM) method to construct elliptic curves with a given
number of rational points.

In Chapter 2, we describe a parametrized family of pairing-friendly efitic curves

with embedding degree 12 and prime order {value 1). The results in this chapter
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are based on joint work with Barreto BNO6]. After discussing existence and a con-
struction method, we consider properties of these curvesatcan be used to improve
pairing computation, e.g. the existence of a twist of degre@ the use of e cient
endomorphisms, and the possibilities for point compressi@and pairing-value com-
pression. We show how to compute all parameters needed fompiementing pairings
on such curves, and give examples of curves with di erent btizes corresponding to
di erent levels of security.

Compressed pairing computation is the topic of Chapte8. This chapter is based
on joint work with Barreto and Schwabe NBS0d. Pairing values are elements of
algebraic tori. This fact leads to a compressed representat for pairing values and
the possibility to implicitly carry out computations on the compressed values. We
de ne compressed pairings and describe a way for their contption by including
the compression into the Miller loop. The method can be apgld for elliptic curves
with even embedding degree, giving a compression of pairiaglues to one half of
their original length. For the special case that 6 divides th embedding degree, the
compression factor is one third. In particular, this methodworks for the curves
introduced in Chapter 2, and can be implemented without using any nite eld
inversions. We determine explicit formulas for the evaluan of line functions and
torus arithmetic. Timing results for a C-implementation of the proposed compressed
pairings are given and are compared to conventional pairiag

Chapter 4 is dedicated to pairing computation on Edwards curves. Theontents of
this chapter result from joint work with Aene, Lange, and Ritzenthaler. We give a
geometric interpretation of the group law on a twisted Edwals curve. In contrast
to the group law on a Weierstra curve, not only lines are invived, but also conic
sections. We deduce the necessary curves of degree 1 and @ dascribe a variant of
Miller's algorithm that uses functions arising from theseihes and conics. This shows
that pairings can be computed directly on the Edwards curveyithout transforming
back to Weierstra form. Explicit formulas for the addition and doubling steps
in Miller's algorithm are given. The formulas are more e cient than previously
proposed formulas for pairings on Edwards curves and are cpetitive with formulas
for pairing computation on Weierstra curves.

In Chapter 5, we propose algorithms to construct genus-2 curves withrrank 1
using the complex multiplication method. The chapter contas joint work with Hitt
O'Connor, McGuire, and Streng HMNSO0g. First, we give theoretical foundations
on abelian varieties and complex multiplication (CM). Afte that, we discuss genus-2
curves with p-rank 1 and the CM method in genus 2. The proposed algorithmsic
be used to construct curves de ned over a eld-. that have a prime number of
Fpz-rational points on their Jacobian. Examples with di erentbit sizes of the group
order are given. Finally, we propose an algorithm for the caitruction of p-rank 1
curves of genus 2 with a small embedding degree.



Chapter 1

Preliminaries

In this chapter, we provide de nitions and fundamental reslis for the subsequent
chapters. We discuss the necessary background for curvesSiaction1.1 In Sec-
tion 1.2, we de ne pairings, and explain how they can be computed. Sem 1.3
gives a brief introduction to the problem of constructing paing-friendly curves along
with algorithms to solve it, mainly for elliptic curves. The theoretical background
for Chapter 5 is not given here. Instead, fundamentals on abelian varies and
complex multiplication can be found in Sectiorb.1, since they are not required in
Chapters 2, 3, and 4.

1.1 Curves

In this section, we give a brief introduction to plane curvesWe de ne a ne and
projective curves, discuss general concepts and propestiand then move to elliptic
and hyperelliptic curves. There are almost no proofs in thisection since we just
gather results that are necessary for the following chaptr Details and proofs can
be found in the following references: For a general treatise algebraic geometry, we
refer to Hartshorne's book Ifar77]. The more speci ¢ theory focusing on algebraic
curves is presented by Fultonful69]. Lorenzini [Lor9€] gives a detailed introduction
to plane curves in the context of arithmetic geometry. For rgults on function elds
and a view on curves from that perspective, we point at Sticehoth [Sti93]. Many
facts about curves and in particular elliptic curves can beofind in Silverman's book
[Sil86]. An overview of the background on curves required for crypgraphy is given
in [FLO5&]. We follow parts of these books in this chapter.

1.1.1 A ne and projective curves

Let F be a perfect eld, and letF be an algebraic closure df. For a positive integem,
we de ne the ane n-spaceA"(F) to be the n-fold Cartesian productA"(F) := F.
The spaceAl(F) = Fis calledane line , and A%2(F)= F F is calleda ne plane .

Forany eld F F F, wecalA"(F)= F" A"(F) the set of F-rational points

5



6 1.1. Curves

in A"(F). Given a polynomialf 2 F[X1;X2; 11, %n] In n variables, we can evaluate
f atapoint P =(ag;a;:::;a,) 2 A"(F) asf(P)= f(ag;a;:::;a,) 2 F.
De nition 1.1. Letf 2 F[x1;X5;:::;X,] be a polynomial inn variables. De ne an

algebraic setC; by
Ci:=fP2A"F)jf(P)=0g: (1.1)

For any algebraic eld extensionF F F, the set

Ci(F)=fP2C; jP 2 A"(F)g
of points with coordinates inF is called theset of F-rational points in C;.

In this thesis, we mainly consider set<; A2(F). We then usually write the
polynomial ring in two variables overF asF[x;y].

De nition 1.2. Letf 2 F[x;y] be a polynomial in two variables. The algebraic set
Ct is called ana ne plane curve. The degreeof C; is de ned as the degree of .

Example 1.3. An ane plane line is an a ne plane curve of degree 1. It is given
by a polynomial | = ¢x + ¢y + ¢, 2 F[x;y] of degree 1, i.e. &;c,) 6 (0;0).
Note that a line is uniquely determined by two di erent points. We call an a ne
plane curve of degree 2 a@a ne plane conic. It is given by a polynomial f¢ =
CeX2+ C2y?+ Gy Xy + CX+ ¢,y + C1 2 F[x; y] of degree 2, i.e.¢z; ¢2; Cy) 6 (0;0;0).
An a ne plane curve of degree 3 is called am ne plane cubic, and an a ne plane
curve of degree 4 is called aa ne plane quartic .

We denote the equivalence class with respect to that contains P by
P =(a:a@: an)=fQ2A"(FHjQ Pg

The setP  contains all points on the above mentioned line througR and (Q;:::;0),
except for the point (G :::;0) itself. We de ne the projective n-spaceP"(F) to be
the set of all such equivalence classes,
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The set P1(F) is called projective line, and the setP?(F) is called projective plane
An equivalence clas® is called aprojective point The set of F-rational points in
P"(F)for F F Fisdenedas

P"(F):=fP =(ay:a: :a,+1)j9 2F with a;2Fforallig P"(F):
The ane n-spaceA”if) can be embedded into the projectivae-space by identifying
(a1;a;:::;a) 2 A"(F) with the point (a; : a, : ca, i 1) 2 PY(F).

Lemma 1.4. Let Uy =f(ay:a: :an)2 P'(F)ja.s1 60g P"(F). Then
the map

"ne1 Unn L AT(F);
a a
(g :ay: f8n+1) ! anil;anfl;:::;anail

is a bijection.

Proof. This is [Har77, Proposition 1.2.2]. O
The inverse map .1 isgiven by @i;a;:::;8,) 7! (a1 : @y : &, : 1). From now

on, we understandA"(F) as a subset ofP"(F). When speaking of points inP"(F),
we abuse notation and denote the clasd by P as well. We have chosen one special
embedding of the a ne space into the projective space by chemg U1, i.e. xing
the last coordinate to be di erent from 0. Of course, we couldlso take each of the
other coordinates, and get in this wayn + 1 dierent sets U;, 1 i n+1, with
corresponding embeddings of the a ne space int®"(F) (see Har77, Section 1.2]).
The setsU; cover all of P"(F).

To de ne a projective curve, we need to explain what it meandiat a projective point

representative of a projective point, while it might be di eent from zero at another
representative. Therefore, we considéromogeneous polynomialsrhe monomials of

d. This shows that for homogeneous polynomials either all regsentatives of a
projective point are a zero or none.

From now on, we write homogeneous polynomials with capitaktters. Also the
variables for homogeneous polynomials are written with cégl letters to distinguish

between the a ne and the projective case.

De nition 1.5. LetF 2 F[X1; X5;:::; Xp+1] be a homogeneous polynomial in+1
variables. De ne a projective algebraic set

Ce:=fP2P"(F)jFE(P)=0g: (1.2)
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Forany eld F F F, the set
Cek(F)=fP2CerjP 2 P"(Fg
of points in the projective space oveF is called theset of F-rational points in Cr.

As above for a ne algebraic sets, we choose di erent notatiofor the variables when
de ning projective algebraic setsCr  P?(F).

De nition 1.6. LetF 2 F[X;Y;Z]be a homogeneous polynomial in three variables.
The projective algebraic seCk is called aprojective plane curve Its degreeis de ned
as the degree of the polynomidfF .

Example 1.7. We use the same terminology as for a ne curves. Arojective plane
line is a projective plane curve of degree 1. A plane line is givey B polynomial
L=cxX +cyY + c,Z, where at least one of the coe cientscy ; ¢y ; ¢, is di erent
from 0. A projective plane conicis a projective plane curve of degree 2. It is given
by a polynomial

Fc = G2 X2+ Cy2Y?+ 6222+ cxy XY + ez XZ + ¢vz2YZ

with at least one of the coe cients cx2; Cyz2; Cz2; Cxy ; Cxz ; Cyz being di erent from
0. Projective plane curves of degree 3 and degree 4 are caflegjective plane cubics
and projective plane quarticsrespectively.

Xn+1 -F, then (F ) = F. By means of homogenization and dehomogenization and
the map' 3, we may associate to every a ne plane curve a correspondingqjective
plane curve and to every projective plane curve a special aa plane curve. Any
projective curve Cg contains the ane curve Cg . The points that only lie in Cg
and not in Cg , i. e. the points of form @, : a, : 0), are calledpoints at in nity .

Remark 1.8. Throughout this work, we use the well-known notationC; : f =0
and Cr : F =0 for plane curves.
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Curves as de ned here are specialgebraic sets(see Har77, Sections 1.1 and 1.2]
and [Ful69, Chapters 1 and 4]). An algebraic set is the set of common zsrof a
collection of polynomials. Algebraic sets form the closeets of a topology on a ne
and projective n-space, theZariski topology [Har77, Sections 1.1 and 1.2]. Ane
and projective spaces are thus equipped with the structuref @ topological space,
and we can de ne the notion ofirreducibility as follows: A nonempty subseX of a
topological space is calledtreducible, if it can not be expressed as the union of two
proper subsets, each one of which is closedXn[Har77, De nition in Section 1.1].
For an algebraic set, this means that it can not be expressed ¢he union of two
non-trivial algebraic subsets.

The Zariski topology depends on the base eld, over which thalgebraic set is
de ned. An algebraic set that is irreducible over might become reducible over an
extension eld. If it stays irreducible when considered oveany algebraic extension
of F, i.e. it stays irreducible overF, we call it absolutely irreducible

De nition 1.9. A curve over F is called absolutely irreducibleif it can not be
expressed as the union of two distinct nontrivial algebraisubsets overfF.

For a plane curve, we can determine irreducibility by consgting the associated
polynomial. A polynomial over F is called absolutely irreducibleif it is irreducible
as a polynomial overf.

Lemma 1.10. An ane plane curve C; (or a projective plane curveCg, respec-
tively) is absolutely irreducible, iff (or F, respectively) is absolutely irreducible.

Proof. This is Example 4.15 (ii) from [FLO5a]. O

Any algebraic set can be written uniquely as a union of distet irreducible algebraic
sets, each one of which is not contained in another (sé&f 77, Proposition 1.1.5] and
[Ful69, Chapter 1, Theorem 2 and Chapter 4, Section 2]). These algalr sets are
called theirreducible componentsof the algebraic set. For an a ne plane curveCs
over F, the factorization off displays the decomposition into irreducible components
[Ful69, Chapter 1, Section 6, Corollary 3]. The homogenizations tfie irreducible
components are the irreducible components of the corresmiimg projective curve
Ct [Ful69, Chapter 4, Section 3, Proposition 3].

1.1.2 Singular points and tangent lines

From now on, we restrict ourselves to plane curves. This mearhat curves are
given by a polynomialf 2 F[x;y] or by a homogeneous polynomidt 2 F[X;Y;Z].

De nition 1.11. Let C; be an ane curve with f 2 F[x;y]. A point P 2 C; is
called singular if both partial derivatives of f vanish atP, i.e. (@f=@%P) =0 =

(@f=@P).
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De nition 1.12. Let Cg be a projective curve and= 2 F[X;Y;Z]. Apoint P 2 C¢
is calledsingular if all three partial derivatives of F vanish atP, i.e. (@F=@XP) =

(@F=@P) = (@F=@2) = 0.

Let C be an ane or a projective curve. If P 2 C is a singular point, C is called
singular at P. Otherwise, it is callednonsingular at P, and the point P is called
nonsingular. If there are no singular points onC, it is called nonsingular.

Remark 1.13. The de nition of a singular point on a projective curve as in [2 ni-

tion 1.12is the same as De nition 3.9 in Chapter VI of Lor96]. Usually, a point on
a projective curve is said to be singular if the correspondjna ne point in a suitable

dehomogenization is singular. The following lemma statekdt these de nitions are
equivalent.

Lemma 1.14. Let P =(Xp :Yp :Zp) 2 Cr be a point on the projective curveg,
which lies inUs, i.e. Zp 6 0 (see Lemmal.4). Then P is singular if and only if
the point (Xp=Zp; Yp=Zp) is singular on Cg .

Proof. This is Lemma 3.10 from Chapter VI of [Lor96]. O

Remark 1.15. In his book, Fulton uses the terminologysimple point for a nonsin-
gular point [Ful69, Chapter 3, Section 1]. The notionsimple can be explained as
follows: To each pointP 2 C: a multiplicity mp (Cg) is assigned. The multiplicity
of a projective pointP on a projective curveCe is de ned as the multiplicity of the
corresponding a ne point P on the ane curve Cr . Dehomogenization is done
with respect to a nonzero coordinate o .

Let C; be anirreducible a ne curve. Transform the curve by shifting the coordinates
of P to (0;0). The multiplicity of P on C; is de ned to be the minimal degree of
all monomials in the resulting curve polynomial. For detad, see ful69]. A point
P 2 Cg is nonsingular if and only ifmp (Cg) = 1.

If we have a nonsingular point on a curve, there is a unique tgent line to the curve
in that point. It is given by the partial derivatives of the de ning polynomial as
follows:

De nition 1.16. Let C; be anane curve, f 2 F[x;y],and P = (xp;yp) 2 C; a
nonsingular point. The line

f f
e GPIX Xe)+ QPN ye) =0

is called thetangent line toC; at P.

De nition 1.17. Let Cg be a projective curve,F 2 F[X;Y;Z], and P 2 Cr a
nonsingular point. The line

. @F @F @F _
T|:;p . @((P)X + @Y(P)Y + @Z(P)Z =0

is called thetangent line toCg at P.
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Remark 1.18. Note that the de ning polynomials of the tangents in the prevous

de nitions have degree 1 sinc® is nonsingular; in particular, they are not 0. The
de ning polynomial for the projective tangent line dependon the representative of
the point P, but since the partial derivatives are homogeneous polynaafts of degree
one less thanF, the tangent line is uniquely determined [or96, Section VI.7].

One might expect the projective tangent line atP = (Xp : Yp : Zp) to be de ned

as

. @F @F Q@F _q-
Tep .@éP)(X Xp)+ @Y(P)(Y Ye) + @Z(P)(Z Zp) =0:

Since 25X + EFy + &£7 = deg(F)F as polynomials, we gefi(P)Xp + SH(P)Yp +
%;(P)Zp = 0, and both de nitions of the tangent line are equal.

Let P = (xp;yp) 2 C; be nonsingular. Then from Lemmal.14 it follows that
P :="',%P)=(xp :yp :1)is a nonsingular point onC; and the tangent line
T¢ .p IS given by the homogenization of;.r [Lor96, Section VI.7].

1.1.3 Intersection numbers and Bzout's Theorem

We abbreviate A2 := A2%(F), and let F(A?) = F(x;y) := Quot( F[x;y]) be the
rational function eld in two va_riables. Its elements araational functions on A2,
i.e. fractions of polynomials inF[x;y]. For a point P 2 A2, we de ne

Op(A?) := fg=h2 F(A?) j h(P) 6 0g:
The subring Op (A?)  F(A?) is a local ring with maximal ideal
M p (A% = fg=h2 Op (A% jg(P)=0g

(see Bti93, Appendix B.1]). Letf;g 2 F[x;y], thenf;g 2 Op (A?). Let (f;g) denote
the ideal in Op (A?) generated byf and g. Then Op (A?)=(f; g) is an F-vector space.
Let P2 := P?(F). Similarly, we de ne the rational function eld

F(P?) := fG=H j G;H 2 F[X;Y;Z] homogen.H 6 0;deg(G) = deg(H)g[f Og;

as the eld of homogeneous rational functions, i.e. fractie of homogeneous poly-
nomials of the same degree. For a poifl® 2 P?, we de ne

Op(P?) := fG=H 2 F(P?) jH(P) 6 0g:
The ring Op (P?) is a local ring with maximal ideal
M p(P?) := fG=H 2 0p(P?) jG(P)=0g
(see Bti93, Appendix B.2]). Note that F(P?) is F-isomorphic to F(A?) [Sti93, Ap-

pendix B.3], and hence also the local rings & and' 3(P) are isomorphic forP 2 Us.
We map a homogeneous polynomidf 2 F[X;Y;Z] of degreed into Op(P?) by
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choosing a projective lineL, not passing throughP, and setting F := F=L9. If
P 2 Us, i.e. it is a point with a nonzeroZ-coordinate, we can chooske = Z, and
F is the usual dehomogenizatiofr . Let F; G 2 F[X;Y;Z] be homogeneous, then
F ;G 205p(P?. If (F ;G ) denotes the ideal generated bf¥ and G , the ring
Opr (P?)=(F ;G ) is an F-vector space.

De nition 1.19. Let f;g 2 F[x;y] and P 2 A%(F). The intersection number ofC;
and Cy at P is de ned as

I (P;Ci \ Cg) :=dim z(Op(A%)=(f;9));

where ;g) is the ideal in Op (A?) generated byf and g.
Let F; G 2 F[X;Y;Z] be two homogeneous polynomials ard 2 P?(F). The inter-
section number ofCr and Cg at P is de ned as

| (P;Ce \ Cg) :=dim=(Op(P)=(F ;G ));
where F ;G ) is the ideal in Op (P?) generated byF and G .

It is clear from the de nition that for a projective point P 2 Us, it holds | (P; Cg \
Cs) = I("3(P);Cg \ Cg ). The intersection number is the unique integer that
satis es the seven properties given inFul69, Chapter 3, Section 3]. We only list a
selection of those properties, which are important for fuhter considerations.

Lemma 1.20. The intersection number de ned in De nition 1.19 satis es the fol-
lowing properties: (We use the notation of the a ne case.)

(@ 1(P;G\ Cy) 2 Ng for any f; g, and P such thatC; and Cy intersect properly
at P, i.e. they have no common component which passes through If the
curves do not intersect properly aP, | (P;Ci \ Cy) = 1 .

(b) I'(P;C\ Cy) =0 ifand only if P 2 C; \ Cq. The intersection number only
depends on the components 6f and g that pass throughP.

() 1(P;C\ Cg) mp(Ci)mp(Cy), with equality if and only if C; and Cy have
no tangent lines in common atP. In particular, if P is a nonsingular point
on bothC; and Cq, then I (P;C; \ Cg) =1 if and only if C; and Cy have no
tangent lines in common atP. See Remarkl.15 for the de nition of mp(Cs).

Proof. See Theorem 3 in Chapter 3, Section 3 dfjl69]. O

The above properties su ce to understand the simple cases wensider in this work.
Next we state Bezout's Theorem, which tells us how many intesection points two
projective curves of given degrees have.
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Theorem 1.21 (Bezout's Theorem). Let F;G 2 F[X;Y;Z] be two homogeneous
polynomials of degree and e, respectively, such that the curve§g and Cg have no

component in common. Then

X
[(P;Ce\ Cg)=4d e:

P2Cg\ Cg

Proof. This is the main theorem in Ful69, Chapter 5, Section 3] orfar77, Corollary
1.7.8]. O

Bezout's Theorem shows that two projective curves of degeed and e that are
su ciently di erent intersect at exactly d e points when counting multiplicities in
the right way.

1.1.4 Functions, morphisms, and twists

We have already seen examples of function elds, namely thational function elds

corresponding to the a ne space and to the projective spaceNow we are going
to associate a function eld to every absolutely irreducild curve. We follow {ti93,

Appendix B].

Let C; be an absolutely irreducible, a ne curve with absolutely ireducible de ning

polynomial f 2 F[x;y]. Let (f) F[x;y] be the ideal inF[x;y] generated byf .

Then (f ) is a prime ideal and the ring

FICt] := FI yI=(f)
is an integral domain. It is called thecoordinate ring of C; .

De nition 1.22.  The quotient eld F(C;) := Quot( F(C;)) is called the function
eld of C;.

Elements of the function eld are calledrational functions, and are frgctions of
polynomials modulo the curve equation. LeG-_ be the Galois group ofF=F. The

action of G- on F can be extended to a ne space, polynomial rings, and thus to
coordinate rings and function elds.

We de ne F[C;], the coordinate ring of C; over F, and F(C;), the function eld of
C: overF, as the subsets oF[C;] and F(C; ), respectively, that are xed under the
action of Ge_-. The eld F is contained inF(C; ), and C; is absolutely irreducible if
and only if F is algebraically closed ir=(C;) [Sti93, Corollary 111.6.7].

The elements inF(C; ) de ne functions on C; since polynomials inF[x;y] are maps
A2(F) ! F. For the projective space, the situation is di erent since plynomials
in F[X;Y;Z] yield di erent values when evaluated at di erent represetatives of a
projective point.

Let Cr be an absolutely irreducible, projective curve with an absately irreducible
and homogeneous de ning polynomiaF 2 F[X;Y;Z]. Denote by F) the homo-
geneous idealin F[X;Y;Z] which is generated byF. As in the a ne case, de ne
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the homogeneous coordinate ring o€: by From[Ce] := F[X;Y;Z]=(F). It is an
integral domain, and we denote its quotient eld byFnom(Cr) := Quot( From[Ck]).
An elementg 2 Fnom[Cr] is called aform if there exists a homogeneous polynomial
G such thatg= G+ (F).

De nition 1.23. The_function eld of Cg is the subeld of Fnom(Cr) given by
F(Cg) := fg=hj g;h2 F,om[Cr] are forms of the same degree arfid6 0g[f Og.

The function eld F(Cr) over F is de ned as the xed eld under the action of the
Galois groupGe_- on F(Cg). The elements ofF(Cr) de ne functions on Cg since
they are represented as quotients of forms of the same degré&berefore, the value of
such an element is independent of the chosen representatofethe projective point.
The map' 3 :Us ! A%(F);P = (Xp : Yp : Zp) 7! (Xp=Zp:;Yp=Zp) induces an
F-isomorphism

('sh) :F(Ce)! F(Ce):
Thus the function eld of a projective curve is isomorphic tothe function eld of
the a ne curve given by the dehomogenization (see_pr96, Proposition VI1.8.5] and
[Sti93, Appendix B.3]).
The localization of the coordinate ring at a pointP is a subring ofF(Cr) given by

Op(Cg) := fg=h2 F(Cr) j h(P) 6 0g:
It is a local ring with maximal ideal
M p(Ce) = fg=h2Op(Cr)j9(P)=0g

[Sti93, Appendix B.2]. If P is nonsingular (i.e. simple, see Remark.15, Op(Cf)
is a discrete valuation ring £il86, Proposition 11.1.1]. In this case, we can de ne a
valuation on Op (Cg).

De nition 1.24. Let P 2 Cg be a nonsingular point. Thevaluation on Op (Cf),
de ned by

ordp : Op(Ce) ! No[flg ;
7' maxim2Zj 2M p(C:)"g

is called theorder of at P.
The order function is extended to the whole function eld by @ ning
ordp : F(Ce)! Z[flg ; =f=g 7' ordp(f) ordp(g):

An elementt 2 F(Cg) with ordp (t) = 1 is called a uniformizing parameter for Cg
at P.

Since algebraic sets are de ned by polynomials, the naturahaps between them
are also given by polynomials. In terms of the Zariski topotyy, we consider maps
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which are continuous with respect to that topology. Amorphism of a ne curves
isamap' :C;! Cg4given by a pair ( «;' y) of polynomials in F[x; y] that maps
a point P 2 C; to the point (' «(P);' y(P)) 2 Cq. If ' ;' y 2 F[X;y], we say that
' is de ned over F. Any morphism between curves induces aR-algebra morphism
: F[Cq] ! F[C:] between the coordinate rings. ByFL05a, Remark 4.37],' is
injective if and only if ' is surjective, and if' is surjective, then' is injective. The
map' is anisomorphismif there exists an inverse map that is a morphism. This is
equivalent to' being anF-algebra isomorphismfL05a, De nition 4.38].
From now on, we only consider irreducible projective curvealways keeping in mind
that we have the a ne part given by dehomogenization. LetCr; Cgs be absolutely
irreducible, projective plane curves de ned oveF. In our description of morphisms,
we follow [Sil86, x1.3].
A rational map fromCr to Cgisamap :Cg! Cg givenbyatriple ( x; v; z)
with x; v; z 2 F(Cg) such that for every pointP 2 Cr at which x; v; z are
dened, (P)=( x(P): v(P): z(P)) 2 Cs. We say that is de ned overF if
there exists 2 F suchthat x; v: 2z 2 F(Cg).

De nition 1.25. Two curvesCr and Cg are calledbirationally equivalentif there
exist rational maps :Cg! Cgand :Cg! Cg such that and are
the identities on Cg and Cg, respectively. In that case, is called abirational map.

A rational map : Ce ! Cg is calledregular at P 2 Cg if there exists a func-
tion g 2 F(Cg) such that g x;9 v;g z are all dened at P and at least one of
g x(P);g v(P);g z(P) is di erent from 0.

De nition 1.26. A morphism betweerCr and Cg is arational map :Cg ! Cg
that is regular at every pointP 2 Cr. The map is called anisomorphismif there
exists a morphism : Cg ! Cg such that and are the identities on
Cr and Cg, respectively. Let Mor(Cg; Cs) be the set of morphisms fromCg to
Ce and Isom(Ck; Cg) be its subset of isomorphisms. The sets of morphisms and
isomorphisms that are de ned ovelF for F  F  F are denoted by Mog(Cr; Cg)
and Isom:(Cg; Cg), respectively. The curvesCr and Cg are calledisomorphic over

F or F-isomorphic if there exists an isomorphism de ned oveF.

Remark 1.27. Let :Cg ! Cg be a rational map between the projective, non-
singular, absolutely irreducible curvesCr and Cg, then is a morphism [il86,
Proposition 11.2.1]. If :Cg ! Cg is a morphism, then is either constant or sur-
jective [Sil86, Theorem [1.2.3]. By composition, induces an injection of function
elds :F(Cg)! F(Cg); f 7' f  [Sil86 Theorem I1.2.4]. The extension degree
[F(Ce): (F(Cg))]is called the degree of .

De nition 1.28. Let C be a projective, nonsingular curve de ned oveF. A non-
singular curve C°de ned over F is called atwist of C if C°is isomorphic toC over
F. This means that the set IsomC; C9 is not empty. We denote by Twist(C=F) the
set of F-isomorphism classes of curves that are twists &f and de ned overF.
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If C&F is a twist of C=F, there exists an isomorphism 2 Isom(C;C% and a nite
eld extension F F such that is de ned overF.

De nition 1.29.  Let C=F be a projective curve andC%F a twist of C. The minimal
extension degreal for which there exists an isomorphism 2 Isom(C;C9 that is
de ned over F with [F : F] = d is called thedegree of the twisC° A twist of degree
2 is called aquadratic twist one of degree 3 aubic twist and so on.

Remark 1.30. The set Twist(C=F) is determined by the Galois groupG-_- and the
group Isom(C) of isomorphisms ofC to itself. For details, we refer to Eil86, xX.2].

1.1.5 Divisors, the Picard group and the genus

In this subsection, we de ne thePicard group Pic(C). This group is used in curve-
based cryptographic applications for realizing discreti®garithm-based protocols. In
its description we follow Fil86, x11.3] and [FLO5a, Section 4.4].
Let C=F be an absolutely irreducible, nonsingular, projective cue de ned over
F with C : F(X;Y;Z) = 0. The divisor group Div(C) is the free abelian group
genergted by the points ofC. An elementD 2 Div(C) is written as a formal sum
D= ,cnp(P), wherenp 2 Z for all P and np = 0 for all IQut nitely many
P. Any such D is called adivisor of C. The integer degD) := ,. np is called
the degree of the divisoiD. The set of all pointsP for which np 6 0 is called the
support of D. The subgroup of Div(C) containing all divisors of degred is denoted
by Div%(C) := fD 2 Div(C) j deg@) = 0g. Since the Galois groupG-_- acts on
the points of C, it also acts on divisors. A divisor that is xed under that adion
is said to bede ned over F and is called anF-rational divisor. The subgroups of
Div(C) and Div®(C) of divisors de ned overF are denoted by Diy(C) and Div2(C),
respectively.

ith a nonzero element of the function eld F(C) we associate a divisor div() :=

poc Orde ( )(P). Adivisor D 2 Div(C) is calledprincipal if there exists a function

2 F(C) with D =div( ). We denote the set of all principal divisors by PrincC).
The degree of a principal divisor is 05il86, Proposition 11.3.1]. Note that Princ(C)
Div®(C) is a subgroup of Di¥(C).

De nition 1.31. The divisor class group of degre® on C, also called thePicard
group ofC, is de ned as
Pic®(C) := Div °(C)=Princ(C):

The subgroup of Pié(C) xed by the Galois group G- is the group of divisor classes
de ned over F and is denoted by Pig(C).

Remark 1.32. There exists a nonsingular, absolutely irreducible, progéive variety
Jc de ned over F such that J¢ (F) is isomorphic to Pi<1’i(C) for all intermediate elds

F F F. The variety J¢ is called theJacobian variety ofC. It has the structure
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of a group, and the group law can be described by a morphista Jc ! Jc. Thus
it is an algebraic group A projective, algebraic group is called ambelian variety.
More details can be found inffL05a, Section 4.4.4]. We return to abelian varieties
in Chapter 5.

We conclude this subsection by introducing the genus of a a@. This notion occurs
in the important theorem of Riemann-Roch, which we state intie simpli ed version
as in [FLO5a, Theorem 4.106].
But b@fore doing so, we need to de ne a partial order on Di) as follows: A divisor
D= ,,cne(P)is calledpositive (or e ective) if np 0 forallP 2 C. We write
D O0Ointhat case. LetD,;D, 2 Div(C). Then we write D, D, ifD; D, 0.
This notation is very useful for describing zeros and pole$ & function. For example,
the inequality div( ) (P) 5(Q) implies that the function has a zero of order
at least 1 atP and a pole of order at most 5 aQ. The inequality div( ) 2(P)
means that has a pole of order at most 2 aP. Let D 2 Div(C) be a divisor of
C. Dene

L(D):=f 2 F(C) jdiv( ) Dg[f Og:

The setL (D) is a nite dimensional F-vector space $ti93, Lemmas 1.4.6 and Propo-
sition 1.4.9]. We denote its dimension by (D) := dim g(L (D)).

Theorem 1.33 (Riemann-Roch) Let C=F be an absolutely irreducible, nonsingular
curve overF. Then there exists an integelg 0 such that for every divisorD 2
Div(C)

(D) degD) g+1:

If D 2 Div(C) anddeg@®) 29 2, then (D)=deg(D) g+1.

Proof. See FLO5a Theorem 4.106]; or $ti93, Theorem 1.5.15], Fil86, Theorem
11.5.4], and [Har77, Theorem 1V.1.3] for the full version of the theorem. O

De nition 1.34. The numberg in Theorem 1.33is called thegenusof C.

1.1.6 Elliptic curves

This subsection is dedicated to elliptic curves. We summae results that we need
in the following chapters. In large parts we follow$il86]. In this subsection, letF
be a perfect eld.

De nition 1.35.  An elliptic curve overF is a nonsingular, absolutely irreducible,
projective curve E of genus 1 de ned overF together with an F-rational point
0 2 E(F).

Using the Riemann-Roch Theoreni.33 it can be shown that each such curve is
isomorphic to a plane curve given by a special equation, edlWeierstra equation.
In fact, the plane curves ovelF given by Weierstra equations are exactly the elliptic
curves overF.
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Proposition 1.36. Let E=F be an elliptic curve de ned ovef. Then E is isomor-
phic overF to a curve C given by aWeierstra equation

C:Y?Z+ ayXYZ + agYZ?= X3+ apX?Z + ay;XZ?+ agZ® (1.3)

with coe cients a;; ay; as; as4; a8 2 F. The corresponding isomorphism maps the point
O to (0: 1:0). Conversely, every nonsingular cubic given by a Weierstraquation
(1.3) is an elliptic curve de ned overF. We can takeO =(0:1:0).

Proof. This is part of [SiI86, Proposition 111.3.1]. O

Although an elliptic curve is a projective curve, we often wte the corresponding
a ne equation
Y2+ apxy + agy = X3+ apx®+ aX + ag: (1.4)

It can be seen easily by considering the homogenized curveiaipn that (0: 1 : 0)
is the only point at in nity on E. Because of Propositionl.36 we x the point
O:=(0:1:0).

If char(F) 6 2, we may use the transformation;y) 7! (x%y9 = (X;y+ 3(aix+ ag)),
and after substituting (x;y) for (x%y9 again, we obtain the curve

0.,,2 — 3 b2 2 b4 tb

E”:y" =X +ZX +§X+Z’
whereby = a2 +4a,, by = 2a4 + aya3, s = a3 + 4a;. The above transformation
is an F-isomorphismE ! EC°[FL05a, Section 4.4.2.a]. Assuming additionally that
char(F) 2f 2; 3g, we further carry out the isomorphism &;y) 7! (x%y9 = (x+ 2;y).
This yields the curve
G, .
48 864
wherec, = B 24y andcs = b3+ 36k, 216k, Furthermore, de ne by :=
aas +4aas aazaut+ aa a3 = i(bbh b)), as well as

E00. y2 = 3

| €%

= By 8 27E+9bhbs andj :=

The quantity is called the discriminant of E, while j is called thej -invariant of
E. We also use the notatiorj (E) := .
The curve E%is isomorphic toE. Thus if char(F) 2f 2; 3g, we may assume thaE
is given by ashort Weierstra equation

E:y?=x3+ax+b; a;b2 F: (1.5)
In that case, the discriminant andj -invariant can be computed as

3
=  16(4a*+270%) andj = 1728@:
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When starting with a curve equation (L.4), the discriminant determines whether this
equation de nes a nonsingular curve or not. The curv& is nonsingular if and only
if 60 [Sil86, Proposition Ill.1.4(a)]. The j-invariant determines the isomorphism
class of an elliptic curve, since two elliptic curves are iswrphic overF if and only

if they have the samg -invariant [ Sil86, Proposition 111.1.4(b)].

Example 1.37. Letchar(F) 2f 2;3gandf = y> x® bfor08 b2 F. We consider
the curveE = C; :y2= x3+ boverF. We compute = 16 27%. This is nonzero
as all factors are nonzero irF and thus E is nonsingular and describes an elliptic
curve. Thej-invariant is j = 0. Hence all curveskE : y?> = x3+ bfor b6 0 are
elliptic curves. Each two of them are isomorphic ovef because they have the same
] -invariant.

Proposition 1.38. For everyj, 2 F, there exists an elliptic curveE de ned over
F(jo) with j-invariant j(E) = jo. If char(F) 2f 2;3g, the curveE can be given by
the following short Weierstra equations:

(@) If jo=0,thenE :y?>=x3+ b forany 06 b2 F.
(b) If jo=1728,thenE :y?= x3+ ax, forany 06 a2 F.

(c) If jo80;1728 thenE :y? = x° 4(]027jl()728)x 4(]027jl()728)'

Proof. The rst statement is [Sil86, Proposition I11.1.4(c)]. It can be checked easily
that for char(F) 2f 2; 3g the given curves have the claimeg-invariant. Notice that
the discriminant is non-zero in all three cases. O

Of course, if charf) 2 f 2;3g, the curves can be given as wellS[I86, Proof of
Proposition 111.1.4(c)]. We now turn to Picard groups of eliptic curves.

Proposition 1.39. Let E be an elliptic curve. For every divisoD 2 Div%(E),
there exists a unique poinP 2 E such thatD (P) (O). Denote this point by

(D). Then it follows for all D;; D, 2 Div%(E) that (D1) = (D5) if and only if
D, D,. The map is surjective and thus induces a bijection of sets

. Pic°(E) ! E:
Proof. This is [Sil86, Proposition 111.3.4]. O

Since Pi@(E) carries the structure of an abelian group, the bijection im the pre-
vious proposition induces a group structure oi. The sets Pi€(E) and E are then
isomorphic as groups. Choosing a Weierstra equation fdt, the group law onE
can be given by formulas involving the point coordinates. Wgive the formulas in
the case charf) 2f 2; 3g for a short Weierstra equation.

Lemma 1.40. Let char(F) 2f 2;3g, and letE : y? = x3+ ax+ b be an elliptic curve
over F. The commutative group law induced by from Proposition 1.39is given as
follows: (We denote the group law by as addition.)
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(@) Forall P2 E, itholdsP + O = P, i.e. O is the neutral element.

(b) If P = (X1;y1), then (Xg;y1) + (X1; y1) = O, i.e. the additive inverse (or
negative) ofP is P =(X1; Vi1).

(c) Let Py =(Xq;y1) and P, = (X3;y,) with P, 6 P,. De ne

(Y2 Yi)=(X2 Xx1) if P16 Py,
(3x2 + a)=(2y1) if P, = P,:

The point P; = P, + P, is given byPs = ( X3;y3) with

X3 = X1 Xg;
Y3 = (X1 X3z) yi

Proof. Combine [il86, Proposition 111.3.4(e)] and [Sil86, Algorithm 111.2.3] or see
[FLO5a, Section 4.4.5]. O

Remark 1.41. The group law on an elliptic curveE has a geometric interpretation,
from which the above formulas can be derived. To add two powt; and P,, one
takes the lineL passing through them. If the points are equal, take the tange
to E in P;. From Bezout's Theorem 1.21, we know that L intersects with E in a
third point. The re ection of this third intersection point about the x-axis is the
sumP3. Figure 1.1 shows the geometric interpretation of the group law on the cue
E :y?2=x® x overR. In Figure 1.1(a), the point P; has x-coordinatex; = 0:9
and P, hasx, = 0:3; in Figure 1.1(b), P, hasx-coordinatex; = 0:.65.

I
P3'

Po| -4 Pr__-

L ,P - v | L __-
- - I
I
]
:
|
E E

P3|
I
I

(a) Addition (b) Doubling

Figure 1.1: Addition and doubling onE :y?= x® x overR.

Next we consider morphisms between elliptic curves that amompatible with the
group law. LetE;; E;, be two elliptic curves. We denote the neutral elements ik,
and E, by O; and O,, respectively. A morphism' :E;! E, with ' (O;) = Oy is
called anisogeny If there is an isogeny betweerkt; and E,, the curves are called
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isogenous It turns out that all isogenies are group homomorphisms, wbh is shown
in [SiI86, Theorem 111.4.8]. We denote by HomE ; E,) the set of all isogenies from
E; to E,, i.e. the set of all morphisms that are group homomorphism§he subset
of all isogenies de ned oveF is denoted by Hom(E;; E>).

Remark 1.42. Since we are mainly interested in the group structure d&, all mor-
phisms of elliptic curves that occur in the following shall b group homomorphisms.
In particular, when we speak of isomorphisms, we mean grougomorphisms.

The set Hom(E ; E») is an abelian group, sincé=; is an abelian group, which means
that the sum of two isogenies can be de ned pointwise. E; = E,, the composition
of isogenies turns Hon4; E,) into a ring.

De nition 1.43. The endomorphism ringEnd(E) of an elliptic curve E is de ned
as EndE) := Hom(E; E). The invertible elements in Endg) are called automor-
phisms and the set of all automorphisms is denoted by AuE). It is a group with
respect to composition. The sets of endomorphisms and autorphisms that are
de ned over F are denoted by End(E) and Aut(E), respectively.

Example 1.44. For m 2 Z de ne the multiplication-by-m map[m] : E ! E on
an elliptic curve E=F as follows: LetP 2 E be an arbitrary point. If m = 0, then
[mP .= O. If m> O, thenm]P .= P+ P + + P is the m-fold sum of P with
itself. Finally, if m2 Z, m< 0, thendene [m]P ;= [ m]P. The map |m] is an
endomorphism overF, i.e. [m] 2 Endg(E).

De nition 1.45. For 0 6 m 2 Z, the kernel of the multiplication-by-m map is
denoted by E[m] := ker(fm]) = fP 2 E j [m]P = Og. It is called the m-torsion
subgroup ofE. Elements ofE[m] are calledm-torsion points. The set of F-rational
m-torsion points is denoted byE (F)[m].

Lemma 1.46. Let E be an elliptic curve overF and 0 6 m 2 Z. Suppose that
char(F) =0 or that m is prime to char(F). Then,

E[m]= Z=mZ Z=mZ,
in particular, if m> 0is a prime, thenE[m] is a 2-dimensional F,-vector space.
Proof. See §il86, Corollary 111.6.4]. O

The endomorphism ring of an elliptic curve is a domain of chacteristic 0 [Sil86,
Proposition 111.4.2(c)]. Since all the maps iin] are in End(E) for all m 2 Z, the
ring Z can be embedded into Endf). Therefore, the endomorphism ring always
contains a copy ofZ.

Theorem 1.47. Let E be an elliptic curve. Then the ringend(E) is isomorphic
either to Z, to an order in a quadratic imaginary eld, or to an order in a quaternion
algebra.
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Proof. This statement is [Sil86, Corollary 111.9.4]. O

De nition 1.48. If the endomorphism ring Endg) of an elliptic curve E is iso-
morphic to an order in a quadratic imaginary eld, we say thatE has complex
multiplication (CM) .

In contrast to endomorphisms, the automorphisms dE are rather rare. Over elds
of characteristic di erent from 2 or 3, the automorphism graoip is a cyclic group of
order 2, 4, or 6.

Theorem 1.49. Let char(F) 2f 2;3g, and let E be an elliptic curve overr. Then,
Aut(E) = ,;

where , is the group ofnth roots of unity withn =2 if j(E) 2f 0;1728, n =4 if
j(E)=1728,andn=6 if j(E)=0.

Proof. This is [Sil86, Corollary 111.10.2]. O

An automorphism of E always has the form x;y) 7! (u?x;uy) for someu 2 F .
This means thatau 4= a and bu ° = b. Depending on whethea or b are 0 or not,
this explains the above theorem.

We next describe the twists ofE more closely. According to our convention that
an isomorphism is a group isomorphism (see Rematk4?, we only consider twists
given by isomorphisms :E;! E; with ' (O;) = O,, i.e.’ is an isogeny. The set
of F-isomorphism classes of these twists is denoted by TwidE((O)=F). Such twists
are related to the automorphism group oE (see De nition 1.28and [Sil86, xX.5]).

Proposition 1.50. Let E be an elliptic curve de ned over the eld~ with char(F) 2
f2,3g. Let E be given by an equatiolt : y> = x>+ ax+ b Let =2 if j(E) 2
f0;1728, =4 ifj(E)=1728and =6 if j(E)=0.

There is a bijectionF =(F ) ! Twist((E; O)=F). For 2 F the twistE , corre-
sponding to mod (F ) has the equation

E :y?=x3+ Zax+ 3b if j (E) 2f 0;1728 ( =2);
E :y?=x3+ lax if j(E)=1728 ( =4);
E:y?=x3+ b if j(E)=0 ( =6):

Proof. This is [Sil86, Proposition X.5.4] with replaced by *. This can be done,
since ; and , are in the same class moduld~() ifandonlyif ;*and ,*are. O

Remark 1.51. The corresponding isomorphism :E ! E is given by
(X1;y1) 70 (x1; ¥Pyi) if j (E) 2f 01728 ( =2):
(X1;y1) 70 ( P15 *ya) if j (E)=1728 ( =4);
(X1;y1) 70 ( 15 Pya) if j(E)=0 ( =6):
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Recall De nition 1.29for the degree of a twist. The maximal degrees that can occur
are given by . The following table lists the degreea of the twist depending onj (E)
and :

L i® [ | [d]

20,1728 | 2 2 (F)? 1

2 (F )2 2

1728 |4 2 (F)? 1

2(F)2,2(F)* |2

2 (F )2 4

0 6 2 (F)® 1

2(F)3, 2(F)2|2

2(F)2,2(F)®|3

2(F)2,2(F)®|6
For all the cases withd = 1 we can take ; := ¥ 2 F and get an isomorphism
E ! E;, (xy) 7! ( 2 3y). Inthe same way, all the cases withd = 2 can be

treated like the cases withj (E) 2f 0; 1728 by taking a ( =2)th root of

From now on, we consider elliptic curves over a nite eld. Wex F = Fg, a eld of
order g. Let p = char(F,) be the characteristic ofF,. Since there are only nitely
many elements that can occur as coordinates Bf-rational points, the setE(F,) is
nite. Hasse's Theorem gives bounds for its cardinality.

Theorem 1.52 (Hasse) Let E=F, be an elliptic curve de ned oveiF,;. Then

#E(Fg) = q+1 t; wherejtj Zpa: (1.6)

Proof. This is [Sil86 Theorem V.1.1]. O

The numbert from the previous theorem is called thdrace of the Frobenius en-
domorphism ofE over F,. This terminology is justi ed in the following example.
Note that the g-power Frobenius automorphism on a nite eld extensionF g =F
generates the Galois group?,:qk =r, for any k 2 N. As already mentioned in Subsec-
tion 1.1.4 the action of any eld automorphism in quk=pq extends to points on the
elliptic curve E=F,. Extending the Frobenius automorphism in this way resultsn
an Fq-endomorphism ofE:

Example 1.53. |If E is an elliptic curve de ned overF,, the map
. E! E; (Xiy1) 7' (X35 y9)

is an endomorphism oE, called the Frobenius endomorphismSince theqth power
map is the identity on F,, the set of points xed by  is the group E(Fg) of Fqy-
rational points on E. The endomorphism  satis es g [t] 4+[ad =0, see [ch85
p. 485). Therefore, we call 4 := T? T + g2 Z[T] the characteristic polynomial

of .
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Deuring [Deu4]] describes the endomorphism ring of an elliptic curve over aite
eld. It can not be isomorphic to Z, since it always contains 4. Therefore, it
is isomorphic to an order in a quaternion algebra or to an orden a quadratic
imaginary eld, see Theorem1.47. The following theorem relates the structure of
End(E) with that of E[p].

Theorem 1.54. Let E be an elliptic curve de ned oveF,. The following statements
are equivalent:

(a) The endomorphism ringend(E) is non-commutative.
(b) The ring End(E) is an order in a quaternion algebra.
(c) The p-torsion subgroup isE[p] = fOg.
(d) The trace of Frobeniust is divisible byp, i.e. pjt.

If the above conditions do not hold, the& [p] = Z=pZ.

Proof. The theorem follows from §il86, Theorem V.3.1] with [Wat69, Theorem 4.1
and the de nition before] or [Sil86, Exercise 5.10] concerning condition (d). O

De nition 1.55.  An elliptic curve E=F, is calledsupersingularif one of the condi-
tions in Theorem 1.54 holds. Otherwise, the curve is calledrdinary.

Returning to Hasse's Theorem, the question arises whetharfany numbert with

jti 2" qthere exists an elliptic curve withq+ 1 t rational points. For most of
such numberst this is true. There are only a few exceptions (se&/ht69, Theorem
4.1] and [5ch87 Theorem 4.2 and Theorem 4.6]). In the following lemma, we bn
state the case that we need later.

Lemma 1.56. Lett 2 Z with jtj 2pq and p - t. Then there exists an ordinary
elliptic curve E de ned over Fg, such that# E(Fy) = q+1 t. In particular, if
g= pis prime, then for everyt 6 0 with jtj 2" p there exists an ordinary elliptic
curve overF, with # E(Fp) = p+1 t.

Proof. This result follows immediately from [Vat69, Theorem 4.1]. O

Consider the twists of an elliptic curve over a nite eld F, as described in Propo-
sition 1.50and Remark1.51 The number of F4-rational points on the twist can be
given in terms of the tracet of the original curve E and the orderq of the eld.
He, Smart, and Vercauteren HSV0€ determine the possible group orders of the
twists of an ordinary elliptic curve over a nite eld, which we give in the following
proposition. Note that # E (Fg) = # E{F) for a twist of degreed.

Proposition 1.57. Let E be an ordinary elliptic curve de ned overF,, and let
#E(F)) = q+1 t. Let E®°be a twist ofE of degreed. The possible group orders
of E{F,) are given as follows:
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[d] #EYFy |
2 g+l+t
3] g+1 (Bv t=2witht*> 4g= 3v?
q+1 ( 3v t)=2witht> 4q= 3v2
4 g+1 vwitht? 4= V?
q+1+ vwitht? 4q= V2
6| g+1 (Bv+t)=2witht> 4= 3v?
q+1 ( 3v+t)=2witht> 4q= 3v2

Proof. This is [HSVO06 Proposition 8]. O

The groups of points on elliptic curves used in cryptographgre cyclic groups of a
large prime order. LetE be an elliptic curve de ned overFq with n :=# E(F,). Let
r 6 p be a prime dividingn.

De nition 1.58. The embedding degree & with respect tor is the smallest integer
k such thatr j (g¢ 1).

If r -(q 1), the embedding degree determines the smallest extensiohF, over
which all r-torsion points of E are de ned.

Theorem 1.59. Let E=F, be an elliptic curve,n = # E(Fg), r a prime withr j n
andr -(q 1). ThenE[r] E(Fg) ifandonly ifr j (o 1).

Proof. See BK98, Theorem 1]. O

Let k > 1 be the embedding degree & with respect tor. Sincer j n, we know
that there are r-torsion points de ned overF,. Let  be the g-power Frobenius
endomorphism as in Examplel.53 Since anr-torsion point is again mapped to an
r-torsion point by g, its restriction to E[r] is a group endomorphism.

Lemma 1.60. Let E=Fy be an elliptic curve,r 6 p a prime withr j #E(Fg),

k > 1 the embedding degree & with respect tor, and 4 the g-power Frobenius

endomorphism.

Then E[r] is a 2-dimensional vector space oveF,. The restriction of  to E[r],
q:E[r]! EJr]is a bijective linear map, which has the two eigenvalues=1 and
> = 0. We have the following vector space decomposition into eigpaces:

Efr]=(ker( ¢ [ID\ E[r]) (ker( 4 [dD\ E[r]):
Itis ker( ¢ [1])\ E[r]= E(Fg)lr] andker( ¢ [d)\ E[r] E(Fq)Ir].

Proof. It is clear that E[r] is a 2-dimensionaF, -vector space (see Lemma.46). It
can be seen easily that is injective and thus bijective onE[r]. There arer-torsion
points in E(Fg), becauser j # E(Fg). Points de ned over F, are xed under 4 and
so 1 is an eigenvalue of,, and the corresponding eigenspace is keg( [1]))\ E[r] =
E(Fg)r]. The characteristic polynomial of the vector space homomghism 4 is
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the polynomial 4 from Example 1.53 Fromr jgq+1 t = (1), it can also be
seenthat T 1)j g modulor. OverF;, the polynomial 4= T2 (T + qsplits as
(T 1)(T q) 2 F[T], showing that the other eigenvalue of ;onE[r]isq. Thus E[r]
is the direct sum of the eigenspaces. The statement keg( [q])\ E[r] E(Fq)[r]
follows fromr jnand k > 1. 0

1.1.7 Edwards curves and twisted Edwards curves

In this subsection, we brie y describe Edwards curves and tated Edwards curves.
Edwards curves were introduced as a new normal form for eliipcurves by Edwards
in 2007 EdwO07]. Their importance for cryptography was shown by Bernsteimnd
Lange BLO7].
Let F be a eld of characteristic di erent from 2. An Edwards curve overF is a
curve

Eq:x?+y?2=1+ dx??% d2 FnfO;1g: (1.7)
A group law on E4 can be de ned as follows: The sum of two point®; = (X1; Y1)
and P, = (X2;Y2) in E4(F) is given by

X1Y2 + YiXo | YiY2  XiX2
1+ dxiXay1y2 1 dXgXoyiyo

P+ P, = (1.8)
The neutral element with respect to this addition is (Q1). The point (0; 1) has
order 2 and the points (20) and ( 1;0) have order 4. The above group law has the
advantage that it is complete for certain values ofl, i.e. there are no exceptional
cases, the formulas work for any pair of input points. Theore 3.3 in [BLO7] shows
that this is the case ifd is not a square inF.

Bernstein, Birkner, Joye, Lange, and Peters generalize thencept of Edwards curves
and introduce twisted Edwards curvesn [BBJ" 08].

De nition 1.61. Let F be a eld with char(F) 6 2. A twisted Edwards curve over
F is a curve
Eag:ax?+ y?>=1+ dx’?% a;d2 F; d6 a: (1.9)

Remark 1.62. In fact, a twisted Edwards curve is a quadratic twist of an Edwards
curve. The curveE,q is a quadratic twist of the curveE ;.4-,, see BBJ" 08, Section 2].
Note that for a = 1, the curve E,.4 = E1.4 IS an Edwards curveEq as de ned before.

The fact that many elliptic curves are birationally equivaént to twisted Edwards
curves can be used to represent elliptic curves by Edwardsrees or twisted Edwards
curves. The following theorem shows that an elliptic curv& over F which has a
point of order 4 is birationally equivalent to an Edwards cuve Eg.

Theorem 1.63. Let F be a eld with char(F) 6 2. Let E be an elliptic curve over
F that has a point of order4. Then there existsd 2 F nf0; 1g such that the curve
Eq:x2+ y2 =1+ dx?y? is birationally equivalent toE over F.
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Proof. This is Theorem 3.3 in BBJ" 08]. O

The algorithm of how to determine the curveEy from a given elliptic curve E is
described in the proof of BBJ" 08, Theorem 3.3]. Moreover, the group law on
the elliptic curve E corresponds to the group law on the Edwards curve under the
birational equivalence. Theorem 3.2 ingL07] shows that two corresponding points
add to the corresponding point of the sum.

As a generalization of Edwards curves, twisted Edwards cles naturally cover a
larger set of elliptic curves that can be represented. Thetsef twisted Edwards
curves covers all elliptic curves that can be transformedtm a Montgomery curve.

De nition 1.64. Let F be a eld with char(F) 6 2. Let A 2 Fnf 2,29 and
B2F.Acurve
Epg 1 By?= x®+ Ax? + x

is called aMontgomery curve

Details on Montgomery curves can be found irDL05a, Section 13.2.3].

Theorem 1.65. Every twisted Edwards curve oveF is birationally equivalent over
F to a Montgomery curve, and conversely, every Montgomery garoverF is bira-
tionally equivalent overF to a twisted Edwards curve.

Proof. This is proved as Theorem 3.2 inBJ" 04]. O

The speci ¢ transformations are given in the proof of§BJ" 08, Theorem 3.2]. Over
a nite eld F4, many Montgomery curves are even birationally equivalentot an
Edwards curve. This is the case iff 3 (mod 4) BBJ* 08, Theorem 3.4].

The group law on a twisted Edwards curve is very similar to thaon an Edwards
curve. For Py = (X1;¥1); P2 = (X2;¥2) 2 E4q(F) the sum of the two points is given
by

X1Y2 + YiXz | Yiy2  aXiXz
1+ dxiXayay2' 1 dXiXayiYo

Itpa is a square inF, E,q is F-isomorphic to E;.4-; under the isomorphism ;y) 7!

(" ax;y) that xes the neutral element (0;1). Therefore, the above formulas are
complete onE,.q(F) if ais a square inF and d is a nonsquare irF (see alsofBJ" 08,
Section 6]).

For the remainder of this subsection, we consider a twisteddwards curve in its
projective form

P+ Py =

(1.10)

Eaq:(aX?+ Y?)Z2= 2%+ dX?Y2
The point O := (0 : 1 : 1) is the neutral eIngnent of the additioB, and the pait
O%=(0: 1:1)has order 2. The points (¥ a:0:1)and ( 1= a:0: 1) both
have order 4. All a ne points are nonsingular, but there are wo singular points at

in nity.
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Lemma 1.66. Let E,q4 be a twisted Edwards curve ovdf with char(F) 6 2. The
points ;:=(1:0:0) and ,:=(0:1:0) are the only points at in nity on Eg.
Both points are singular, and their multiplicities arem [ (Eaq) =2= m ,(Eaq)-

Proof. Let f = (aX?2+ Y?2)Z2 Z% dX?Y?2 be the polynomial de ning E,q4. A
point P = (Xp : Yp : 0) 2 Eqq must satisfy dX2YZ2 = 0. Sinced 6 0, the only two
possible points withZ-coordinate equaltoOare ,=(1:0:0)and ,=(0:1:0).
We compute the partial derivatives

@f_ 2 2.@f_ 2 2.@f_ 2 2 2y.
@X—ZX(aZ dy<); @Y—ZY(Z dX?); @Z—ZZ(aX +Y° 2Z9);
and see that they all vanish at ; and 5. According to De nition 1.12 both
points are singular. To show that the multiplicity of each pmt is 2, we follow
Remark 1.15 Dehomogenizef with respect to the rst coordinate such that
corresponds to the a ne point (0;0) on the a ne curve given by the polynomial
azZ + y?z> z* dy? The lowest-degree monomialaz? and dy? have degree 2,

which means thatm ,(E,q) = 2. The point , is handled similarly. O

1.1.8 Hyperelliptic curves

In this section, we give a basic introduction to hyperelligt curves, mainly to intro-
duce notation for hyperelliptic curves of genus 2. LeE be a perfect eld.

De nition 1.67. A nonsingular projective curveC=F of genusg is called ahyper-
elliptic curve of genugy if its function eld F(C) is a separable extension of degree
2 of the rational function eld F(x), i.e. [F(C) : F(x)] = 2.

With the help of the Riemann-Roch Theorem1.33 it can be shown that a hy-
perelliptic curve of genusg can be given by a nonsingular plane a ne curve (see
Section 4.4.2.b in[FL05a]). For the purpose of this work, it su ces to characterize
hyperelliptic curves by their a ne plane parts as given in the following proposition.

Proposition 1.68. The function eld of a hyperelliptic curve of genug over F is
the function eld of a nonsingular, plane, a ne curve given ly

C:y?*+ h(X)y = f(x);
whereh(x); f (x) 2 F[x], degf) 2f2g+1;29+2g, degh) g+1.
Proof. This follows from Theorem 4.122 infL054]. O

A Weierstra point on C is a xed point under the hyperelliptic involution induced
by the nontrivial automorphism of the eld extension F(C)=F(x). For details, see
[FLO5a, Section 4.4.2.b]. If there exists affr-rational Weierstra point, the curve is
birationally equivalent to one of the form

C:y?+ h(X)y = f (X);

whereh(x);f (x) 2 F[x], degf ) =2g+ 1, deg(h) g. The homogenization of any
such curve has a singular point at in nity.
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Remark 1.69. Ifdeg(f) =2g+1 and char(F) 6 2, the equation can be transformed
by completing the square to achieva(x) = 0 [FLO5a, p.74]. If we have a curve given
by an equationy? = f (x), a point P = (Xp;Yyp) being singular means thatyp = 0
and xp is a double root off (x). Therefore, a hyperelliptic curve over a eld of
characteristic di erent from 2 can be given aC : y?> = f (x) such that f has only
simple roots inF[x].

With the above de nition of hyperelliptic curves we may subame elliptic curves as
hyperelliptic curves of genus 1. Butify > 1, the points onC do not form a group any-
more. Therefore, we use the Picard group PI(C), or in other words, the Jacobian
variety Jc for cryptographic applications (see De nitionl.31and Remark1.32. The

following theorem gives a nice representation for element$ Pic’(C), from which

their eld of de nition can be read o.

Theorem 1.70 (Mumford representation) Let C : y? + h(x)y = f(x) be a hy-
perelliptic curve of genusgy with h;f 2 F[x], degf) = 2g+ 1, degh) g¢. Let
F F F. Each nontrivial group element inPicg(C) can be represented by a
unique pair of polynomials(u(x);v(x)), u;v 2 F[x], where

(a) the polynomialu is monic,

(b) deg{v) < deg) g,
(c) uj(v®+vh f).
Proof. See FLO5a, Theorem 4.145]. O

Remark 1.71. Arithmetic in the group Picg(C) with elements in Mumford repre-
sentation can be done withCantor's algorithm, see Can87 or [DLO5b, Algorithm
14.7]. The Mumford representation in the previous theoremhsws that the Picard
group Pi(ﬁq(C) of a hyperelliptic curve C over a nite eld Fqis nite.

From now on, we identify the Jacobian varietyJc (see Remarkl.32 with Pic°(C).
For the sake of brevity, we use the notationlc, always keeping in mind that for
us, elements oflc are divisor classes. We denote the class of a dividdrby D. It
has already been mentioned thallc is an abelian variety (see Remark.32. An
endomorphism ofl¢ is a morphism of abelian varietiedc ! Jc, i.e. a morphism of
varieties that additionally is a group homomorphism (se€-[.05a, Section 4.3.3]). In
particular, it xes the neutral element of Jc. We denote the set of all endomorphisms
of Jc by End(Jc). The set of all endomorphisms de ned over a eldF with F

F Fis denoted by End(Jc).

Example 1.72. An important endomorphism ofJ¢ is the multiplication-by-m map
[Mm]:Jc! Jc form2 Z. An elementD 2 Jc is mapped to D, which is de ned
as the m-fold sum of D, understandingm = 0 and negative m as usual (compare
with Example 1.44). The kernel of m] is denoted by

Jec[m]:=fD 2 Jc j [m]D = Og;
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where0 is the class of the zero-divisob = 0. The set Jc[m] is called thesubgroup
of m-torsion points onJc. Forany F F  F, the subset ofF-rational divisor
classes inlc[m] is denoted byJc (F)[m].

The previous example shows that there is an embeddiy! Endg(Jc). Next we
state the generalization of Lemmad..46

Theorem 1.73. Let C be a hyperelliptic curve of genug de ned over F and letJ¢
be its Jacobian variety. Let06 m 2 Z. If char(F) =0 or if m is prime to char(F),
then

Jc[m] = (Z=mZz)?:

If char(F) = p> 0, thenJc[p?] = (Z=FZ)°, whereO s gforalle 1.
Proof. This is [DLO5b, Theorem 14.11]. O

De nition 1.74. The numbers in Theorem 1.73is called thep-rank of C overF.

For the remainder of this section, we consider hyperelligticurvesC over nite elds
F=F,

De nition 1.75. If the p-rank of C is equal tog, then J¢ is calledordinary. The
JacobianJc is calledsupersingularif it is the product of supersingular elliptic curves.
The curve C is called ordinary or supersingular iflc is ordinary or supersingular,
respectively.

Remark 1.76. An elliptic curve is supersingular if and only if it hasp-rank 0. For
curves of genus larger than 1, we have that @ is supersingular, then it hag-rank
0. The converse only holds fog 2 [FLO5a Remark 4.75].

If we extend the g-power Frobenius automorphism of, to points on C, to divisors,

and nally to divisor classes, we obtain an endomorphismy : Jc ! Jc, called

the Frobenius endomorphism ordc. When using the Mumford representation, the
endomorphism is carried out by applying theg-power map to the coe cients of the

polynomialsu and v.

Theorem 1.77. The endomorphism , satis es a characteristic polynomial of de-
gree 2g given by

oT)= T2+ T2 T+ +agT9+  +a 'T+ 2 Z[T]:
Let ; 2 C be the roots of 4 overC, i.e.

o(T) = . (T i)

Then the following statements hold:
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(@) The numbers ; satisfyj ij = P gforall1 i 2g. There exists an ordering
of the ; with 57 3= ,i.e. i wg=qforalll i g.

(b) For any positive integerk, it holds

9 9
#C(Fg)= o +1 K #Ic(Fg)= (1 9

i=1 i=1
as well asj# C(F) (g +1)j gb2g<=?c. In particular, #Jc(Fg) = 4(1).
Proof. See Theorem 14.16 and Theorem 14.17 inlJ05b]. O

Example 1.78. Let C be a hyperelliptic curve of genus 2 over the nite eldF,.
The characteristic polynomial of the Frobenius endomorplim onJc is

oT)= T+ T3+ aT?+ aqT+ ¢f

with a;;a, 2 Z. The equations in Theoreml1.77 lead to a relation between the
coe cients aj; a, andek =# C(F(b) k2f1;2g. p

4
We have = T* o TP+ g TP g L, T+ ¢ It follows that
ag= (1+ 2+ 3+ 4 andthusn; = q+1+ a. Computing a2 shows that
n,= ¢+1+2a a2 Knowing a; and a,, it is possible to computen; and n,
and vice versa. From the inequality in part (b) of the previos theorem, it follows
jay] 2b2P gcand 29 a 10g. More accurate are the following bounds
depending ona; (see Reic90 Theorem 1.1]):

_ a’
P q 29 a —+2q:

4
The techniques from the example can be applied for arbitrargenusg. Thus the
order of the JacobianJc(F,) can be computed from the number of-rational
pointsonC for1 k g. Knowing the coe cients of the characteristic polynomial

of the Frobenius endomorphism means knowing@&(Fy) for1  k g.

2jayj

1.2 Pairings

In this section, we de ne pairings and introduce the Tate-lghtenbaum pairing and
the Weil pairing on the Jacobian of a hyperelliptic curve. Inthe case of elliptic
curves, we describe the details of pairing computation for drent variants of pair-

ings.

Pairings used in cryptography are e ciently computable bilnear maps on torsion
subgroups of the Jacobian variety of a hyperelliptic curvehiat map into the mul-

tiplicative group of a nite eld. We call such a map a cryptographic pairing In

contrast to the mathematical concept of a pairing, this addionally includes the
existence of algorithms for e cient pairing computation.
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De nition 1.79. Let Gy; G, be nite abelian groups written additively, and let G3
be a multiplicatively written nite abelian group. A cryptographic pairingis a map

e:G; Gy! Gjz
that satis es the following properties:

(@) Itis non-degeneratei.e. forall06 P 2 G; thereisaQ 2 G, with eP; Q) 6 1,
and for all06 Q 2 G, there is aP 2 G; with ¢(P; Q) 6 1.

(b) Itis bilinear, i.e. for P1; P, 2 G; and Q4; Q, 2 G, we have

e(P1+ P2;Q1) = ¢€(P1;Q1)e(P2; Q1);
e(P1; Q1 + Q) e(P1; Q1)&(P1; Q2):

(c) Itis e ciently computable.

An important property that is used in most applications, andthat follows immedi-
ately from bilinearity is e([a]P;[0Q) = e(P; Q) = &([bP;[a]Q) for all a;b2 Z and
forall P 2 Gy and Q 2 G..

The rst applications in cryptography used the Weil pairing Menezes, Okamoto,
and Vanstone MOV93] describe a way of reducing the discrete logarithm problem
(DLP) on a supersingular elliptic curve to a DLP in the multiplicative group of a
nite eld. They construct a group isomorphism from the Weil pairing. Frey and
Reck [FR94] use a map deduced from the Tate pairing for a more general red
tion of the DLP in a torsion subgroup of the Jacobian of a curveFirst construc-
tive applications were the identity-based non-interactig key agreement of Sakali,
Ohgishi, and Kasahara$OKO0(, Joux's tripartite one-round key agreementJou0(,
the identity-based encryption scheme by Boneh and FranklifBF01, BF03], and the
short signature scheme by Boneh, Lynn, and Shachar@l[S04. Currently, most
cryptographic pairings are variants of the Tate pairing.

1.2.1 The Tate-Lichtenbaum pairing

The Tate pairing can be de ned on an arbitrary abelian varigg. It induces a pairing
on ther-torsion subgroup of the abelian variety for a prime. A brief overview of the
de nition of the Tate pairing can be found in [DF05a, Sections 6.2 and 6.3]. Lichten-
baum describes a version of the Tate pairing which can be coatpd very e ciently
(see PFO5a, Corollary 6.17]). Since we are interested in practical inpmentations,
we restrict ourselves to discussing the Tate-Lichtenbaumaging [DF05a De nition
6.15]. We also refer to it simply as the Tate pairing, knowinghat we use Lichten-
baum's approach.

Let C be a hyperelliptic curve of genug de ned over a nite eld F, of characteristic
p. Let Jc be the Jacobian variety ofC. Note that we regard elements ol as divisor
classes represented by a divisor of degree 0. Inet # Jc(Fy) and r > 5 be a prime
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di erent from p with r j n. The embedding degree can be de ned as for elliptic
curves (De nition 1.58.

De nition 1.80. The smallest integerk with r j (d¢ 1) is called theembedding
degree ofC with respect tor.

Remark 1.81. The embedding degree as de ned in the previous de nition is a
function of r and g and actually does not depend on the curve itself. Neverthet
we attach it to the curve C if the prime r divides #Jc (Fq).

If k is the smallest integer withr j (¢¢ 1), then the order of g modulo r is k.
Furthermore, the smallest eld extension of~, that contains the group , of all rth
roots of unity is Fx. This does not mean thatFy is the smallest extension of,
that contains . As shown by Hitt [Hit07], this observation may have an in uence
on the security of pairing-based cryptosystems.

De nition 1.82. Let C be a hyperelliptic curve of genusy over the nite eld
Fq of characteristicp, and let r 6 p be a prime dividing #Jc(Fy). Let k be the
embedding degree of with respect tor. The Tate-Lichtenbaum pairing (or simply
Tate pairing) is a map

Tt Jc(Fg)lr]l  Jc(Fg)=rc (Fge) ! Fku(Fqk)r

de ned as follows: LetP 2 Jc(Fg)[r] be an Fy-rational divisor class of order
dividing r represented by a divisorDp, and let Q 2 Jc(Fq) be an Fy-rational
divisor class represented by a divisdDq such that its support is disjoint from the
support of Dp. Let fr.p 2 F(C) be a function onC with div(f.p) = rDp. Then

T (P Q+ [r]‘JC(Fqk)) = frp (DQ)(Fqk)r:

P
The evaluation off.p atadivisorD = 5, nr(R) is given as
Y
fre (D) = frp (R)™:
R2C

Proposition 1.83. The Tate pairing as de ned in De nition 1.82is well de ned,
bilinear, non-degenerate, and can be computed @(log,(r)) operations inF.

Proof. This is Proposition 2.3 in FR94] and [DF05a Theorem 6.15 and Corollary
6.17]. O

For a suitable curve, the Tate pairing is hence a cryptograpb pairing in the sense
of De nition 1.79 The following lemma gives a simple statement from elememia
group theory that can be used to represent the groujx (Fq<)=r]Jc (Fg) with points

in Jc(Fglr].

Lemma 1.84. Let G be a nite abelian group written additively, and letr be a
prime dividing jGj. Let G[r] be the subgroup of all points of order dividingand rG

the set of allr-fold sums of elements irG. If there is no element of orden? in G,

then G[r] = G=rG.
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Proof. We show that the mapG[r]! G=rG;g 7! g+ rG is a group isomorphism.
It is clear that it is a group homomorphism. Supposey + rG = g + rG for
01,0 2 G[r]. Then it follows that gy @ 2 rG,i.e.q1 @ = rg for someg 2 G.
Sinceg;; g 2 G[r], we have 0 =rg; rg, = r?g. As there is no element of order
r2 by assumption, we haverg = 0 and thus g, = ¢,. Therefore, the above map is
injective. Consider the group homomorphisnG ! rG;g 7! rg. The kernel of this
map is G[r] and it follows G=G[r] = rG. HencejGj = jG[r]j jrGj. This proves the
lemma. O

Corollary 1.85. If there are no points of orderr? in Jc(Fg<), we have
JC(Fqk)[r] = JC(Fqk):[r]\]C(Fqk);

I.e. we can choose the-torsion points as representatives of the classes on thehtg
hand side.

Remark 1.86. Sincer j # Jc(Fg), there arer-torsion points in #Jc(Fg), and we
may restrict the rst argument to be taken from this set. Thuswe can also de ne
the Tate pairing as a map

Tr 1 Jc(Fo)lr]  Jc(Fg)=lrPc(Fg) ! Fye=(Fg)":

From now on, we assume thaflc (F«) does not contain any point of orderr?. In
this case, by Corollaryl.85 the Tate pairing can be given as a map

T 1 Jc(Flrl Je(Fglr]! Fy=(Fy)":

Nevertheless, we keep in mind that we can take any other regentative inJc (Fg)
of a class for the second argument.
Values of the Tate pairing are classes iI=‘1qk =(Fqk)r. By applying the multiplicative
version of Lemmal.84 we see thathk =(Fqk)r = |, the subgroup ofrth roots of
unity in Fo The isomorphism is made explicit by computing

Fe=(Fg)" ! a(Fg)" 7t a@ b=
This map is called the nal exponentiation.

Taking into account all the modi cations made in the previots remark, we can de ne
a version of the Tate pairing suitable for practical implemetations (compare with
the description in [DF05b, Section 16.1.1]).

De nition 1.87. The reduced Tate pairingis the map

e IcFII JeF] | o Fy
(P:Q) 7! T(P;Q) V= = fr;P(DQ)(qk =r.

induced by the Tate pairing.
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1.2.2 The Weil pairing

Early applications in cryptography used the Weil pairing onsupersingular elliptic
curves (see JIOV93] or [BFO3]). Here, we de ne the Weil pairing for arbitrary
hyperelliptic curves. Let the assumptions be as in the premius subsection. In
particular, let k be the embedding degree & with respect tor.

De nition 1.88. The Weil pairing is de ned as

W, :Jc[r] Jc[r] ! r Fqk;
. fr;P (DQ)
(P;Q) 7! 7fr;Q(DP).

The functions and divisors are de ned as in the de nition of he Tate-Lichtenbaum
pairing in De nition 1.82

Note that there is no need for a nal exponentiation. The paing value itself is an
rth root of unity.

Remark 1.89. Rubin and Silverberg RS08 Theorem 3.1] show that theg-eigenspace
U = Jc[r]\ ker( ¢ [d]) of the Frobenius endomorphism 4 on Jc[r] is con-
tained in Jc(Fq), and that the Weil pairing induces a non-degenerate pairm
Je(Fylr] U ! . For practical applications, one may therefore restrict th
Weil pairing to these groups.

Remark 1.90. Both the Weil and the reduced Tate pairing map into the group ,

of rth roots of unity. As already mentioned, in some cases, if is not a prime, it

might happen that this group lies in an extension of, that is a proper sub eld of
Fq but not an extension ofF,. Then the discrete logarithm problem in ; is easier
to solve than that in Fy. For details, we refer to Hitt's paper Hit07].

We have introduced the Tate pairing and the Weil pairing. We poceed with a more
detailed description of pairing computation on elliptic caves. But before doing so,
we shall note that pairings can only be computed e ciently ifthe embedding degree
of the underlying curve is small enough, since computations the eld F . must
be performed. Such curves are rare and need to be constructdtle return to this
problem in Sectionl.3.

1.2.3 Pairing computation on elliptic curves

In [Mil86a], Miller gives an algorithm to compute the Weil pairing on diptic curves.
A more detailed description of this algorithm, which is know asMiller's algorithm,
is presented in [/il04]. It explains an e cient way to compute the functionsf.p (Dg)
used in the Weil and Tate pairings.

Let E be an elliptic curve over the nite eld Fq of characteristicp > 3 given by a
short Weierstra equation E : y? = x3+ ax+ b, a;b2 F,. Letr 6 p be a prime such
that r j n =# E(Fg), and letk > 1 be the embedding degree & with respect tor.
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P
Theorem 1.91. LetD = F,ZEFrnp(P) 2 Div(E). Then D is a principal divisor
if and only if deg@) = 0 and ,,c[np]P = 0, where the latter sum describes
addition on E.

Proof. This is Corollary I11.3.5 in [Sil86] or Theorem 1 in Mil04]. O

We use Proposition1.39to replace divisor classes by points, and nd the reduced
Tate pairing to be the map

& = E(Flr]  E(Fg)lr] ! S
(P;Q) 7! fr;l;,(DQ)(qk Y=r.

When computingf .p (Q), i.e. whenrD p is supposed to be the divisor of the function
frp, we can choosdp = (P) (O), see Proposition1.39 The divisor Dq

(Q) (O) needs to have a support disjoint fronfO ; Pg. To achieve that, one may
choose a suitable poin 2 E(Fy) and representDg as Q+ S)  (S).

The Weil pairing is the map

W, = E[r] EJ[r] ! S

(P;Q) 7' frp(Dg)=fro(Dp):

For the computation off .o (P), we can takeDg = (Q) (O) and need to choose a
suitable point R such thatDp = (P + R) (R) has support disjoint from fO ; Qg.
In the following, we describe how to compute the function$.r, and f.qo. Since
both computations are totally analogous, we choose notatiofor f.p, but allow
P 2 E(Fg). We need to compute the functionf,p having divisor div(f.p) =
r(P) r(O). Theorem1.91shows that form 2 Z the divisor m(P) ([m]P) (m
1)(O) is principal, such that there exists a functionf np 2 F4(E) with div(fmp) =
m(P) (Im]P) (m 1)(O). SinceP is anr-torsion point, we see that div{.p ) =
r(P) r(O), and f.p is actually a function we are looking for, which justi es our
notation.

De nition 1.92.  Givenm 2 Z and P 2 E(F)[r], a function fn.p 2 Fe(E) with
divisor div(f np) = m(P) ([m]P) (m 1)(O) is called aMiller function.

The computation off ., makes use of the lines arising when two points on the curve
are added. The following three lemmas discuss divisors ofh@iions related to these
lines, give their de ning polynomials, and x notation for later use.

Lemma 1.93. Let P;;P, 2 E. Let Ip,.p, be the homogeneous polynomial de ning
the line throughP,; and P,, being the tangent to the curve P, if P, = P,. The
function Lp,.p, = Ip,:p,(X;Y;Z)=Z has the divisor

div(Lp,;p,) = (P1) +(P2)+( (P1+ P2) 3(0):
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Proof. See Mil04, Proposition 2]. O

Next we give a ne polynomials for the lines occurring in the pevious lemma. Com-
pare these to the formulas of the addition law described in bama 1.4Q0

Lemma 1.94. Let Py = (X1;Y1); P2 = (X2;¥2);Q = (Xo;Yo) 2 E. For P, 6 P,
de ne

(Y2 yo)=(X2 Xx1) if P16 Py;

(3x2 + a)=(2y1) if P, = P,:

Then the dehomogenizatioflp,.p,) ©f Ip,.p, evaluated atQ is given by
(Ipip,) (Q = (X@ X)) *+(y1 Yo):

If P,= Py, then (|P1;P2) (Q) = Xo Xi.

Proof. This follows from the formulas for the elliptic-curve grougaw (Lemma 1.40
and their geometric interpretation (Remark1.41). O

Lemma 1.95. Let P1;P, 2 E. The function gp,p, := Lp,.p,=Lp,+p,: (p1+p,) has
the divisor
div(ge,p,) = (P1) +(P2)  (P1+ P2) (O):

Proof. The result follows easily from Lemmal.93 O

The function from the previous lemma can be used to compute N&r functions
recursively as shown in the next lemma.

Lemma 1.96 (Miller's formula). The Miller functions f ., can be chosen such that
f1p =1 and such that formy; m, 2 Z, it holds

fmiemap = fmipfmap Omaeimae; (1.11)
Frimap = ol fmamae = e fmumae: (1.12)
Proof. See Lemma 2 inlil04] and Lemma 1X.17 in [5al0g. O

Remark 1.97. We state some special cases of the formulas from the previterama.
Let m 2 Z, then

(@) fm+1;P = fm;P OimiP;P
(b) fomp = f,%;p OimiP;[mIP
©) f mp =(Fmp gmpe: mp) >

Note that fop = 1 forall P 2 E andgp,.p, = 1 if P; or P, equals the point at in nity
O. These formulas show that any functiorf ., can be computed recursively as a
product of line functions. The functions are de ned over theeld of de nition of P.
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Miller's algorithm uses these formulas along a scalar myiification to compute [r]P.
Its general form works for the Weil pairing, as well as the Tat pairing. We state the
algorithm in the case of the Tate pairing to be able to includseveral simpli cations,
some of which bene t from the nal exponentiation. For exampe, the evaluation of
f.p at the divisor Dg can be replaced by the evaluation at the poinQ.

Lemma 1.98. Let P 2 E(Fg)[r] and Q 2 E(Fq)[r], Q 2 E(F,), then the reduced
Tate pairing can be computed as, (P; Q) = fp (Q)( V.

Proof. This is [BLS04g Theorem 1]. O

Algorithm 1.1 can be used to computé ., (Q) for P 2 E(Fg)[r] and Q 2 E(Fg)[r]
up to irrelevant factors lying in a proper sub eld of Fy. Sincek > 1, these factors
are mapped to 1 by the nal exponentiation.

Input: P 2 E(Fg)[r], Q2 E(Fg)r], r =(ri;:::5r0)2.
Output: f.p (Q) as representative of the claskp (Q)(Fqk)f.
R P,f 1
2.for (it I 1;i 0O ) do
f 1?2 grr(Q)
R [2]R
if (ri =1) then
f f orp(Q)
R R+P
8: end if
9: end for
10: return f

N g hRw

Algorithm 1.1:  Miller's algorithm for elliptic curves

Remark 1.99. Note that the functions gr.r and gr.p in steps 3 and 6 of Algo-

rithm 1.1 are fractions and that the inversions in each step of the loopan be
postponed until the end of the loop by keeping track of numetar and denominator

separately.

To complete the pairing computation, the nal exponentiaton has to be applied
to the result of Miller's algorithm. For this, one uses fast xponentiation methods
in the nite eld Fy (see Poc05d and [Doc050). It can be accelerated by using
actions of the g-power map on F o [GS0]. For recent improvement on the nal

exponentiation, see $BC" 04].
In practice, the Tate pairing is computed as

(S* :G]_ Gz' ng r Fqk;
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with

G1
Gz

Elr]\ ker( ¢ [1]) = E(FQIr];
Elr]\ ker( ¢ [d) E(Fg)lrl:

For the second pairing argument, one must assure that it hasen-trivial component
in the second eigenspace of the Frobenius, since choosinthliamints from the rst

results in a trivial pairing value.

If the embedding degree is even, there are further improvents of Miller's algorithm
by exploiting twists of E to represent the points inG..

Proposition 1.100. Let =2 if j(E) 2f0;1728, =4 if j(E) = 1728, and
=6 if j(E) =0. If |k, there exists a unique twis€° of E of degree with
rj#EYFg ).

Proof. This is a consequence of the discussion in Section IV.C &fV04. See in
particular the last paragraph of that section. O

Lemma 1.101. Let E°be the twist from Proposition1.100 and let :E°! E be
the corresponding isomorphism given by2 F - asin Remarkl.51 The restriction
of to EO(Fqk= )[r] is a group isomorphism

o=

FEAFg r]! G

of cyclic groups of order. If Q 2 G,, then its x-coordinate lies in a proper sub eld
of Fqk.

Proof. Since is a group homomorphismE®! E, it maps points of orderr to
points of order dividingr. Since it is nontrivial on EO(Fqk= )[r] and r is prime, the
image of E{F - )[r] is a cyclic group of order contained in E (Fy)[r]. It is shown
in [HSVO6 Section V] that (EO(Fqk= )Ir]) is stable under  and therefore must
be G, since it is not contained inGy, and these are the only eigenspaces of.
Therefore, is a group isomorphisrrEO(Fqk= )Nr]! G,. The statement about the
x-coordinates follows from the form of given in Remark1.51 Notethat 6 3. O

The previous lemma shows that we can de ne a pairinG; EO(Fqk= )Nr]! Gz by
simply mapping points fromE{F- )[r] to G, via  and then computing the Tate
pairing.

o=

De nition 1.102. De ne G) := EqF,- )[r]. The pairing

o=
€:G; G3! Gg (P;Q) 7' e(P; (QY)

is called thetwisted Tate pairing
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If k is even, there is always the possibility to use a quadratic tat, i.e. a twist of
degree 2. In this case, th&-coordinates of all points inG, and G9 lie in a proper
sub eld of Fy. The denominators of the functiongr.r or gr;p in Miller's algorithm
are polynomials de ning vertical lines, and thus are of thedrm x  Xjzr Or X Xg+p.
Since the pointsR and P are de ned overF,, the valuesggr.r (Q) and grp (Q) lie in
a proper sub eld of Fy. Therefore, the nal exponentiation maps them to 1.

Proposition 1.103. Let k be even. Then the denominators of the functiorgk.r
and grp in Steps3 and 6 of Miller's algorithm can be discarded without changing
the value of the reduced Tate pairing.

Proof. See Theorem 3 infLS044. O

We conclude this section by giving a brief overview of otheraviants of the Tate
pairing which can be computed with a shorter loop in Miller'salgorithm.

Remark 1.104 (ate pairing). He , Smart, and Vercauteren introduce theate pairing
in [HSVO0{g. The map

& 1:G, Gp ! Gs;
(Q;P) 7! fi 1.0(P)@ D=

de nes a non-degenerate bilinear pairing{SV06 Theorem 1], called theate pairing.
Note that for the ate pairing the rst argument is de ned over Fy and thus curve
arithmetic is more costly than for the Tate pairing. But the loop length in Miller's
algorithm, which is given by the bit length oft 1, may be much shorter.

Remark 1.105 (Twisted ate pairing or Eta pairing). The Eta pairing has rst been
introduced by Barreto, Galbraith, O hEigeartaigh, and Scott in BGOS07 on Jaco-
bians of supersingular curves in small characteristic. HeSmart, and Vercauteren
generalize the idea to ordinary curves in large charactetiis and call the resulting
pairing the twisted ate pairing[HSV0€. Let dj k such that the curveE has a twist
of degreed. De ne e := k=d. As for the ate pairing, we set ;= (t 1)®* modr.
The map

:Gl GZ | G3’
(P;Q) 7! fe;F,(Q)(qk 1)=r

de nes a bilinear, non-degenerate pairing{SV06 Lemma 11] called thewisted ate
pairing. It has the advantage of a shorter loop while curve arithmetican be done
over F,. But the loop length is in general larger than for the ate paing.

e

There are so-called optimized and generalized versions bktate and twisted ate
pairing that can be computed with even shorter loop length. fie parameterst 1

and (t 1)° can be replaced by any of their powers modula Naturally one chooses
the power with the smallest bit length £ZHO0&. They can also be replaced with
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other integersS g (mod r) to obtain a shorter loop length MKHOO7]. Another
approach is given in [[LPO8].

Vercauteren introduces optimal pairings discussing a lowdound on the length of
the loop in Miller's algorithm and giving pairing functionswhich are optimal in that
sense Yer0gd]. All the previous pairing functions are subsumed under thigamework
of pairing lattices that He proposes in He 08].

1.3 Constructing pairing-friendly curves

Let Fy be a nite eld of characteristic p. Let C be a hyperelliptic curve of genus
g de ned over Fq, and let J¢ be its Jacobian variety. We denote byn the order of

Jc(Fg). We recall De nition 1.80 of the embedding degree: For a prime divisar

of n, r 6 p, the embedding degree d@ with respect tor is de ned as the minimal

integer k with r j (¢ 1).

De nition 1.106. Let C=F, be a hyperelliptic curve of genug and r the largest
prime divisor of n = # Jc(Fy). The parameter

= glog(@)=log(r) 1
is called the -value ofC.

A pairing-based cryptosystem is only secure if the primeis large enough such that
the discrete logarithm problems (DLP) in the subgroups ol (Fy) of orderr are
infeasible, and such that the DLP in the multiplicative groyp F is infeasible. For

a xed size ofr, the size ofg¢ depends on the embedding degrdéeand the -value.
The goal is to choose a curve with as small as possible and an embedding degree
that is small, but large enough to guarantee the DLP irF4 to be infeasible.

The embedding degre&k has several interpretations, as was already indicated in
Remark 1.81 The following lemma adds another very simple, but importarnobser-
vation.

Lemma 1.107. Assume thatk 2 N with r - k. The embedding degree @=F with
respect to the primer is k if and only if r j (), where  is the kth cyclotomic
polynomial.

Proof. The numberk is the embedding degree with respect toif and only if g has
orderk in F;, i.e. qis a primitive kth root of unity in F, (see Remarkl.81). This
is equivalent toq being a root of  over F, [LN97, De nition 2.44]. O

In light of Theorem 1.77, we reformulate the conditions for a curve to have embedding
degreek in the following lemma.
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Lemma 1.108. Let C=F, be a hyperelliptic curve, and ledc be its Jacobian. Letr
be a prime number andk 2 N with r - k. Then k is the embedding degree & with
respect tor if and only if the following conditions hold:

q(1) 0 (modr); (1.13)
k(Q) 0 (modr); (1.14)

where  is the characteristic polynomial of the Frobenius endomadnsm as in The-
orem 1.77, and  is the kth cyclotomic polynomial.

Proof. This is an easy consequence of Lemnial07and the de nition of the em-
bedding degree. O

One approach to ndingqand r that satisfy equation (1.14) is to parametrize them
as polynomialsg(l) and r (1) over Z such that the condition is ful lled in Z[I]. The fol-
lowing lemma by Galbraith, McKee, and Valerca provides a waof nding suitable
polynomials.

Lemma 1.109. Let q(lI) 2 QII] be a quadratic polynomial andy a primitive kth
root of unity in C. Then

k(a()) = nu(l)n2(1)

for irreducible polynomialsny(1); nx() 2 Q[I] of degree' (k) if and only if the equa-
tion
a2) = «

has a solution inQ( ). Otherwise, «(q(l)) is irreducible of degreé (k).

Proof. This is [GMV07, Lemma 5.1]. O

It is unlikely for a randomly chosen curve to have a small embding degree and
a good -value (see the discussion InJF05a, Section 6.4.2]). For elliptic curves,
this is shown by Balasubramanian and Koblitz BK98]. The probability that an
elliptic curve over a prime eld F, with a prime number of F,-rational points has
an embedding degree less than (leg)? is very small BK98, Theorem 2]. Luca,
Mireles, and Shparlinski extend this result and make simitaconclusions in more
general cases. [MS04]. This means that pairing-friendly curves are rare and need
to be constructed.

A successful approach is to x a numbek and to rst nd the following parameters:

a prime powerg and a potential group ordern having a large prime divisorr such
that the conditions (1.13 and (1.14) are satis ed. Then one uses the complex mul-
tiplication (CM) method to construct a hyperelliptic curve over Fq with n rational
points on its Jacobian. The following subsection brie y exjains the CM method
for elliptic curves.
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1.3.1 The CM method for elliptic curves

The CM method for elliptic curves has been introduced by Atki and Morain [AM93]
for elliptic curve primality proving. We recall De nition 1.48 An elliptic curve E
has complex multiplication (CM) if its endomorphism ring Efd(E) is isomorphic to
an order in a quadratic imaginary eld K. Note that an elliptic curve E over C
has either Endg€) = Z or End(E) = R for an orderR in a quadratic imaginary
number eld. Thus a curve overC has complex multiplication if its endomorphism
ring End(E) is strictly larger than Z.
To describe the CM method, we need to introduce lattices. Aattice in C is a
discrete additive subgroup C that contains an R-basis ofC. We start with an
elliptic curve E=C. From Corollary VI1.5.1.1 in [Sil8F, we know that there exists
a lattice for which there is a group isomorphismC= = E(C). Without loss of
generality we may assume that there exists a 2 C with positive imaginary part
(i.e. it lies in the upper half plane) and = Z+ Z [FLO5c, Corollary 5.36]. This
means that to every elliptic curve overC, we can associate a number 2 C with
Im( ) > 0 and a lattice = Z+ Z . Two elliptic curves E and E° over C with
corresponding lattices and °are isogenous if and only if there exists an 2 C
with % They are isogenous and isomorphic if and only if there exsstn
2 C with = 9[Sil86 Theorem VI.4.1 and Corollary VI1.4.1.1]. This gives a
new interpretation of the endomorphism ring oE as

End(E)=f 2Cj (o

If E has complex multiplication, then Endg) is in fact isomorphic to an orderR in
Q( ) [FLO5c, Theorem 5.47]. Vice versa, one may start with an imaginaryugdratic
eld K, an orderR in K, and an ideal of R. The ideal is a lattice in C and
there exists an elliptic curveE=C with C= = E(C) and End(E) = R [FLO5c,
Proposition 5.46].

We x the order R to be the maximal order, i.e. the ring of integer®Oyx in K.
Every ideal in Ok is a lattice and thus leads to an elliptic curve. It follows fom
[Sil86, Corollary VI.4.1.1] that ideals lying in the same ideal clss lead to isomorphic
elliptic curves. Furthermore, it can be shown that there is @ijection between the
ideal class group and the set of isomorphism classes of @éltigurves overC with
endomorphism ringOy [Sil86, Proposition C.11.1]. Thus the class numben, of K
is equal to the number of isomorphism classes of such curvé®sr the de nition of
the class group and class number, se&p0, x12.2] or [Lor96, Chapter V].

Theorem 1.110. Let E=C be an elliptic curve withEnd(E) = Ok, the ring of
integers in an imaginary quadratic eld K. The j-invariant j(E) is an algebraic
integer overQ. There are only nitely many isomorphism classes of ellipti curves
with endomorphism ring isomorphic toOx . The correspondingj -invariants are
exactly the roots of the minimal polynomial of (E) over Q.

Proof. These results are given inHLO5c, Theorem 5.47 and Corollary 5.48] and
[Sil86, Corollary C.11.1.1]. O
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De nition 1.111. The minimal polynomial of j (E) from Theorem 1.110is called
the Hilbert class polynomial ofK , denoted byHy .

Note that Hk (x) 2 Z[x] sincej (E) is an algebraic integer and that its degree is equal
to the class numberhy . For methods to compute the class number and the Hilbert
class polynomial for a given quadratic eld, se€Joh93 Section 5.3 and Section 7.6]
or [FLO5b, Section 18.1.3]. The computation of the Hilbert class palpmial can
only be done e ciently if the discriminant of K is small enough. For the current
state of the art of class polynomial computation see Sutherid's homepage

Example 1.112. The class number ofK = Q(IO - 3)is hg =1, and its Hilbert
class polynomial isHy (x) = x. Thus all elliptic curves overC with endomorphism
ring isomorphic to Ok are isomorphic and havg -invariant 0. One example is the
curve E :y?2 = x3+ 1. Compare this with Example 1.37.

The CM method constructs an ordinary elliptic curveE=F, for a prime p by reducing
a curve E=C modulo a prime ideal lying ovempOy . Deuring's lifting Theorem states
that any ordinary elliptic curve over F, can be obtained by reduction of a curve over
a number eld [Lan87, Theorem 14 in Chapter 13]. To obtain an ordinary curve,
the prime p needs to split in the eld K.

Theorem 1.113. Let E=C be an elliptic curve with CM byOx for an imaginary
quadratic eld K. Let p- ( E) be a prime which splits completely iQk, i. e. there
exist prime idealsp; 6 p, with pOx = pp.. Then the reductionE of E modulo p;
is an ordinary curve de ned overF,, and End(E) = End(E).

Proof. See Theorem 12 in Chapter 13 of §n87]. O

Since the endomorphism ring is not changed by the reductione are able to choose
an endomorphism ring forE that has an element of norm p and tracet = +
such thatp+1 tisthe desired number oF,-rational points on E, see Theoreni..52
This means that the element corresponds to the Frobenius endomorphism on the
curve E. The j-invariant of such a curve can be found by reducing the Hilbeclass
polynomial modulop as is shown in the following theorem.

Theorem 1.114. LetK = Q(IO D) be an imaginary quadratic eld, i.e.D < 0, and
let H¢ be its Hilbert class p%yﬂomial. Lep be a prime. The primep is a norm in
K,i.e thereexists =u+v D20Og withp= = u? Dv? if and only if the
reduction of Hx modulo p has only simple roots all of which lie irF.

Proof. This is part of [AM93, Theorem 3.2]. O

Since thej -invariant of an elliptic curve only determines the curve upto isomor-
phism, the curve with the desired group order may be a twist dhe curve we have
constructed. The twist with the correct group order can be fand easily.

Lhttp://iwww-math.mit.edu/ drew/
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Summarizing, we get ngfollowing method: Suppose, we haveg@adratic imaginary
number eld K = Q( D) with Hilbert class polynomial Hx and a prime p that

satisesp = in Ok andn=p+1 ¢t t= + . LetHg, be the reduction of
Hk modulo p. Then Hg,, has only simple roots inFp,. Let j, be one of its roots.
We can construct an elliptic curveE over Fj, with j -invariant j, by Proposition 1.3§

and one of the twists ofE hasn points. The equationps is often called theCM

norm equation The element can be written as%(t+ v D) and the norm equation
becomes

1
p= 21(t2 Dv?) or t? 4p= Dv? (1.15)

Hilbert class polynomials overC can be precomputed. Their computation is not
considered part of the CM algorithm FLO5b, Remark 18.1].

1.3.2 Elliptic curves with small embedding degree

Supersingular elliptic curves have embedding degree at més[MOV93]. Therefore
they are natural candidates for the use in pairing-based gojographic protocols.
But since higher security demands need higher embedding degs, ordinary elliptic
curves are the more exible choice.

Let E=F, be an elliptic curve andr a prime dividing # E(F,). The conditions from
Lemma 1.108translate into the following:

g+l t 0 (modr); (1.16)
k() 0 (modr); (1.17)
wheret is the trace of the Frobenius endomorphism, in particulaytj 2p g.

Example 1.115 (MNT curves). Miyaji, Nakabayashi, and Takano MNTO1] intro-
duce the rst parametrized families that yield ordinary ellptic curves with embed-
ding degreek 2 f 3;4;6g. The curves have -value 1. The families are given by
parametrizations forp and t as polynomials inZ[l] with n(I) = p(I)+21 t(I) and

n()j «(p():

To nd an MNT curve, one chooses polynomials as in the table bmv for the em-
bedding degree of choice.

| k [ p() | (1) |
31122 1 1 ol
417+ 1+1 lorl+1

6|4%+1 1 2

Curves can be constructed using the CM method by rst solvinghe corresponding
norm equation for a given CM discriminant (see Sectiof.3.1). Any solution which
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leads ton and p prime gives a curveE=F, with n = # E(F;) and the chosen embed-
ding degree. The idea to parametrize the primp and the group ordern leads to
other families, e.g. the family of curves described in Chagxt 2, which were found
by exploiting the following simple observation.

Remark 1.116. Equation (1.16 implies that g t 1 (modr), and thus for
any polynomial f 2 Z[x] it holds that f(q) f(t 1) (modr). In particular,
Equation (1.17) can be replaced by (t 1) 0 (modr).

Example 1.117 (Freeman curves) The family found by Freeman fre0q consists
of curves with embedding degrek = 10 over a prime eld and -value 1. It is given
via the parametrization

n()
p(l)

which has been found by using the embedding degree conditiohthe form in Re-
mark 1.116and one of the quadratic families inGMVO07]. To get a curve in that
family for a group ordern and a primep given by the above polynomials, one needs
to carry out the CM construction just as for MNT curves.

2514+ 2513 + 1512 + 5] + 1;
2514 + 251° + 25|12 + 10l + 3;

The families in the previous two examples and the family we ta to in Chapter 2
yield the only known construction methods for elliptic cures of prime order (-
value equal to 1) and small embedding degree. There are canstion methods for
all other embedding degrees, but the resulting curves haveraposite group order,
i.e. a -value larger than 1.

A survey on pairing-friendly elliptic curves is given by Freman, Scott, and Teske
[FSTO6]. The paper re ects the current state-of-the-art. For evey embedding degree
up to k = 50, they list the best known construction with respect to tke -value.
They also provide suggestions for curves with certain props, for example having
large degree twists, which leads to more e cient implement#ons at the cost of less
exibility in choosing curves.



Chapter 2

BN curves

In this chapter, we study pairing-friendly elliptic curvesde ned over a prime eld
Fp such that the group ofF,-rational points on the curve has prime orden, and the
curve has embedding degrde= 12 with respect ton. The results in this chapter are
based on joint work with Barreto BNO6]. Others started calling curves belonging
to that family BN curves, we follow this notation here.

In Section 2.1, we show how the family is given by a polynomial parametrizain
for the primesp and n. We deduce the parametrization and show how curves are
obtained from it. Also, heuristic evidence is given that a awe E with a prescribed
size of the primeg and n can be found quickly. Furthermore, we discuss the choice
of a generator forE (Fp). Section 2.2 addresses properties of the proposed family of
curves. We describe the automorphisms on a BN curve, provestlexistence of a twist
of degree 6, and propose a representation of extensiong=pfcorresponding to the
chosen twist. Furthermore, we discuss e cient endomorphias as well as possibilities
to compress points on the curve and its twist. In Sectio2.3, we discuss pairing
computation on BN curves, give the line functions involvedni Miller's algorithm
for di erent pairings, and show how to compress pairing vakes in a way that is
consistent with the point compression described in Sectiégh2. Section2.4is devoted
to gathering the ingredients for generating all the requil parameters needed to
implement pairings on BN curves. Finally, we provide exampbk of BN curves for
di erent security levels in Section2.5.

2.1 Construction
The main observation that leads to the construction of BN cures is LemmaZ2.1,

which is the special cas& = 12 of Lemma 6.1 in the paper of Galbraith, McKee,
and Valerca [GMV07] (see also Lemmad..109.

Lemma 2.1. Let i, be thelZh cyclotomic polynomial. Then
12(61%) = n(Hn( D); (2.1)

a7
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wheren(l) = 3614+ 3613+ 1812+ 61 + 1.
Proof. See Lemma 6.1 inGMV07] and the examples fok = 12. O

Galbraith, McKee, and Valerca give a criterion to determie which quadratic poly-
nomials q(I) lead to the splitting of ¢(qg(l)). Their intention was to construct
pairing-friendly genus-2 curves. For such curves the quaadic polynomial g must
be able to take the value of a prime power when evaluated at antéger. This can
not be satis ed for the polynomialq(l) = 612.

We apply their results to elliptic curves and use the simplelservation from Re-
mark 1.116that n = p+1 timpliesp t 1 (modn)whenE is an elliptic curve
de ned over F,, n = # E(Fp) is the number of F,-rational points on E, andt is the
trace of the Frobenius endomorphism oveF,. It follows that (p) k(t 1)
(mod n) for any k 2 N. This leads to the parameters of a family of elliptic curves
as described in the following theorem.

Theorem 2.2. Let u 2 Z be an integer such that

36u*+36ud+24u’+6uU+1; (2.2)
36u*+36u+18u”+6uU+1 (2.3)

p = p(u)
n = n(u)

are prime numbers. Then there exists an ordinary elliptic cue E de ned over F,
with # E(F,) = n. The embedding degree & with respect ton is k = 12, and the
curve can be given by the equation

E:y*=x3+b; b2 Fy: (2.4)
The trace of the Frobenius endomorphism ovét, is given byt = t(u) =6u?+1.

Proof. From the parametrizations forp and n, we obtaint 1=p n=6u? From
Lemma2.1we see thatn divides 1,(t 1) and thus also 12(p), which means that
p and n satisfy the embedding degree condition1(17) for k = 12. Therefore, a
potential curve overF, with n rational points has embedding degree 12.

The numbert satisesjtj 2  p because

t2 4p= 3(6u’+4u+1)? (2.5)

is negative. Sincd is not divisible by p, a theorem by Waterhouse\[Vat69, Theorem
4.1] (see Lemmal.56 shows that there exists an ordinary elliptic curveE de ned
over F, such that the trace of the Frobenius endomorphism is equal ty i.e. n =
# E(Fp).

We may construct a curveE with the above properties that has comeIex multipli-
ca%on_by the ring of integersOk of the quadratic CM eld K = Q( t2 4p) =
Q(  3) (see Sectiorl.3.]). Example 1.112shows thatK has class number 1 and its
Hilbert class polynomial isHk (x) = x. The j-invariant of this curve is thusj = 0.
The relations between theg -invariant and the coe cients a;bshow that a =0 (see
Proposition 1.38. This proves the theorem. O
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A curve E :y?2 = x3+ bover a eld of characteristic larger than 3 is nonsingular if
and only if b6 0 (Example 1.37). For a xed prime p > 3, all curvesE :y2= x3+ Db
for b2 F, are twists of each other. We know from Propositiorl.50that in the case
j =0 there are six di erent twists. In order to construct a curve as in Theoren2.2,
we only need to run through di erent values forb, i. e. run through di erent twists,
and check for the right group order. Assuming that we choodeat random from F,,
we expect to do six checks on average to nd the twist with thearrect number of
points.

Corollary 2.3. Under the assumptions of Theoren2.2, a curve with the correct
group order can be found after on average six tries of randomaices for the param-
eterb2 F,.

Thus once we have the primep and n as in Theorem2.2, it is fairly easy to actually
nd a curve with the given property. What remains to be examired, is the question
how easy it is to nd suitable pairs of primes p; n).

De nition 2.4. A pair (p;n) of prime numbers is called &N prime pair if there
exists an integeru 2 Z with p= p(u) and n = n(u), where p(u) and n(u) are given
by the polynomials in (2.2) and (2.3).

2.1.1 Distribution of BN prime pairs

A conjecture by Bateman and Horn BH62] allows us to estimate the number of BN
prime pairs which are produced when letting the parameteu run through a given
range. We adapt the conjecture to our purposes as follows:

Conjecture 2.5. For largeN 2 N, we heuristically expect the number of positive
integers u with 1 u N for which (2.2) and (2.3 provide a BN prime pair

(p; n) = (p(u); n(u)) to be

Z
c™N 1
Q(N) = 6, Wdu. (2.6)
The constantC is given as
#
Y 2
C= 1 } 1 M ; (2.7)
q q

where the product is taken over all primes}, and wherew(qg) denotes the number
of solutions ofp(x)n(x) 0 (mod g).

Assuming that Conjecture2.5is true, we are now able to estimate the probability
p. to nd a BN prime pair when the parameter u is taken uniformly at random

from a certain interval | = [ui;u;] N. Dene Q(I) = Q(uz) Q(u; 1), then

= Q(l)=(uz up+1).
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| ur Juz ur+1 ] R@) [bQ)c[r 10° | hits |
1 72621324 | 250565 | 277429 | 0:34503 109

448869734239 4008033 5794 6142 | 0:14456 160

114911668072285 9977856 9952 10501 | 0:09974 192

29417389567148395 13774482 10011 10567 | 0:07268 224

7530851732698370160 17949966 10097 10481 | 0:05625 256
1927898043575355590045 22521445 9961 10343 | 0:04423 288
493541899155296768986804 27819263 10127 10311 | 0:03640 320
126346726183755979948643811 34034872 10109 10394 | 0:02970 352
32344761903041530875525863096 40428318 10048 10349 | 0:02485 384
8280259047178631904144923719775| 47727580 9975 10388 | 0:02090 416
2119746316077729767461112635400325 55123647 9927 10327 | 0:01801 448
542655056915898820470044848710404692 63634474 9933 10368 | 0:01561 480
138919694570470098040331481257823718878 71157457 10048 10176 | 0:01412 512

Table 2.1: The numberR(l) of all BN prime pairs (p(u); n(u)) whereu 2 | =[uy; uy],
the estimateQ(l ) for R(l) from Conjecture 2.5, and the ratior, = R(I)=(u, u;+1).
The last column gives the bit size of the primep and n.

We have computed all BN prime pairs arising whem lies in the intervals shown
in Table 2.1. We denote the number of actually existing pairs il by R(I). To
compare this number with the conjectured number of pairs, wapproximated the
constant C from Conjecture 2.5 by computing the product over the rst primes
up to 81824487889, and obtaine@ 17.65105. The integral has been computed
numerically. The values forQ(l) given in the table are rounded down. Instead of
pi we give the ratior, = R(I)=(u, u; +1) of the actual number of prime pairs to
the number of all possible values fou, i. e. the length ofl .

From the heuristic results of Table2.1, we may conclude that it is not too di cult
to nd a BN prime pair of a certain bit size. One just chooses aet of numbers
from which values for the parameteu are taken randomly, until both p(u) and n(u)
are prime. The set can be chosen to guarantee thptand n have a desired bit size.
Also a sequential search quickly nds BN prime pairs. This gmroach is taken in
Algorithm 2.1 below.

2.1.2 Choosing a generator point

Along with the curve, we need a generator of the group &f,-rational points to carry
out cryptographic protocols. Since the group has prime ordewve may take anyF-
rational point P 6 O on the curve. To favor e cient implementation, one might
be interested in the coe cients of this generator point to beas simple as possible,
e.g. one of them being equal to 1. The choice of the generattwosld be included
into the curve construction algorithm. During constructian, it is anyway required
to choose a point on the curve for checking the curve order. &Hhollowing remark
discusses the choice of a point coordinate on a curve of thenfoE : y2 = x3+ b
without taking into account the choice of the correct twist.
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Remark 2.6. Let p2 N be a prime.

(@) Let xo 2 Fp. Then b2 F; can be chosen such thax3 + b is a square inF,.
In this case, lety, 2 F, be a square root ofk3 + b. Then P = (Xo;Yo) is an ane
point on the curve E : y2 = x3+ Iy in particular, it is not equal to O. As half of the
elements inF, are squares, there is a chance of2 to obtain a squarex3 + b when
randomly choosingb from F,.

(b) Let yo 2 Fp. We may similarly chooseb 2 F, such that yé bis a cube in
Fo. Let Xo be one of its cube roots. Then as abov&® = (Xo;Yo) iS a point on
E :y2= x3+ b The chance of nding a cubey? bis at least =3 because at least
one third of the elements ofF, are cubes, depending on whethgr 1 (mod 3) or
not.

When choosing the generator point in advance, it must be nalehat neither of the
coordinates can be equal to 0, as the following lemma shows.

Lemma 2.7. Let E :y? = x3+ bbe a BN curve de ned ovefF,. Then bis neither a
square nor a cube irFp. In particular, it is not a 6th power. If P = (Xo; Yo) 2 E(Fp),
thenxo 60 andyy 6 0.

Proof. Assume thatbis a cube. Then there exists a cube root, 2 F, of b and
the point P = ( xp; 0) is a point of order 2 inE(F,), which is a contradiction since
n =# E(Fp) is an odd prime. Next assume thabis a square. Then there exists a
square rooty, 2 F, of b and the point P = (0;yy) is in E(F,). We compute [2P
using the formulas in Lemmal.40to see that [2P = P, i.e. P is a point of order
3, again a contradiction since 3 n. Now if P = (Xo;Yo) 2 E(F;), the above proof
also shows thatx, 6 0 and y, 6 0. O

Computer experiments show that heuristically the conditio Xgy, 6 O is the only
restriction when choosing the coordinates for a generatoomt. We have the follow-
ing conjecture about the expected number of choices for tharee parameterb2 F,
that is needed until a suitable curve with a given generatosifound.

Conjecture 2.8. Let (p;n) be a BN prime pair, and letxo 2 F, (Yo 2 F,, respec-
tively). Then on average we expect 12 (18, respectively) rdom choices fob 2 F,
until the curve E : y? = x3+ b has ordern and a generator withx-coordinate X
(y-coordinateyy, respectively).

Algorithm 2.1is an algorithm for constructing BN curves. It gives a curve hich has
a generator withx-coordinate equal to 1. For an implementation of pairings oBN
curves, more parameters are required such as a represematfor the nite eld ex-
tensionFp2 and points on the curvek (Fy:2) for the second pairing argument. These
issues and the construction of parameters to exploit the pperties and techniques
explained in Section2.2 and 2.3 are addressed in Sectiof.4.
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Input: The approximate bit length m of the curve order.
Output:  Parametersp; n; b; y such that the curvey? = x3+ b has ordern over Fy,
the point P = (1Y) is a generator of the curve, andh has at leastm bits.
1: Let p=361*+36I1°+2412+61+1; r=p 6122 Z[l].
2: Compute the smallestu 2™ such that dog, r( u)e= m.
3: loop
4.  Computet 6uU%+1,

5: computep p( uyandn p+1 t.
6: if pandn are primethen

7 exit loop

8: end if

9: Computep p(u),andn p+1 t.
10: if pandn are primethen

11: exit loop

12: end if

13: Increaseu  u+ 1.

14: end loop

15: repeat

16: repeat

17: Chooseb2 F, at random

18: until b+ 1 is a quadratic residue mod.
19: Compute y, such thatyg = b+ 1 mod p,
20: and setP  (1;VYo).

21: until nP = O.

22: return p;n;b;w.

Algorithm 2.1:  Constructing a BN curve

2.2 Properties

In this section, let (p;n) 2 Z? be a BN prime pair, and letE=F, be a BN curve, i.e.
E:y2=x3+Db b2 F,, n =# E(Fp), and E has embedding degrek = 12 with
respect ton. Recall that the j-invariant of E is j(E) = 0. We brie y recapitulate
all parameters obtained so far as polynomials in (see Theoren?.2). The de nition
of v is given implicitly in (2.5 by t2 4p= 3vZ

p = 36u*+36u+24ul+6u+1;
n = 36u*+36u+18u’+6u+1;
t = 6uU’+1;

Vv = 6u’+4u+1;:

Next we collect properties of the curveE in view of e cient pairing computation,
before we describe pairing computation ok in the next section. First we consider
endomorphisms on a BN curve. The endomorphism ring Enlj of a BN curve is
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byﬁ(ﬁstruction isomorphic tp the maximal ordeiOx in the quadratic CM eld K =

Q(C " 3). ltis O*‘p: Z[-+.—2] [IR90, Proposition 13.1.1]. We have EnY(E) :=

Q End(E)= Q( 3). Let

o ET E; (xy) 7! (XP;yP)

be the p-power Frobenius endomorphism. Its characteristic polymaial i% b =
T2 T +p2 Z[T]. Thus , can be identi ed with the element = Z(t+ 3v
of normpin Ox. We haveK = Q( )and Z[ ] O .

The group Aut(E) of automorphisms ofE is the subset of EndE) containing the
invertible endomorphisms, i.e. the units of Endf). The group Aut(E) will be
discussed in the following section.

2.2.1 Automorphisms

In this short subsection, we describe all automorphisms of BN curve in terms of
the parameteru. In a slightly more general setting, we rst summarize whatg
known about automorphisms of curves with -invariant O.

Lemma 2.9. Let E be an elliptic curve over a nite eld Fq of characteristicp, and
letj(E)=0. We x 2 Fq, a primitive 6th root of unity, and set 3 = £. Then
the automorphism groupAut( E) is a cyclic group of order6. It is generated by

s:E1 E (xY) 7N (éx gy)=( 3% )

If g 1 (mod 6), then all automorphisms are de ned oveFg, i.e. Autg (E) =
Aut(E).

Proof. The lemma follows from Theorem 111.10.1, Corollary 111.1@ in [Sil8€], and
the fact that 2 Fqif ¢ 1 (mod 6). O

Now let E be a BN curve as at the beginning of this section. Since a pritive 6th
root of unity in F, can be computed in terms of a polynomial iru similar to the
primes p and n, the automorphisms are de ned overF,, and can be described in
terms ofu as well.

Lemma 2.10. Let u 2 Z be such thatp = p(u) given by (2.2) is prime. Then the
primitive 6th roots of unity in F, are given by

= 18u®+18u?+9u+2 mod p; (2.8)
= 18 18?7 9u 1 modp: (2.9)

oo o

Proof. We set (1) = 181°+1812+9I + 2. Evaluating the 6th cyclotomic polynomial
6(X)= x> x+1at (), we see that it splits inZ[l] as

s( (1)) =3(312+31 +1)(361* + 361° + 241 + 61 +1):
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Therefore, pfl) = 3614 + 361° + 2412 + 61 + 1 is a divisor. It follows that (I) is a
6th root of unity in Z[l]=(p(l)). Evaluating at u, we see that ¢(s) O (mod p),
and thus ¢ is a primitive 6th root of unity in F,. The second primitive root can be
computed from ()°=  (I)+1 mod p(l). O

Remark 2.11. Note that the two preceding lemmas describe the automorphis
group for any curveE de ned over a eld Fq of characteristicp wherep is a prime
of the form (2.2) and the j-invariant of E is j(E) = 0. They hold especially for
the sextic twist of the BN curve E : y? = x3+ b. We study such twists in the next
subsection.

2.2.2 Twists and point representation

The property we address in this subsection is the existencé @ twist of degree 6,
which helps to represent the second pairing argument more eiently. This point is
usually taken from thep-eigenspace of the Frobenius endomorphism on theorsion
subgroup. It is a point de ned over the eld F,:2 (see Subsectiori.2.3.

Lemma 2.12. Let E=F, be a BN curve. The curveE has a twistE’%F,. of degree
d = 6 with the following properties: The orde#t EXF:) is divisible byn; the twist
can be represented by the equation

E%: y2=x3+ b=; (2.10)

where 2 Fpn (Fpe)?[ (Fp)? ; the corresponding isomorphism 2 Hom(ESE)
is given by
CEO1 E; (x%y9 71 (3G O (2.11)

Furthermore, a point Q°2 EYF,.) of order n is mapped via into the p-eigenspace
of the Frobenius endomorphismy, i.e. o( (Q%) =[p] (Q9.

Proof. The lemma follows from Propositionl.100and Lemmal1.101 For the curve
equation and the isomorphism, see also Propositich50 and Remark 1.51. The
fact, that is neither a square nor a cube follows from the minimality ofhie degree
d=6. O

Remark 2.13. We compute the group order of the twistE® e>ﬁ)licitly: Firﬁt de-
termine n, = # E(Fp). We know that p= —with = (t+v  3)2 Q( 3),
wherev =6u?+4u+1 (see (2.5). The group ordern, is

ng=p+1 ( %+ 79

which is equal to p+1+ t) n. We sett, = 2+ ~2 = 2(t? 3v?), compute
t>  4p?>= 3t?v2 and let v, = tv. Application of Proposition 1.57 yields that one
of the two possible group orders for the twist is

p?+1 %(3v2+t2)=(p 1+1t) n
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Theorem 9 in HSVO0{ implies that only one of the two twists overF,. of degree 6
can have order divisible byn (see also Propositiori..57). Hence the order ot {Fz)
is(p 1+1)n.

We x the following notation for the rest of this chapter. As in Subsectionl.2.3we
de ne

Gy :=ker( p [1])= E(Fp); Gz:= E[n]\ ker( , [p) E(Fe)[n]: (2.12)

Pairings on BN curves are usually de ned ois; G, or G, G; (see Sectiorl.2.3.

Lemma?2.12shows that we can represent the grou, by the Fp.-rational points of

order n on the twist EC Elliptic curve operations that need to be done inG, may

as well be done on the twist. Only for pairing computation we @ply the map to

move into G, (see De nition 1.102for the concept of a twisted pairing). Points on
the twist can be represented with only one sixth of the spacehich is required for
an arbitrary point on E(F,2) (see alsoiiSV06 Section V.]).

We de ne GJ to be the group ofFg.-rational n-torsion points on the twist E°,

GJ := EYFp)[n]: (2.13)

A twisted pairing on a BN curve is then de ned onG; G9or GY G;. The restriction
jey of the isomorphism to G2, which we also call , is a group isomorphism

GY! Gy

The three groupsGj, G,, and G are all cyclic groups of prime orden. Note that
G3 is cyclic because the whole-torsion is only de ned overFy:. and not over Fp.
(see Theoreml.59.

2.2.3 Field extensions

Since the twist E° from the previous section is de ned oveF, it appears natural
to construct the nite eld Fp. as an extension ofp..

Lemma 2.14. Let qbe a prime powerg 1 (mod 6), and 2 Fqn (Fg)?[ (Fq)® .
Then the polynomialsx®> |, x3 , and x® 2 Fq4[x] are irreducible overF,,.

Proof. The polynomial x? is irreducible since otherwise, a square root ofwould
exist. Similarly, x3 is irreducible. For the same reason® can not have a
linear factor. Fromq 1 (mod 6), we know thatF contains all 6th roots of unity.
Let 2 Fq be a primitive 6th root of unity. Let ! be a root ofx® lying in some
extension ofF,. The(slements ,0 i 5, areexactlythe rootsok® ,and we
may write x° = “o,(x §). Assumex® has a quadratic factor overf,.
Then its constant term is the product of two of the above rootssay ! and §!.
Since ¢ 2 Fq, it follows from ¢'122 F,that ! 2 2 F,. This is a contradiction,
since ( 2)®= implies that is a cube inF,. A similar argument shows thatx®
does not have a factor of degree 3. Altogether, this shows thiae polynomial is
irreducible. O
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Let E be a BN curve, and letE° be its sextic twist by 2 F. as in Lemma2.12
Let ! 2 Fy2 be a root of the irreducible polynomiak® ,i.e.!®= . This means
that we can constructFp = Fpe(! 3), Fpe = Fpe(! ), and Fye = Fe(!). The curve
isomorphism may now be written as

B E; (xPy9 71 (1 2% 3yO:

Remark 2.15. We see, that thex-coordinates of points in the image of (i.e. in
Gy) all lie in Fg, and their y-coordinates all lie inFp..

The p?-power Frobenius automorphism of the eldF,.. applied to! gives! P* =
3! for a primitive 3rd root of unity 3, and hence we have!()” = 13 and

(1 2)P° = 212 These identities will be useful later.

Furthermore, we x notation for constructing the eld Fp. Let 2 F,n(Fp)? then

x?  isirreducible overF,. Let 2 Fp bearootofx? ,ie. 2= , P=

Then we may write Fp. = Fp( ).

2.2.4 E cient endomorphisms

Gallant, Lambert, and Vanstone show in GLVV01] how endomorphisms on an elliptic
curve can be exploited to speed up elliptic-curve scalar ntiglication. An e cient
endomorphismis an endomorphism of the curve which can be computed with wer
little e ort, e.g. with just one eld multiplication, and th us provides very fast com-
putation of certain scalar multiples of elliptic-curve pants. An endomorphism'’
that is non-trivial on a cyclic prime-order subgroup ofE (Fp) is a group automor-
phism on this subgroup. Thus for a pointP 2 E(F,), there exists a suitables 2 Z
with ' (P) = [s]P.
Recently, Galbraith and Scott applied the method of Gallant Lambert, and Van-
stone for exponentiation in groups arising in pairing-baskcryptography [GS04, e. g.
for BN curves. In particular, this method may be applied to tle groupG; = E(F,)
and the group G on the twist E{F.). For details, we refer to [5S0§. In this
subsection, we will state e cient endomorphisms on BN cun& and show which
multiples can be computed easily. As usual, we give the retent parameters as
polynomials in u.
A prominent example of an e cient endomorphism is of coursehte p-power Frobe-
nius endomorphism ,. It is trivial on Gy, but on its second eigenspac6,, the
eigenvalue ig. For every pointQ 2 G, it holds that ,(Q) =[p]Q. Let ,:=1t 1,
and note that i, is a primitive 12th root of unity modulo n because it is a root of
12(X). Since , =t 1 p (modn), this means that the Frobenius provides a
quick way of computing [!,]Q for all i 2 0;1;:::;11g. The following lemma gives
parametrizations for all 12th roots of unity modulon.

Lemma 2.16. Let n be a prime given by(2.3), and let 1, = 6u?. Then the 12th
roots of unity in F, are given by the powers of;,. They can be described in terms



2. BN curves 57

of the parameteru as follows:

12 = 6u%

2, = 36 18® 6u 1 modn;
5, = 360 24 12 3 modn;
3, = 360 18°% 6u 2 modn;
> = 36 3w® 12u 3 modn;
® = 1 modn;

I, = 6u®> modn;

8 = 36ul+18u?+6u+1 modn;
3, = 36ul+24u?+12u+3 mod n;
19 = 36ul+18u?+6u+2 modn;
1 = 36u®+30u*+12u+3 mod n:

Proof. The powers can be computed as polynomials in modulo the polynomial
n(u). O

Lemma 2.17. Let E be a BN curve,Q = (Xq;Yo) 2 Gy, and let , 2 End(E) be
the p-power Frobenius endomorphism. Then for all 0 we have

H(Q) = (x§;¥8) =1 1IQ: (2.14)
Proof. See Lemmal.60for the eigenspaces of,. O

Another source for e cient endomorphisms is the automorplem group Aut(E). We
have seen in Subsectiof.2.1that for BN curves the automorphisms are de ned over
Fp, thus they commute with the Frobenius ,. The restriction of each automorphism
to E(F,) therefore gives a group automorphism dE (F;).

Lemma 2.18. Let E be a BN curve, and ¢ 2 Aut(E) be the automorphism of
order 6 from Lemma 2.9. Then the restriction jg, iS a group automorphism of
G:1 = E(Fp), and it holds

6o, - G1 ! Gy
P=(xp;¥yp) 7' (3Xp; Yp)=[ 6]P;

where 3 is the 3rd root of unity in F, from Lemma2.9, and ¢ 2 Z is a primitive
6th root of unity modulon, i.e. ¢ = 36u® 18° 6u 1 modn or ¢ =
36u +18u?+6u+2 mod n.

Proof. Since ¢ is de ned overF, it maps into E(F,). The latter group is cyclic of
prime ordern, and ¢ is nontrivial, which means that ¢jg, IS a group automorphism
and the image of a pointP must be a multiple [ ]JP of P. Now ¢ has order 6. It
follows

P= ¢(P)=[ °IP
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forall P 2 E(F,), andso ® 1 (modn), i.e. is a 6th root of unity modulo n.
Since ¢ has order 6, so has. Lemma 2.16 gives the parametrizations for the two
primitive 6th roots of unity in F,. O

Remark 2.19. The automorphisms commute with the multiplication-byf map [n];
thus the restriction ¢jg, IS a group automorphism ofG,. Therefore, the previous
lemma holds for the groupG, as well. The automorphisms act as scalar multi-
plications by 6th roots of unity. Combining this with Lemma 2.17 shows that the
automorphisms coincide o016, with the even powers of the Frobenius endomorphism.

We now turn to e ciently computable endomorphisms on the twst E° of Lemma
2.12 The automorphism group can be used on the subgrou® of points of order
n in EYFy) just as for the curveE itself (see Lemma2.18 and Remark2.11). In
general, given an endomorphisth 2 End(E), we obtain an endomorphism 2
End(E9 on the twist by applying the map

End(E)! End(EY;' 7!' = I (2.15)

depicted in the following diagram:

EO—/ES,

‘ ‘ l

E——

The isomorphism : E®! E is dened in (2.11) in Lemma 2.12 Applying the
above map to the group AutE) gives Aut(EY. The image of the generator ¢ is
22 Aut(E9, where (x%y9 = ( 3x% y9 uses the same cube root of unity; as

6. We have
6= 6= 6: (2.16)

Thus the automorphisms do not provide any new e cient endomiphisms on the
twist EC Next we will take powers of the Frobenius and apply2.15. As on G, (see
Remark 2.19, the even powers of , lead to automorphisms again.

Lemma 2.20. Let E be a BN curve, and letE°and be as in Lemma2.12. Let
p 2 End(E) be thep-power Frobenius endomorphism. Denote by, := S the
square of ,. Then _
f( ) jO i 5g=Aut( E9:

Proof. Since ( 3P = 13 and (! 9" = 4! 2 for a primitive 3rd root of unity s,
we obtain

20C0Y) = e YY) = (0 209 B YY) = (xS YY)
which means that 02 is a generator of the automorphism group Aug9. The lemma

follows from () = * 4 =( ', ) =( ). O
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In contrast to its square, the p-power Frobenius itself gives a new endomorphism
= ,= ', . ltsatises the 12th cyclotomic polynomial * ?+1 =0 (see
also [5S09).

Lemma 2.21. Let E be a BN curve, and leE°and be as in Lemma2.12. Let

p 2 End(E) be thep-power Frobenius endomorphism. Let = , = o, 2
End(E9 and letQ°2 G be a point of ordern on the twistE® Then for alli 0,
we have

i(Q% = ilz]QQ-

Proof. This follows directly from LemmaZ2.17. O

2.2.5 Point compression

It is possible to compress points on an elliptic curve, e. gotsave bandwidth when
storing or transmitting such points. The usual technique igo keep only the x-
coordinate of the point and a single bit to distinguish betwen the at most two
possibley-coordinates. SeelJL05a, Section 13.2.5, p. 288] for details. If they-
coordinate needs to be determined, a square root has to be guted.

We aim at compressingqu-torsion points on the sextic twist, i. e. pointsQ®= (x%y9 2
G). Instead of compressing tx® we discardx?® and keepy® as the compressed rep-
resentation ofQ% To be able to decompress, we need to keep two bits to distirigh
between the at most three possible points with the giveg-coordinate. Keeping
only the y-coordinate means that we identify the three pointsx®y9, ( sx%y9, and

( 2x%y9, which all share the samey-coordinate, while theirx-coordinates di er by
the primitive 3rd roots of unity 3 and 3. We may describe such a set of points in
terms of the automorphism groupG®:= Aut( E9 of E°.

The group G acts on the groupG3. We considerH®= h( 2)?i, the subgroup of order
3 of the automorphism groupG® and its action onG9. Lemma 2.9 shows that for a
point Q%= (x%y9 6 O, the orbit HQ®= H{x%yY consists exactly of all points in
G) that share the samey-coordinate. The orbit containing the pointO is just the
setfOg. For the same reasons as for the original cunt, there are no points with
a coordinate being 0 in the prime order grougs) (see Lemma2.7). Therefore, for
a point Q°= (x%y% 6 O, the orbit

HQ= HYx%yY = F(x%y9; ( 3x%y9; ( 2x%y9g

has cardinality 3. We denote by Orlyo(G?) the set of orbits of H® on G?.

The following Lemma summarizes that we can represent orbitsxder the action of
H°by one element inFyz, namely by they-coordinate of the points contained in the
orbit. We de ne

G, = fy°2 F2 j 9 x°2 Fe such that (x%y9 2 GJg

to be the set of possiblg/-coordinates of points inGS.
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Lemma 2.22. Let E be a BN curve, and leE° be its twist of degreeés. Then with
notation as above, the map

G3, ! Orbyo(GY) nffOgg ;
yo 7 H XY

is bijective.

Proof. The map is injective since di erenty-coordinates are mapped to di erent
orbits. It is surjective, since each orbit di erent from fOg contains a point with
somey-coordinate fromG3, . O

Of course, we may also consider the action of the whole gro@ on G). For a
nonzero point, the orbit becomes

GUx%y9 = F(x%y9; (xS yh( 2x%yd(x% v9;(ax%y9;( 2% y9g:

Such an orbit can be represented by one bit less since we masgés about the sign
of y?and just identify all points that have y-coordinate equal toy°or y° We denote
by Orbeo(G3) the set of orbits of Gon GJ. Let y°= y§+ y? 2 Fp with y3;y3 2 Fp.
De ne y°:= y°if the integer in [O;p 1] representingy] is even, andy2:=  yOif it
is odd. Then ify= y3+ %9 | the least signi cant bit of ¥ is always 0 and can be
omitted. Let

G5, = f¥j 9 x°2 Fe; such that (x%y9) 2 G3g
be the set of all elements/®for all y-coordinates of points inGY. It can be easily
seen, that the following lemma is true.

Lemma 2.23. Let E be a BN curve andcE’its twist of degree6. Then the map

G3, ! Orbe(GY) nffOgg ;
v 71 GYx%y9
is well-de ned and bijective.

The orbit structure is carried over to G, when mapped via , which is stated ex-
plicitly in the following remark.

Remark 2.24. It follows from (2.16) that 2 6 . If we denote byG:= Aut( E)
the automorphism group ofE and by H := h 3i its subgroup of order 3, we get the
following identities. For Q°2 G9,

(G =G (Q)and (HQY=H (Q;

i.e. an orbit of points in GY is mapped to the corresponding orbit of points irG,,
and thus (Orbgo(GY9)) = Orb ¢(G,), (Orbyo(GY)) = Orb 4 (Gy).
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Remark 2.25. From Remark 2.19 we see that the orbits inG, under G and H
consist of evenp-power multiples of one point. The orbits of a pointQ 2 G, are

GQ = fQ; [p’]Q; [P*1Q; [P°1Q; [PPIQ; [P™°1Qg

and
HQ = fQ; [p*]Q; [P*1Qg;

respectively.

We have seen that we can compress points by identifying ponin the orbits of the
automorphism group. We only need to keep part of thg-coordinate of one of the
points and a few additional bits to distinguish between at mst six possible points
in the orbit. We will see in the next section how this can be usktogether with the
compression of pairing values.

If a point needs to be reconstructed, i. e. decompressed, theoordinate correspond-
ing to a point in Gy, G, or GY with a given y-coordinate is needed. We may obtain
it by simply computing a cube root ofy? bory® b=. We now briey discuss
how to e ciently compute cube roots in elds occurring for BN curves.

Each prime number of form 2.2), i. e. p(u) = 36 u*+36u+24u?+6u+1, is congruent
to 6u?2+6u+1 (mod 9) and hencep(u) 1 (mod9)ifu 0 (mod3)oru 2
(mod 3), andp(u) 4 (mod9)ifu 1 (mod 3).

Lemma 2.26. Let g be a prime power such thaty 4 (mod9),i.e.2qg+1 O
(mod 9). Leta 2 F, be a cube. Then a cube root2 F, of ais given byr = al?ar) =9,

Proof. Sinceais a cube,al® D=3 =1, |tis r3= qlad) =8 = ggla 2=8 = g ]

Computing cube roots modulop 4 (mod 9) only takes one exponentiation. For
recovering thex-coordinate of points inEYFy2) given only their y-coordinate, one

needs to compute a cube root iﬁpz, andforp 4 (mod 9) we havg?? 7 (mod 9).

Lemma 2.27. Let q be a prime power such thatf 7 (mod 9). Let a2 F, be a
cube. Then a cube root 2 F, is given byr = a(®2=9,

Proof. Sinceais a cube,al® D= =1, |tis r3= a@2= = ggla V=3 = g, ]

Again, the computation of a cube root only takes one exponaation. When apply-
ing both lemmas, one must check that the result is correct, . that r3 = a, if it is
not known, whetheru is a cube.

2.3 Pairing computation

In this section, we discuss di erent pairings on BN curves ahelaborate on how they
can be computed. First of all, we recall the notation xed in he previous sections.



62 2.3. Pairing computation

Throughout the section let (;n) be a BN prime pair, and letE : y?> = x3+ bbe
a BN curve overF,. Let E°: y? = x3+ b= be the twist of degree 6 as in Lemma
2.12 which is de ned overFg., and 2 Fp. is neither a square nor a cube. We take
Fpz = Fp( ), where is a root of the irreducible polynomialx? 2 Fylx]. The
embedding degree oE with respect to n is k = 12, and thus pairings map into
Foz. This eld is represented asFp. = Fp(! ), where! is a root of the irreducible
polynomial x® 2 Fp2[x]. The intermediate elds F, and Fg can then be given as
Fps = Fpz(! ?) and Fps = Fz(! 3), see Sectior2.2.3 We dene &=!3and =12
i.e. Fpe = sz( ), Fp4 = sz(&, and Fplz = Fp4( ): Fps(&.

We now assemble the groups that are involved in the pairing cgutation. The
rst of those is the group E (Fp), which is the 1-eigenspace of thp-power Frobenius
endomorphism , 2 End(E),

Gi= E(Fp) =ker( , [1]): (2.17)

The second group is thep-eigenspace of the Frobenius oE[n], which consists of
points de ned over F:2,

Gz = E[n]\ ker( p, [p]) E(Fpe)[n]: (2.18)
We have seen that we can represent the points {B, by points in the group
G3 = EYFp)In]; (2.19)
and then, if needed, map tdG; via
1GY! G (XYY 7! (1 2XG 1 3y = ( x%&W):

This map is needed when a pairing is actually computed. Otheperations, like for
example the elliptic curve arithmetic during Miller's algaithm for the ate pairing,
should be done inG3. When curve arithmetic in G, is required in a protocol, it can
be replaced by arithmetic inGS. The following remark shows that computing the
map from G to G, is almost for free.

Remark 2.28. In the chosen setting of nite elds, the computation of (Q9 =
(x%yY does not require any nite eld arithmetic. An element 2 Fy: can be

written as
= ot oI+ 2+ G134 gt 1S

with coecients ; 2 Fg.. It is uniquely determined by ( o; 1, 2, 37 4; 5) itS
coe cient vector. The element ! ?x° has just one coe cient di erent from 0, i.e.
it is given by the vector (0,0;x%0;0;0). The second coordinate! 3y is given by
(0;0;0;y% 0; 0). In particular, no eld multiplications are needed at alll

Since :GJ! G, is agroupisomorphism, every pointirG, is of the form ( x % &¥).
Note that both coordinates lie in proper sub elds ofF,.> (see Remark2.15. This
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makes the evaluation of line functions easier, as we are abdedo computations in
sub elds of Fp.

Finally, the third group that occurs is the group , Fou of nth roots of unity,
into which the pairing maps:

Gs= o Fu: (2.20)

All the groups G;, G, G, and Gz are cyclic groups of ordem. If needed, one
can use point compression techniques on the grou@s, G,, and GJ as proposed
in Subsection2.2.5 To speed up elliptic-curve scalar multiplication, the metods
discussed in Subsectiofi.2.4may be applied.

We now turn towards pairing computation. An essential part & Miller's algorithm
(see Algorithm 1.1) is the evaluation of the line functionsly., for two points U =
(Xu;yu) and V = (xy;yv) lying in either of the groupsGy, G,, or G3. If U8V,
the function Iy.v is given by

luv(X;y)= (X Xu)+(yu Y)

where is the slope of the line throughU and V, being tangent to the curve, if
U=V (see Lemmal.99).
The pairing functions that we consider in the sequel are eién maps

G, Gy! GigorG, G;! Gs:

Line function computation and evaluation are di erent in bah cases, sincé&J;V 2 G,
in the rst case and U;V 2 G, in the second case. Thus point coordinates lie in
di erent elds. The point Q, at which the line functions are evaluated, lies in the
other group, and also has dierent elds of de nition in the dierent cases. We
address each case in one of the following two subsections.

The nal exponentiation has to be carried out after the Mille function computation
in either case. For BN curves, the exponent iof? 1)=n. It can be split up, and the
exponentiation can be carried out by some applications of ¢h nite eld Frobenius
automorphism and a remaining part, done in a multi-exponerdtion. For details,
we refer to the paper of Devegili, Scott, and DahaliSD07. Recently, Scott et. al.
[SBC' 08] have been able to further improve the nal exponentiation.

2.3.1 Tate and twisted ate pairings

For the Tate and the twisted ate pairing (see Sectiod.2), we compute a function
12
e:G1 GY! Gz (PiQ) 7! fmp( (QY)
Herem = n if the Tate pairing is computed andm = 2, mod n if e is the twisted
ate pairing. The best choice for this setting of groups is thgeneralized twisted ate
pairing proposed by Zhao, Zhang, and Huang i fHOg. Depending on the sign of
the parameteru, we can always choosm 2 f 2, modn; 13 modng, i.e.

m2f 36u® 187 6u 1;36u°+18u’+6u+2g;
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such that the bitsize ofm is 3=4 that of n.
We now give the line functions that occur in Miller's algoribhm for points in a ne
representation. Remember that an element of F,.. can be represented as

= ot L+ P g%+ gt gl®

= ot 1+ o+ P&t L&+ &
We state the evaluated line functions in this representatio

Lemma 2.29. LetU;V 2 G, U =(Xu;Yu);V = (Xv:Yv), I.€. Xu;Yu; Xv; Y 2 Fp,
and Q° = (Xqo;Yqo) 2 GY, i.e. Xqo;Yqo 2 Fpe. Then the line function ly.y ( (Q9)
can be computed as follows.
@ If U V,then =(yv Yyu)=(xv Xu). If U=V, then = (3x3)=(2yy).
In both cases,

luv( (QY)=(Yu Xu)+ Xqo  Yoo&:
(b) If U=V, then
lu; u( (Q)) = Xy + Xqo:
Proof. This follows easily from Lemmal.94 O

Note that due to the representation ofG, as the image ofz9, the computation of line
functions involves only the computation of 2 F, and the multiplications x y 2 F,

and X go, where onlyXqo 2 Fpe.

To avoid inversions, one usually representd;V in projective coordinates. The
formulas in this case can be easily deduced from the above aré given in PSD07.

2.3.2 ate and optimal pairings

The ate pairing on a BN curve is computed as

pl2 1

e:Gy Gi! Gz (QSP) 7! fi g (@9(P) 7 :

In contrast to pairings from the previous subsection, the cue arithmetic in Miller's
algorithm must now be done inG3. Line function coe cients are computed from
the coordinates ofQ°2 G9, while they are evaluated at a pointP 2 G, de ned over
the base eld.

Lemma 2.30. Let U;V 2 G, and dene U%and VPby U = (U9 = ( Xyo; &Yo0)
andV = (VO =( Xyo;&yo). If U6 V, the slope of the line passing through
U and V (being tangent to the curvee if U = V) is given by

0.

where Cis the slope of the line througiy® and V° (being tangent to the curve if
SRERVA)
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Proof. Let U 6 V, then

W Yu o &yve Yuo) _ W Yue oo

Xv Xu (XVo XUo) o Xyo  Xyo

Now, let U = V, then

_3XG - A3xo) _ X _ | a

2yuy B &2yyo) o 2yyo

O

Once more, computations with points inG, can be replaced by corresponding com-
putations with points in G3. We proceed by giving the line functions.

Lemma 2.31. Let U%V? 2 GY, U° = (xyo;yuo); VO = (Xvo;yvo), i.e. Xyo; Yus;
Xvo,Yvo 2 Fpz, and P = (Xp;Yp) 2 Gy, i.€e. Xp;Yp 2 Fy. Then the line function
I o (vo(P) evaluated atP can be computed as follows:

(@) If U°8 VOlet %= (yyo yyo)=(Xyo Xyo). If U%= VO let %= (3x30)=(2yyo).
In both cases,

L wo; vo(P)= yo+ Kp! +(yuo  Kuo)&:

(b) If U= VO then
I wo: w9(P)= Xp Xyo:

Proof. Case (b) is trivial. For case (a), compute (Xp X (o) +(Y w9 Yp) =
Y (Xp  xuo )+ (Yuok Yp). O

Compared to Lemma2.29 more computations inF,. must be made. We have the
computation of °and the multiplications %p, where only °2 Fp and %yo 2 Fpe.
These formulas have been proposed iD$D07 already.

The shortest loop length for a pairing based on the ate pairgncan be achieved by
using so called optimal pairings as introduced by Vercauten in [Ver0g. The loop
length for the Miller function is m = 6u + 2 in this case. But note that then the

function (P; Q9! (i (QO)(P))plZT1 is not bilinear, and that it needs to be adjusted
by some line-function factors.

2.3.3 Pairing compression

In [SB0O4, Scott and Barreto suggest to compress pairing values bymputing a
nite eld trace. Implicit exponentiation of compressed vdues can be done as in the
XTR public key system [\V0O]. Following the ideas in [\V0O0] and [SB04, we can
compress pairing values to=13 of their length by computing their F.-trace. Pairing
values are then represented by orfg.«-element, and can be implicitly exponentiated.
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Compression in such a way is consistent with point compressiin G3. All points
with the same y-coordinate, i.e. all points that lie in the same orbit underthe
subgroupH ° of the automorphism group AutE9 (see Subsectior?.2.5 are mapped
to the same value.

Proposition 2.32. Lete : Gy GY! Gsande : G} G;! Gz be bilinear
pairings. Let P 2 G; and Q%= (x%y9 2 GY. Then for all points R°2 G9 with
y-coordinate equal toy®, it holds:

e (@(P; Q) =tr ¢, (e1(P;R)) and tre , (€2(Q%P)) = tr £, (e2(R% P));

wheretre , i Fpe | Fpei 70+ P+ P s the Fpa-trace.

Proof. It follows from Lemma 2.22 that the set of all points with the samey-
coordinate y° is exactly the orbit HQ® Remark 2.24 then shows that this orbit
is bijectively mapped to the orbitH (Q9 in G,. By Remark 2.25 we see that this
orbit is exactly f Q;[p*]Q; [p’]Qg, whereQ = (QY. Let & = e (P; Q9. Then the
pairing values of the other two points withy-coordinatey® are &' and € , respec-
tively. Thus the traces of all three values are equal to ¢£4(eo). The same holds for
the pairing e;(Q% P) with groups interchanged. O

Similarly, if we compress points inG) to one bit less, i.e. if we identify all points
with their y-coordinates being equal up to sign, we can do the corresporgisixfold
compression of pairing values by computing thE.-trace.

Proposition 2.33. Lete : Gy GY! Gsande : G G;! Gz be bilinear
pairings. Let P 2 G; and Q%= (x%y9 2 GJ. Then for all points R°2 G9 that have
a y-coordinate equal toy® or y? it holds:

tre,(e(P;Q)) =tr ¢, (e(P;RY) andtre, (e2(Q%P)) =tr ¢, (e2(R%P));

6 8 0 .
wheretre , tFpe | Frop 70+ P+ Pra Py P4 P s the Fe-trace.

Proof. The proposition follows in the same way as Propositio.32 from Lemma
2.23and Remarks2.24and 2.25 O

The approach to compress pairing values by computing tracés not suitable for

implicit multiplication of compressed values. This proble can be solved by a com-
pression technique that exploits the fact that pairing vales lie in algebraic tori,

certain subgroups oinlz. We discuss this approach in ChapteBs.

2.4 Construction revisited

In this section, we return to the construction of BN curves. i contrast to Section2.1,
we summarize in one place, how to get all the parameters nedder implementing
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pairings on BN curves, including generator points, eld exnsions, the primitive
roots of unity needed for the use of e cient endomorphisms,ral the automorphism
groups. We use the following polynomial parametrizations:

36u*+ 36U +24u’+6U+1;
36u*+36u°+18u’+6U+1;
6U+1:

~ 5 T
I

2.4.1 Prime pairs and primitive roots

Algorithm 2.2is a randomized algorithm to nd a BN prime pair. Note that the set

| in Step 1 might not contain any u leading to a BN prime pair, in which case the
loop would not terminate. We therefore assume, that the algithm is only applied
for large enough values ofn, such that| is not empty and large enough to provide
a prime pair. Our heuristic results in Subsectior2.1.1imply that this is always the
case form > 32. The notationu 2 | in Step 3 indicates that u is chosen at random
from the setl .

Input: A desired bitsizem for the group ordern.
Output: A parameteru 2 Z such that p and n are prime and havem bits, and the
corresponding BN prime pair p; n).
. Find the largest setl  Z, such that p and n have m bits for all u 2 1.
repeat
Selectu 2r I,
computep  36u*+36ud+24u’+6u+1,
computet 6u’+landn p+1 t.
until p and n are prime.
return u; (p;n).

Algorithm 2.2:  Finding a BN prime pair

No ahRrwnR

Let 2 Fy be a non-square. To construcF,: useFy = Fy( ), where 2= . From

the parameteru, we can compute the 6th roots of unity inF, as

18u®+18u?+9u+2 mod p;
18u®+18u?+9u+1 mod p;
= 1 modp;

= 18 182 9u 2 modp;
= 183 182 9u 1 modp;

DN OoONOWOoON O



68 2.4. Construction revisited

and the 12th roots of unity in F,, as

12 = 6U%

2, = 36u® 18® 6u 1 modn;
5, = 360 24 12u 3 modn;
3, = 360 187 6u 2 modn;
> = 36 3w® 12u 3 modn;
& = 1 modn;

I, = 6u” modn;

8 = 36ul+18u?+6u+1 modn;
3, = 36u*+24u?+12u+3 mod n;
19 = 36ul+18u*+6u+2 modn;
1 = 36u®+30u*+12u+3 mod n:

Note that 1, =t 1. Dene 3:= £, a primitive 3rd root of unity modulo p, and
dene := 2, a primitive 6th root of unity modulo n.

2.4.2 Curve, twist, and automorphisms

On input of a BN prime pair (p; n), Algorithm 2.3 constructs a BN curve overF,

with n = # E(Fp) and a degree 6 twisE°of E over . such thatn divides #E{F.).

It further gives generatorsP and Q°for the groupsG; = E(F,) and G3 = E{F2)[n].

As discussed in Subsectiof.1.2 the random choice o in Step 4 may be replaced
by the choice with a certain givenx-coordinate ory-coordinate.

The 3rd root of unity 3 from the previous subsection de nes a generators of the

automorphism group Aut(E) by

6:E! E; (Xy) 7! (3% Y)
and a generator 2 of Aut(E® by
9 EOT E% (x%y9 7 (X% yO:
Then it holds §(P)=[ ¢]P or s(P)=[ 2]P. Which one is correct, can be checked

easily. Similarly, we can test whether J(Q% =[ §]Q%0r Q% =[ 21Q°

2.4.3 Finite elds and twist isomorphism

Finally, we can construct the nite elds Fps, Fys, and Fpi2 as extensions oF 2 using
the element 2 Fpn (Fpe)?[ (Fpe)® that de nes the twist E° (see Lemma2.14
and Algorithm 2.3). As indicated in Subsection2.2.3 we can choosé¢ 2 F,2 with
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Input: A BN prime pair (p;n) and Fpz = Fy( ).
Output: A parameter b 2 F,, such thatn = # E(F,) for E : y? = x3+ b, a
parameter 2 Fye, such thatn j # E{F.) for E°: y? = x3+ b=, and generators
P for E(F,) and Q°for E{Fy2)[n].
1: repeat
2. Selectb2g Fon((Fp)2[ (Fp)3),
33 deneE:y>=x3+b,
4: selectP 2 E(F,) nfOg.
5. until [n]P = O.
6: Computeh p 1+t.
7. Select 2 Fen (Fp)?[ (Fp)® ,
8: dene EV:y® = x®+ b=
9: repeat
10:  SelectR°2g EqF2),
11:  computeQ® [h]RC,
12: until Q°6 O.
13: if [n]Q°6 O then
14:  Set 5 and go to Steps.
15: end if
16: return b; ;P; Q°
Algorithm 2.3:  Constructing a BN curve and its twist
16= anddene :=!2and&:="!23. Then the elds can be represented as
Fp12 = sz(! );
Fpe = sz( );
Foo = Fpe(&:

The isomorphism , mapping from the twist E°to E, is given as

E%l E; (XYY 7! (x%&Y):

2.5 Examples

All of the following curves have an equatiorE : y? = x3 + 3 over F, with a group
of Fp-rational points of prime ordern and the trace of the Frobenius endomorphism
equal tot. A sample generator for any of them i = (1;2) 2 E(Fp). In all
cases, we choosg 3 (mod 4) andp 4 (mod 9) to simplify the computation
of square and cube roots, and the bitlengths qf and n are equal. The eldFy is
represented as,(i), wherei? = 1. The sextic twist for all examples has the form
EqF2): y?= x*+3=,where = = 8+8i. Furthermore, we provide a primitive
6th root of unity s modulo p, and a 12th root of unity ;, modulon can be simply
obtained ast 1. A generator for the groupE{F2)[n] is given asQ®= (Xqo; Yqo).
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2.5. Examples

160-bit groupsize

= 1461501624496790265145448589920785493717258890819

1461501624496790265145447380994971188499300027613

= 1208925814305217958863207

= 448873741399

6 = 1627965160026674480212199743920457793

Xgo = 349428567228908313604752388954091103921210071309
+821829959935049481490613055449855070122493239244

yoo = 871202673805247435072049417049386724746063086907

+1239146125490754416389195992354273864776961399618

C ~ 35 O
1

192-bit groupsize

p = 6277101719531269400517043710060892862318604713139@509723
n = 62771017195312694005170437099816646999044017441636556389
t = 79228162414202968979637953335
u = 114911677977917
6 = 62771017195312420877937853413025150316585542310049992640
Xgo = 58907823788662788641200037910976954632162167611046892923
+414065299702857587623265342784333864418427237084688816508
ygo = 311062608876303269865181467343517033259193924511@5986818
+3761433986678713844778960232477894755556338428328122551

224-bit groupsize

C ~ 35 ©

XQO

Yqo

= 269599466671492057583834697369216954350157367352855141423417423923

= 269599466671492057583834697369216902427188782005581029749235996909

= 5192296858534689624111674181427015

= 29417389580922737

= 269599466671492053001520112149729998822144981770747500155117548380

= 1232603996837482821414893153047674075281723160150%9806288623840658
+155443538287090203874167736889554568051530657890485405204491572503

= 1338827025503298485928979821609002448702541508008729889294300059312
+31785225134710923003473387050558075068727033506942114351541449187

256-bit groupsize

C ~ 3 ©
1l

XQO =

Yoo =

1157920892373149368726885612444717420583758783551@05198700409522629664518163
1157920892373149368726885612444717420580355959888268584488757999429535617037
340282366920936614211651523200128901127
7530851732716300289

1157920892373149368650007130868537239615014175815165808556977265798185842700
48637431283323345108849385748911846788633049315083917511206975056499463383619

+762234086972264187987456430936054828901398125130847932670547153386654984703
1261478234220085410960795684102630454509535600758603851539029734295257585712

+1121032322297588560606712762971996892043459646589607162631544293223609182175



Chapter 3

Compressed pairing computation

In this chapter we discuss a method to compute pairings in cgressed form. This
method has been proposed in joint work with Barreto and Schwa in [NBS09g. For
an elliptic curve E=F, with embedding degree with respect to some prime divisor
r of # E(Fg), pairing values arerth roots of unity. Thus they lie in algebraic tori,
certain subgroups oquk. Torus elements are characterized by having relative

norm 1,i.e.Ng _( ) =1, for certain subelds F  Fy. These conditions allow to
q

represent a torus element with less coe cients than a gendralement of Fy needs.
Techniques based on algebraic tori are already used in thelpie-key systems LUC
proposed by Smith and Lennon §L93, the system by Gong and Harn GH99,
GHWO01], and XTR by Lenstra and Verheul [\VOO]. Rubin and Silverberg RS0J
describe a framework for torus-based cryptography.

The compression of pairing values is addressed by Scott andrBto [SB04. They
use nite eld traces of pairing values to represent them by lements in a smaller
eld. This approach is useful for implicit exponentiation, and they propose to do
part of the nal exponentiation in compressed form. But impicit multiplication of
general compressed values can not be done easily. We haveusised trace-based
compression techniques for BN curves in Subsecti@r3.3of Chapter 2.

Granger, Page, and StamGPS0q propose to use torus-based compression tech-
niques for pairing-based cryptography. They have shown hoa pairing value in a
eld extension Fg can be compressed to an element g plus one bit. We note
that the technique of compression that we use here has alrgaldeen explained in
[GPSO04 for supersingular curves in characteristic 3. Granger, Ba, and Stam men-
tion that the technique works also for curves over large chacteristic elds, but they
do not give the details. We show how to use the compression imig case. As a new
contribution, we include the compression to inside the Mir loop, and show how to
work with compressed representation.

In Section 3.1, we de ne algebraic tori and discuss basic properties. Wetinduce
compressed pairing computation on elliptic curves with anven embedding degree
in Section3.2 The method is discussed in more detail for curves that havetaist
of degree 6 and embedding degree divisible by 6 in Sect®8. In this case, we give

71
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explicit formulas for compressed pairing computation.

3.1 Preliminaries on tori

Let Fq be a nite eld and Fy Fya eld extension. Then thenorm of an element
2 F4 with respect to Fq is de ned as the product of all conjugates of over F,

namely
1 |1 I -
NFqleq( y= @ qd = l+gt +d ' - (d Dq D).

De nition 3.1.  For a positive integerl, the torus of degred over F, is de ned as

\
Ti(Fg) = ker(N Fy ) (3.1)

Fo FF 4
If Fy F(F 4,thenF= Fg, wheredjl;d 6 I; so the relative norm is given as
NFq|=qu( ) = @ Da* D).
It follows that
Ti(F)=f 2Fgj @ 94 D=1, djL;d6 Ig:
Since the norm map is multiplicative, the sefT|(F,) is a subgroup oqu..

Lemma 3.2. The setT(Fg) is the unique subgroup of the cyclic grOlE)q. of order
1(0), where | is the Ith cyclotomic polynomial.

Proof. This is [RS03 Lemma 7]. O

From the de nition of cyclotomic polynomials [LN97, De nition 2.44 and Theorem
2.45], we know that forp - |

Y Y
X' 1= aX)= 1(X) a(X):

djl djl;ds |

De ne Y
(X) = a(X) = (X' D)= y(X):
djl;ds|

Lemma 3.3. Let 2 F,. Then 1@ 2 T(Fy).

Proof. Let = '@ Then '@ = d 1=1 thus has order dividing (q).
Since FqI and T,(Fg) are nite cyclic groups, and T,(Fg) is the unique subgroup of
order (g), liesinT(F). O

Lemma 3.4. For each divisordj | of I, it holds Ti(Fg)  Ti=q(Fge).
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Proof. Let 2 Ti(Fy). Then NFq| -re( )=1forall ejlie 8 I. In particular, the
norm is 1 for all suche with dj e, hence 2 Tiq(Fq). O

Combining the above two lemmas shows that the element raised to the power
1(0) is an element of each torud4(F) for all divisorsdjl, d6 |.

Remark 3.5. Let E be an elliptic curve de ned overF, and r a prime with r j
# E(Fy). Let k be the embedding degree d& with respect tor. By Lemma 1.107,
we have thatr j ¢(q). Hence, the exponent of the nal exponentiation can be spli
up as )
q 1_ k(9)

= k(0 .
Therefore, a pairing value computed from the reduced Tate pang or any other
pairing variant that includes the nal exponentiation (seeSection1.2.3 lies in the
torus Tx(Fg). By the preceding lemmas, it also lies in each torug.-q(Fy) for djk,
dé k.

3.2 Even embedding degree

Let k be even, and letp 5 be a prime. In this section, letq = p“? and thus

Fq= Fy=2sothatFp = Fy. Choose 2 Fqto be anonsquare. Then the polynomial
x? 2 F4[x] is irreducible, and we represenf, = Fq( ), where is a root of

x2 . We exploit properties of the torusT,(F) in this section. We have

To(Fg)=f 2Fgj g+l =1g=fay+ & 2Fq2jag ai =1g:

If a; = 0, then &y 2 f1; 1g. Therefore, 1 and 1 are the only elements fronf,
that lie in T,(Fg).

Proposition 3.6. Each elementl 6 2 T,(Fy) has a unique representation as

a
at+

for some elementa 2 F,. Vice versa, every fraction of this form is an element of
To(Fy). If =ay+ & with a; 60, acan be computed aa= (1+ ag)=&. The
map

8
2( L+ a)=a:1) ifag60;
1To(Fg) ! PYFg: 71 (X 1Y)i=_(0:1) if ay=0;3= 1
" (2:0) ifag=0;a0=1
is a bijection.

Proof. This follows from [RS03 Section 5.2]. O



74 3.2. Even embedding degree

Remark 3.7. The map from the previous proposition can be given as( ) =

( A+a):a)for =a+a 6 1. The denition in Proposition 3.6 uses as
representative for a projective point ( ) the corresponding a ne pointif 6 1, and
uses the point at in nity (1 : 0) for = 1. This emphasizes that we can represent a
torus element 2 T,(F,) by ( ) which can be given by one element iy and an
additional bit to distinguish the neutral element 12 T,(F,). Hence we consider as
a compression function.

We wish to multiply elements inT,(F,) implicitly with their compressed values. The
next lemma shows how to compute the compressed value of th@guct of two torus
elements from the compressed values of the single elements.

Lemma 3.8. Let ; 2 Ty(Fy. If X = X ,then ( )=(1:0);ifY =0,
then ( )= ( );andifY =0,then ( )= ( ). Otherwise,

( )=((X X + )X +X):1); (3.2)
where = 2,
Proof. If either Y =0orY =0,i.e. =1or =1, the resultis the other value.
If X = X , we have that X =X + )=(X + )X ) is the inverse

of (X )=(X + ), and their product is 1.
For all other cases, the product is

X X X
X + X + X +

with X =(X X + )=(X +X). O

Remark 3.9. Let 2 T(Fy)nfl, 1g. Then X 6 0, and the compressed value
of 2is ( 2)=(X =2+ =(2X ):1). It follows from

X ox o+ X
1 _— — —
X + X T X 4+ (3-3)

that ( Y =( X :1). Hence inversion of compressed torus elements does not
need inversions in a nite eld. Instead, it only requires ngation of a nite eld
element.

The multiplication by 1 is implicitly givenas ( )= =X because
X 2 x X =X
X + 24X +X =X +

We de ne a multiplication\ ?"on P(Fg) by (X :Y)?(X :Y):= ( ). Then
(PY(Fq); ?) is a multiplicative group, which is isomorphic to the groupT(F,) with
usual multiplication inherited from Fee-
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Granger, Page, and StamGP S04 suggest to use the above described compression
on pairing values after the nal exponentiation, and carry at any arithmetic that
has to be done with pairing values in the compressed represgion. We propose

to use part of the nal exponentiation to do the compressionComputing the torus
representation of the ¢ 1)th power of an element inFqz can be done in one eld
inversion in Fy.

Lemma 3.10. Let = ag+a 2 qu. Then 9 !is an element of the torusT,(F,)

and
(9= (2p=aq:1) if ;60 ( 2F);
(1:0) if a1:0( 2Fq):

Proof. Firstlet 2 Fq, i.e.ay=0. Then 9'=1and ( 9*)=(1:0). Suppose
now that =2 Fy and hencea; 6 0. Applying the g-power Frobenius automorphism
onFge to gives 9= . We raise to the power ofg 1 and obtain

(Bo+a )9_a a .

al_ +a ) 1= :
(ao 1) %+ a %+ a

Sincea; 6 0, we can proceed further by dividing in numerator and denomator by
a;, which gives

do=a
+g )1l 2= 3.4
o+ )7 = 2 (3.4)
Proposition 3.6 shows that @ 12 Ty(Fy) and that ( 9 ) = (ay=a : 1). O

Let E be an elliptic curve overF,, and let k be the embedding degree dE with
respect to a primer. The group ofrth roots of unity , is contained in Fe = Fo
Recall from Sectionl.2.1that the nal exponentiation is the map

quz(qu)r [ i qu; (qu)r 71 (o? l):r:

We may write the exponent as

2
T t=@ ¥

r r

Suppose that we carry out the nal exponentiation in two step. First we compute

9 1 and in a second step raise the result to the poweq ¢ 1)=r: After the rst
step, the result lies inT,(F,;) by Lemma 3.1Q Its compressed representation can
be computed with just one eld inversion. One can do the compssion to a torus
representation inside the Miller loop with this rst step. This means that the re-
maining part of the exponentiation has to be done with the imiiit torus arithmetic
described in Lemma3.8.
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De nition 3.11. Let ¢ be the reduced Tate pairing orE as in Section1.2.3 We
call the map

e, CE(Fp)r]  E(Fplr] ! Pl(Fpkzz);
P;Q 7 (a(P;Q)= (fup(Q V)

the T,-compressed Tate pairing

Corollary 3.12. Let P 2 E(Fp)[r] and Q 2 E(Fy)[r] with Q ZhPi. Let f =
frp(Q) = fo+ f1 be the value of the Miller function represented as an elemeoit
Fo = Fg over Fy. The T,-compressed Tate pairing can be computed as

o1, (P; Q) = (fo=fy : 1P,
where the exponentiation is done with respect to the multgation ? in Pl(Fpk=2).

Proof. This is a simple consequence of Lemn#al0and the discussion before De -
nition 3.11 Note that f 2 Fy sinceQ 2hPi and thus (f9 ) = (fo=f;:1). O

3.3 Curves with a sextic twist

In this section, let p be a prime withp 1 (mod 3), and letE be an elliptic curve
over Fp, with j-invariant j (E) =0, i.e. E :y?= x3+ b, b2 F,. Letr be a prime
divisor of n = # E(Fp), and let k be the embedding degree & with respecttor.
We assume in this section thak is divisible by 6, i.e.k = 6m for m 2 N. We set
q:= p® = p™. Then Fq= Fyn and Fg = Fyx.

It follows from Proposition 1.100that there exists a twist E° of degree 6 ovelF,
with r j # E{F,). We can choose 2 F, such that the twist with the correct order
is given byE®:y? = x>+ b Note that in this case, is neither a square nor a
cube inFy. An Fg-isomorphism is given by

CEO1 E; (xPy9 71 (3G 0. (3.5)

The eld extensions of Fy contained in Fg can be represented afp = Fo( )
and Fg = Fo( ), respectively. We aim at computing the twisted Tate pairiy as
introduced in De nition 1.102in a compressed form, and recall its de nition:

€:G1 G3! Gz (P;Q) 7 e(P; (QY):

whereG; = E(Fp)[r] and G) := E{Fy)[r]. Miller functions are products of the line
functions discussed in Lemmd.93 We evaluate all functions at a ne points, and
thus a line function is equal to the de ning polynomially., of the corresponding
line through the pointsU and V. In Miller's algorithm (see Sectionl1.2.3, the line
function is evaluated at a pointQ 2 E(Fg)[r], i.e. one computedy, (Q).
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When computing the twisted Tate pairing, the pointsU andV are inE(Fp) and Q =
(QY for a point Q°2 EYFy). Let U = (xu;Yu), V = (Xv;Yv), and Q°= (Xqo; Yqo).

HenceQ = (Xo;Yo) = ( Xqo Y qo), where = 22 Fgand = 2 Fg. Notice
that 9= since X 2 =(X )(X + ) and that F = Fg( ). Similarly,
since

X3 =(X )X X ?)

for a primitive 3rd root of unity , which lies inF, sincep 1 (mod 3), we have
9= | ForU 6 V, the line function is

luv (Q) = (X@ Xu)+(Yu Yaq)

where is the slope of the line throughU and V, i.e. =(yv Yu)=(Xv Xy) if
U6 V and = (3x3)=(2yy) if U = V, respectively. In the casdJ = V, the
value of the line function isly, y(Q) = Xq Xu, Which is contained inFg. Such
factors can be omitted in Miller's algorithm since they are mpped to 1 by the nal
exponentiation (see discussion before Propositidn103.

Lemma 3.13. ForU6 V andQ= (Q9 with Q°2 EXF,) of orderr, we have

(uv@T H=((xu Yo X0 )=yeo:1)2 PH(Fg);
where is the function described in Propositior3.6 (see also Remarl3.7).

Proof. We evaluate the line function atQ and obtain

luv(Q) = (Xqo Xu)*(Yu Yqo
= (Yu Xu+ X ) VYoo

The coordinateyqo is not zero since the poinQ® has orderr andr > 2. O

Remark 3.14. Although (X y Yu X qo )=Ygo is an element ofFg, it could be
computed with just 4 multiplications in Fq asyos ( Xu  Yu) (Yoo  Xqo) -
Note that as well as the coordinates of all involved points are elemenof F.
The inversionyQ& can be done as a precomputation becau€fis xed in the Miller

loop. But we use a more e cient way, merging the computation wth the subsequent
multiplication.

Lemma3.13can be used to compute the compressed values of line funcia@arising
in the Miller loop. For computing the T,-compressed Tate pairing, we can thus do
the rst step of the nal exponentiation|raising to the ( ¢ 1)th power|with the
line functions and then compute the Miller loop with respecto the multiplication
?in PY(Fg). Of course, this can only be done since Miller functions a@mputed
as products of line functions.

In Miller's algorithm, we need to carry out squarings and muiplications. Squarings
are done with general elements iP!(Fs). Multiplications always have a factor
coming from a line function as in Lemma&3.13



78 3.3. Curves with a sextic twist

Lemma 3.15. Let 2 Ty(Fg) with () = (X :1)and = IU;V(Q)q3 1 as in
Lemma3.13 Dene = Xy Yy Xqo 2 Fg. Then it holds
X + Yoo
()= So i
yQO+
Proof. This is an easy application of Lemm&s.8. O

There is no need to invertyqe to compute (IU;V(Q)qs 1). Instead, we directly
compute the product representative () as in the previous lemma.

For the assumptions in this section, the exponent of the nakxponentiation is
(®  1)=r, which we rewrite as

o 1
.

2
=(¢ DE+n T2

Itis () =(g® 1)(g+1). Instead of only computinglu;\,(Q)q3 1 we can compute
luv (Q) @, and obtain an element inTg(Fg) by Lemma 3.3 It is

Te(F)=f 2Fpj Tt =1and 991 =1g
Note that by the transitivity of the norm, the condition NFqG:Fq( ) = 1 follows from
Neo=r () = =1
This equality also implies
Nququz( ) = P+l = @ gl — 1:

Itis clearthat 12 Tg(Fg). By exploiting the norm conditions, it can be shown that
1 is the only element inTg(Fg) that lies in a proper sub eld of Fe. Furthermore,
it is clear that Tg(Fq)  To(Fge) (see Lemma3.4). We next describe a compression
technique that has also been demonstrated similarly by Grger, Page, and Stam
[GPS0§ Section 3.4].

Proposition 3.16. Let 2 Tg(Fg) Ta(Fg). Let ( )=(X :Y )2 PYFg), and
ifY =1,letX =h+b + b ?with by;b;b 2 Fy. Dene

Me := f(a0;21) 2 A%(Fg) j @1 6 0g[f (L;0)g:

The map ( |
(o;b) if 61;

i To(F)) ! Mg, 7! ,
o: To(Fa) 1 M 1,0 if =1

is a bijection.
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Proof. Let rst be such thatY =1,ie. = (X )=(X + ). We have
NFqGZFqZ( ): 1, i e.

X g+l

X + =L

which is equivalentto (X )% @1 = (X + )% 91 \We use the factthat 9= 2
for a primitive third root of unity which lies in Fqsinceq 1 (mod 3). An explicit
computation of (X )9 a1 and simpli cation of the equation (X o el =
(X + )¢ o1 yields the relation 3bb, + + 3§ = 0. If by 60, this equation
can be used to recoveb, from by and b; as

_ 3+
b, = B (3.6)
If b =0, we have = 3. Sincep 1 (mod 3), 3 is a square modulg and

thus is a square which is not true. Thereforely can not be 0. We may thus use
(1;0) to represent 12 Tg(Fy).

Summarizing, we see that sincdg(F,) To(Fe), 2 Te(Fg) nflg is uniquely

determined byX , andX is uniquely determined by {y; b)) 2 Mg, which completes
the proof. O

Corollary 3.17. Let 2 Fg. Then ©@ can be uniquely represented by a pair
(ag; &) 2 AZ(Fq)-

Proof. This is clear with Lemma3.3 and Proposition 3.16 O

Multiplication formulas on Mg (see Proposition3.16 corresponding to the usual
multiplication in Tg(Fg) can be derived from the arithmetic onl,(F4) (Lemma 3.8).

Lemma 3.18. Let ; 2 Tg(Fg) nflgwith ¢( ) = (ag; &), 6( )= (v k), and
(ag;a1) 6 ( y; by). Then ( ) = (cp; 1), wherecy and c; are given by the
following formulas:

ro=ag+ %; r{=kg+%;

So= (ahi(aohy + )+ airy+ bro); sy = aiby (aohy + aghy) + rory;
s = &l + agaury + ybiro; to= arby (80 + by);

t1 = aiy (g + by); t, = biro + agry;

u=t3+t3 +1t32 3totyty Up = 3 tity;

Up = t3  toty; U, = t2 toty;

Vo = SpUg + SiUp + SpUy V1 = SpUp + SiUg + SpUy

= o o = ot

u u
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Furthermore, ¢( 2) = (do; dy) with dy and d; given as follows:

o= e (@ 2+ e @) risar (8 Zda)+ Hao 2a)

— 6 2 1 3 1,3 3. — 6 2 4 3y.

So = ao(fo+ @y “+ 55 381 % S1= ag(ar1+ a; “+ 5 °);
S S

— 6 2 1 3y. _ >0, — >,

s=2(afo+ a; “+ = °); do = < d; = <

Proof. The formulas can be derived from Lemm&.8. We show how to verify them
in Appendix A.1l. O

We split up the nal exponentiation into two parts again. The exponent of the rst
partis ¢(q) and that of the remaining second partis@ q+ 1) =r. After the rst
part, the result lies in Tg(Fg).

De nition 3.19. Let e be the reduced Tate pairing orE. The map
rte - E(FR)r]  E(Fp)lr] ! Me;
(PiQ 7' (& (PiQ)= o(fip (QW D7)
is called theTg-compressed Tate pairing

Corollary 3.20. Let P 2 E(Fp)[r] and Q 2 E(Fy)[r] with Q ZhPi. Let (f4;f,) =
6(frp (Q) ¢P™). The Tg-compressed Tate pairing can be computed as

T (PiQ) = (fy fp)®" P

where the exponentiation is done with respect to the muligation in Mg given by
the formulas in Lemma3.18

As for the T,-compressed pairing, we can exponentiate the line functieno the
rst part of the nal exponentiation, and perform the Miller loop completely in
compressed representation. The compressed representatad line function values
can be computed directly from the coordinates of the pointswolved.

Proposition 3.21. Let 2 F, be a primitive third root of unity such that 9= .
Let =lyyv(Q) *@withUu6 VandQ= (Q9.1f 61,then ¢ )=(cy¢c) 2
A%(Fy) with

2

= Yoo (U Xu) &= Vi Xoo (3.7)
Proof. Let = Iy (Q)* 1. By assumption, we have ®*1 = |y (Q) @ 6 1. Let
()=(X :1),ie. =l (Q t=%—_ltis
+1
— g+l — X d :
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We determineX from
X X X9+ X X4 X
X + X + = X X + X9+ X +
Since 61,itis X96 X . By applying (3.2, we getX =( X%+ )= X9+
X ). Lemma3.13shows thatX =( Xy Yu X qo )=Ygo. We thus obtain
Yu Xyt Xo
Yqo

X =

Multiplying with X vyields

" 1
X¥ = = (yuy xu)P+@+ Ixolyy xuy) + Zxéo 2
Yqo
For the denominator of X , we obtain
X9+ X = X QO( l)
Yqo

and determineX as

X = (1+ )Xqyy xu) *+ Zxéo +((yu Xxu)? y(%ﬂ)z

(1 )Xqayqo
_ 1t oy o xu X , b xu)® Y& ,
1 Yqo 1 Yqo (1 )Xoyqe
Recall that 2= . Taking ¢ the coecient at ' in the above expression we have

the property ¢, = (3c3+ )=(3¢; ), and thus ¢, can be computed fronty andc;. [

Remark 3.22. The input Q is not changed in the course of Miller's algorithm.
Hence,yQ& can be precomputed before the loop. Note also that 2=(1 )yQ&
and =(1 )yQé can be determined in a precomputation and that we do not need
inversions to compute the values of the exponentiated linarictions inside the Miller
loop.

Multiplication in  A%(Fg) corresponding to the multiplication in Ts(F,) needs inver-
sions as can be seen from the formulas in Lemridl8 One can replace inversion of
an elementa in Fpn by an inversion inF, and at mostblg mc+ 1 multiplications in
Fpm by

1 gPtP+ Pt

a  Nen=r(a)
The term in the numerator can be computed by addition-chain mthods. For details
see Section 11.3.4 irjoc054.
But it is possible to completely avoid inversions in Milleis algorithm by storing the
denominator in a separate coordinate, or in other words, by oning to projective
representation. We embed\?(F,) into P(F,) as usual with the map' 3% : A%(Fg) !
P2(Fg); (Co;c1) 7! (G : ¢ @ 1) (for notation see Subsectiori.1.]).
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De nition 3.23.  We de ne the compression function
- Te(Fg) ! PZ(Fq); n 31( ():

The compressed line functions computed in Propositidh21can be given as elements
of P?(Fy).

Lemma 3.24. Let assumptions be as in Propositior8.21. Let ; 2 F, be the
numerator and denominator of the slope,i.e. =y, yy; =xy xyifué V
and =3x3; =2yy if U=V, respectively. Thens(luv(Q) ¢@)=(Coy:C;:C),
where
2
C(): 1 (yU X U); C]_: 1— X Qo; C= Y ol (38)

Proof. The representation follows by multiplying with all denomirators. O

Whenm > 1, we are able to compress further. The denominat@ which has to be
stored in a third coordinate can be replaced by a denominatevhich is an element
in Fp, namely the norm Ng_, -, (C) of the previous denominator inFq. We only
need to multiply the other two coordinates byCP*P*+ +p" *

The methods described make it possible to completely avoiaversions during pairing
computation. Taking into account that inversion of torus eéments can be done
by negating the representative, we also do not need nite el inversions for the
nal exponentiation. Normally, an inversion is needed to e ciently implement the
exponentiation by using the Frobenius automorphism.

We give an example of the squaring and multiplication formalks in P*(F,) that
correspond to squaring and multiplication inTg(F4) for embedding degred = 12.

Example 3.25. For embedding degree 12, we hawg= p?. Let Fp: = Fy(i) and
i =z for some elementz 2 Fo. Let (Ap : A1 : A) be an element in compressed
form, i.e. Ag;A1 2 F and A 2 F,. We can compute the squareGo : C, : C) as
follows:

Ro = AZ+ (ASA% 2AFAY)+ 2(3A0A"  AJA?);
R = AJ+2 (A3A? AZAYD+ 2(AA* 2A3A%);
So = Ao(AgRo+ A} 2+ LA® %) IAJAT S

S1 = Ai(AoRi+ AY 2+ LA® 3

S = 2A(AoRo+ A 2+ 1A% 3.

Write S = 5o+ isy with sg; 8, 2 Fp. Then the square is given by

C() = SQ(SQ iSl); C]_ = S]_(SQ iSl); C= S(Z)+ ZS%:
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To multiply two compressed elementsA, : A; : A) and (Bg : B; : B) we can use
the following formulas:

Py
o
|

Aj+ 1A% R = Bi+ iB?;

So = (A1B1(AoBo+ AB)+ AZR;+ BZRy);

Si = A1B; (AoBi+ AiBo)+ RoRi; Sp = AIBZ + AgA1R; + BoB1Ry;

To = AiB;y (A¢B + BoA); T = A;B;1 (A1B + B1A); T, = BiBRo+ AjARy;
T = T3+T2 +T32 3ToTTy;

Uy = T¢ TiTo; Ui=T2  ToTy, U= T2 ToTy,

Vo = SoUp+ SiU; + SoUp; V= SoUp + S1Up + S,Us

Write T = to + ity, whereto;t; 2 Fy. Then the product (Co : C; : C) of the two
elements is given by

Co= Vo(to it1); Ci= Vi(to it1); C=t3+ zt2

These formulas are homogenized versions of the formulasegivn Lemma3.18where
the denominators are kept in an additional variable. Corraness of the formulas in
this lemma can be checked with the help of AppendiA.1. The only di erence is
that in the end, we compute theFy-norm of the denominator to keep it as small as
possible. We thus have to multiply the numerators with the deominator's conjugate
in Fpe.

For ;n implementation of a pairing algorithm in compresseddfm without inversions,
one can use 3.9 to compute the evaluated compressed line functions, and &h
use the above formulas for squaring and multiplication in Mer's algorithm. The
remaining part of the exponent for the nal exponentiation 8 (p* p?+ 1)=n. The
nal pairing value can be computed by use of the Frobenius aatmorphism and a
square-and-multiply algorithm with the above squaring andnultiplication formulas
(see Deveqili, Scott, and DahabjSD07). A three-operand pseudo code for these
formulas is given in AppendixA.

3.4 Implementation

In order to evaluate the performance of the compressed paigi computation, we
implemented several pairing algorithms in C. For all theseniplementations we
used the BN curveE :y? = x3+24 over F, with parameters described in Table3.1

This curve has also been used for the performance evaluatiohpairing algorithms
by Devegili, Scott, and Dahab in PSD07. To ease comparison with(pOSD0q§ and

[DSD07, we implemented pairing algorithms withF,.. constructed as a quadratic
extension on top of a cubic extension which is again built orop of a quadratic
extension, as described inCJSDO07 and by Devegili, Scott, O hEigeartaigh, and

1The code of the implementation can be found athttp://www.cryptojedi.org/crypto/
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p 824340166543006797212173535031900388365717818113852921167322412819029493183
n 824340166543006797212173535031900388362846685642986430114510052556401373769
bitsize | 256
t 287113247089542491052812360262628119415
k 12

c (t 1)¥ modn

Table 3.1: Parameters of the curve used in our implementatio

Dahab in [DOSDO0]. For ate, generalized Eta, and Tate pairings we thus achiev
similar timings as PSD07. We did not use windowing methods since the group
order of the chosen curve is sparse. The nal exponentiatidor the non-compressed
pairings uses the decomposition of the exponent'® 1)=n into the factors (p® 1),
(p*+1), and (p* p*+1)=n.

In the Miller loop we entirely avoided eld inversions by cormputing the elliptic curve
operations in Jacobian coordinates (se€>[05a, Section 13.2.1.c]) and by using
the compressed representation and storing denominatorspaeately as described
in Example 3.25 For multiplication and squaring of torus elements, we usethe
algorithms stated in AppendixA.2. Timing results are given in Table3.2

| | Core 2 Quad Q6600 |

Tate 32835888
Compressed Tate 53160480
Generalized Eta 26795205
Compressed generalized Eta 42471414
ate 22861386
Optimal ate 16231797

Table 3.2: Performance measurements for di erent pairingaviants on an Intel Core
2 Quad CPU Q6600 running at 2394 MHz using only one core. Numbegive the
median of 1000 measurements for a complete pairing computat including Miller
loop and nal exponentiation in CPU cycles.



Chapter 4

Pairings on Edwards curves

In this chapter, we consider pairings on a twisted Edwards cwe
Eag:Z?%(@X?+ Y?) = Z%+ dX?2Y?

over a nite eld Fq, where a;d are nonzero and distinct elements of,. If a =
1, i.e. if we have a plain Edwards curve, we denotE;.q simply by E4. As in
Subsection1.1.7 of Chapter 1, we denote byO = (0 : 1 : 1) the neutral element
in Eaq(Fg) and by O%= (0 : 1 : EJ) its re ection across thex-axis, which is a
point of order 2. T;pe point T = (1= a:0:1) has order 4. Then [2] = O°and
T =[3]T =( 1= a:0:1). Let the two singular points at in nity be denoted by
1=(:0:0)and ,=(0:1:0). Let fe,, = Z*(aX?+Y?) Z* dX2YZ?be
the polynomial de ning the curve E .
For pairing computation on Weierstra curves, we need lineunctions that are eval-
uated in Miller's algorithm (see Subsectiorl.2.3. In the case of twisted Edwards
curves, the analogue procedure leads to functions arisingprh lines and conics.
This chapter contains results from joint work with Aene, Lange, and Ritzenthaler.
Section 4.1 states properties of lines and conics passing through panbn twisted
Edwards curves. In Sectiort.2, we give a geometric interpretation of the group law
on twisted Edwards curves. We show how pairings can be compdtusing functions
coming from the lines and conics described in Sectignl Explicit formulas for the
doubling and addition steps in Miller's algorithm are deried in Section4.3. The
formulas are signi cantly faster than any reported so far foEdwards curves. Let the
curve be de ned overF,, and letk be its embedding degree. Then an addition step
needs M +(k+14)m +1m,, a doubling step costs M1 +1S+(k+6)m +5s+2m,,
where one multiplication inF. is denoted by M and one squaring in the same eld
by 1S. Multiplication and squaring in the smaller eld F, are denoted by In and
1s, respectively. Furthermore, we userh, for a multiplication with the constant
a. The above costs are for both points in projective Edwards oadinates. Using
mixed addition, i.e. the second point in a ne coordinates, a addition step costs
only IM + (k +12)m + 1m,.

85



86 4.1. Lines and conics

4.1 Lines and conics

Let F be an arbitrary eld of characteristic di erent from 2 and F an algebraic
closure ofF. The pointsO; 0% T; 1; 2 are all points in the projective planeP?(F).
We begin with projective lines inP?(F). A general line is of the form

L:cxX+cyY+cZ=0,; (4.1)

where Cx : ¢y : ¢z) 2 P?(F) (see Examplel.7). A line is uniquely determined by
two di erent points. We rst consider lines that pass through one of the points at
in nity and an a ne point P. Note that the line through ; and , is the line at
innity L, :Z=0.

Lemma 4.1. Let P = (X : Yo : Zo) 2 P?(F) be an ane point, i.e. Z, 6 0, and
let L1.p be the projective line passing througR and ;. Then Lyp is a horizontal
line of the form

Ll;p 1 ZoY YoZ = 0:

Let L,.p be the line throughP and ,. Then L,p is a vertical line
Lz;p 1 ZoX XoZ =0:

Proof. We use the general equation of a line4(1). From ; 2 L;p, we see that

cx =0, and from P 2 L,p, it follows that c;Zo = ¢y Ys. Assumecy = 0, then
¢z = 0, which yields a contradiction. Therefore, we may writel;.p in the desired
form. The equation forL,p follows analogously. O

In the following, we describe a special conic which passesdhgh both points at
innity, ;and ,, the point O% and two arbitrary a ne points P; and P, on E .
A general conic can be written as

C:cxe X%+ 0y2Y2+ 2Z2%+ Cxy XY + ez XZ + oy2YZ =0; (4.2)

where Cx2 @ Cy2 @ Cz2 : Cxy : Cxz : Cyz) 2 P3(F) (see Examplel.?). Let f¢ =
Cx2X 2+ Cy2Y2+ Cz2Z2+ Cxy XY + Cxz XZ + CyzY Z be the polynomial ofC. First
we only assume that the points at in nity and O%are onC.

Lemma 4.2. If a conic C passes through the points,; 5, and O° then it has an
equation of the form

C:C2(Z%+ YZ)+ cxy XY + Cxz XZ =0; (4.3)
where(Cz2 : Cxy : Cxz ) 2 P?(F).

Proof. We evaluatef. at the three points ;; ,, and O% The fact that ; lies
on the conic impliescx= = 0. Similarly, cy2 = 0 since , lies onC. Further, the
condition O°2 C shows thatcy; = cy2. O
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We have a closer look at conic€ as described in the above lemma. The following
lemma shows that if there is an a ne singular point onC, the conic is the product
of a vertical and a horizontal line.

Lemma 4.3. Let C be a conic passing through;; »,, and O° i.e. C is given by
(4.3. Let P = (X1 :Y:1:Z;) be a singular point onC. Then C splits as the product
of two lines that intersect inP, and one of the following cases occurs:

(@) The conic is given byC : X(Z,Y Y;Z)=0 and X, =0, i.e. P lies on the
line X =0. In particular, we havecz2 =0, cxy = Z3, andcxz = Y.

(b) The conic is given byC : (Z;X XZ)(Y+Z)=0andY;= Z,,i.e.P lies
onthelineY +Z = 0. In particular, we havecy. = X;andcxy = Z; = Cxz.

(c) The conic is given byC : (Y1X X (Y+Z))Z=0andZ;=0,i.e. P lieson
the line Z = 0 at in nity. In particular, we have c;2 = X4, cxy =0, and
Cxz = Yq.

Proof. An irreducible conic is always nonsingular (seé-I69, Theorem 2, p. 117]).
Thus we know thatf ¢ splits into two linear factors as

fc = (a1X + b_|_Y + C]_Z)(azx + sz + sz):

From Bezout's Theorem (Theorem1.21), we know that two lines have exactly one
intersection point or are identical. Because there is no knpassing through ; »,
and O° there must be exactly one intersection point of the lineg, X + b)Y + ¢,Z =0
and a;X + kY + ¢,Z =0, which then must be equal toP since all other points are
nonsingular.

We expand the product and obtairf c = a;a,X 2+ b Y 2+ 6,6, Z 2+ ( agbp+ aoby ) XY +
(a1 + @) XZ + (b, + b)Y Z. Then (4.3) implies that a; or a, is equal to 0.
Without loss of generality, we assume, = 0. Then fc becomedylpY? + ¢.6,Z22 +
a1b2XY + a;XZ + ( b_|_C2 + b2C1)Y Z.

Since the Y?2-term must vanish, eitherb, or b, is 0. If by = 0, we havef¢c =
CGZ% + aibpbXY + a16XZ + ¢pY Z and ¢,¢, = ¢iby. If ¢ = 0, then a; must be
di erent from 0 and we arrive at case (a). Forc, 6 O, it follows ¢, = b, 6 0 and
case (b) is valid.

Finally, if b, =0, then ¢, 6 0, and the conic isSC : ¢,Z2 + a;XZ + by Y Z. It follows
that by = ¢;, which yields case (c). O

We are now able to describe the conic that passes through; », and O%as well
as through two a ne points P; and P,. If the latter points are equal, we consider
intersection multiplicities of C with E,4, which usually means thatC and E,.4 have
the same tangent atP; = P,.

Proposition 4.4. Let E,q be a twisted Edwards curve ovet, and let P, = (X1 :
Y::Zy) and P, = (X5, : Y, 1 Z,) be two ane, not necessarily distinct points on
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E.q4. Let C be the conic passing through;, ., O°% Py, and P,, i.e. C is given by
an equation of the form(4.3). If some of the above points are equal, we count them
as one point with multiplicity and considerC and E ,.4 to intersect with at least that
multiplicity at the corresponding point. Then the coe cients in (4.3 are given as
follows:

(@) If P, 6 P,, P, 6 O°% and P, 6 O°,

Cz2 = X1X2(Y122 Yzzl);
Cxy = Z1Z5(X1Zy XoZi+ X1Y2 XoYy),
Cxz = XoYoZ2 XaYaZ2+ Y1Yo(X2Z1  X1Zy):

(b) If PL6& P, = 0O°

Czz = Xyq; Cxy = Z1; Cxz = Z1:
(©) If PL= Py,
Cz2 = X]_Zl(Yl Zl),
ocxy = Z3 dX2yy
cxz = Zi(aX? YiZy):

Proof. We start by proving the caseP;, 6 P, and Py; P, 62 fO, O%, which, together
with the assumption of P1; P, being a ne, means that X; X,;Z;, and Z, are all
di erent from 0. Since Py; P, 2 C, we obtain the two equations

Cz2Z1(Z1+ Y1)+ Cxy X1Y1 + Cxz X1Z7 = 0,
Cz2Z(Z2+ Yo) + Cxy XaYo + Cxz X2Z, = O:

We may solve both forcxz = cxy Yi=Z Cz2(Zi=X; + Y;=X)), i 2 f 1;2g, equate
them, and multiply with denominators to get

Cz2Z1Z5(ZoX1  Z1 X+ YoX1  YiX2) = cxy X1X2(Y1Zy  YaZy):

Thus we may choose&;> = X1 X,(Y1Zo YoZi) and cxy = Z1Z5(ZX1  Z1 X, +

YoX1  YiX3), then computecky = X,Y2Z2  X1Y1Z2+ Y1Yo(X2Z1  X1Z»), and

we obtain the formulas in (a). We still need to prove that the ame formulas hold
if P, = O or P, = O. Without loss of generality, we assum®, = O =(0:1:1).

Evaluating fc at O shows thatc,. = 0. Since X; 6 0, the fact that P; 2 C then

yields cxy Y1 + ¢z Z; = 0. Thus we may choosecxy = Z; andcxkz = Y;. The

formulas in (a) for P, = O givec;2 =0, cxy =2X1Z;, andcxz = 2X1Y;. Again

X1 6 0 implies that this describes the same conic and we see thdte formulas are
the same in that case. It can be checked by explicit calculatis that the coe cients

can not all be equal to O at the same time. Assuming so impliek&t P; = P,, which

we excluded in (a). This completes the proof of part (a).



4. Pairings on Edwards curves 89

We rst prove (c) for P, = P, 62 fO,0%, i. e. we have thatX; 6 0. By assumption,
Z; 6 0. The conic C needs to intersect the curveE,.q with multiplicity 2 at P;.
SinceP; is an a ne point, we may consider the dehomogenizations

(fc) =fc(X;y;1) = Cxy Xy + Cxz X + Cz2(y +1)

of fc and
(fene) = fe (GY; D)= @C+y? 1 dxPy?

of fg,, as well as the ane notation for P; = (X1;y1), where x; = X;=Z; and
y1 = Y1=Z;. SinceP; does not lie on any of the lines in Lemma4.3, it is a nonsingular
point on C. Note that case (b) in Lemma4.3does not occur becausé, = Z; only
holds for P, = O° which we excluded. Thus the intersection multiplicity is arger
than 1 if C and E,.q have equal tangents inP; (see Lemmal.20(c)). The tangent
lines to C and E,q in P, are

Tep, D (Cxy Y1+ Cxz )(X  Xa) +(Cxy Xe + Cz2)(y Y1) = O;
Teor 0 2a(a dyd)(x x)+2y;(1 dxi)(y yi) = 0

(see De nition 1.16. They are equal if Cxy X1 + Cz2)2x1(a  dy?) = (cxy Y1 +
Cxz )2y1(1 dx2). UsingP; 2 C, we expresSxz by cxz = Cxy Y1 Crz(y1+1)=X;.
Note that x; 6 0. We combine the last two equations, multiply byx,, reorder, apply
the Edwards curve equation, and arrive at

A+ y)@A dxdyi)ce = xa(1 yHoxy:

SinceP; 6 O°% we havey; 6 1 and we can simplify to (1 dx3y;)cz2 = Xx3(1
Y1)Cxy . From this, we see that we can choose> = Xx3(1 y;)andcxy =1 dx{yl.
We computeckz; = ax? y; with help of the curve equation. We homogenize the
formulas by settingx; = X;=Z; and y; = Y;=Z;, multiply by Z3, and obtain the
formulas claimed in part (c). As for (a), we now prove that thesame formulas hold
if P, = O. To achieve the intersection multiplicity at least 2 atO, we may use the
singular conicC being the product of the lineY = Z tangent to E,q in O and the
line X = 0 passing through the pointO°% Thus fc = X(Z Y)= XZ XY,
socz, =0, cxy = 1,andckz = 1. The same values arise when evaluating the
formulas under (c) atP; = O. Furthermore, the same formulas hold iP; = O%since
intersection multiplicity 3 at O%is achieved by settingfc = X (Y + Z) = XY + XZ.
Again, not all three coe cients can be 0, because this impleea = d. This is a
contradiction and therefore, we have proved (c).

Next we deal with the caseP; 6 P, = O°% The conic C and the curve E,4 must
intersect in O° with multiplicity 2. We may use a singular conic that is the poduct
of the line Y + Z = 0, which is tangent to E4 in O° and the vertical linezZ;X X;Z
through P;. Thus fc = (Z:X X Z) (Y +2Z)= X Z(Z+ YY)+ Z XY + Z;XZ
shows thatc;. = X, cxy = Z;1 = ¢xz . Therefore, (b) is correct and the proof is
complete. O



90 4.2. Geometric interpretation of the group law

Example 4.5. As an example, we consider the Edwards curée 5o : Z?(X?+Y?) =
Z* 30X?2YZ2over the eld of real numbersR. Of course, all pictures in our examples
show the a ne part of the curves. In Figure 4.1(a), the conic C is shown in the
caseP;; P, 8 O° The point P, hasx-coordinatex; = 0:6 and P, hasx-coordinate
X, = 0:1. Figure 4.1(b) shows the conicC for the caseP; 6 P, = O% The point P,
is the same as int.1(a).

The caseP; = P, is shown in Figure4.2(a) for P, 6 O°and in Figure 4.2(b) for
P, = OY In the latter case,O%is a triple intersection point of C and E 3.

Example 4.6. In Example 4.5 the parameterd assumes a negative value. For
positive values ofd, the curve has a di erent shape. We considet = 2, i. e. the curve
E,:Z2(X2%2+ Y?) = Z*+2X?Y? We show the respective cases in Figurds3 and
4.4. In Figures 4.3(a), 4.3(b), and 4.4(a), the point P, hasx-coordinatex; = 1:1.
In Figure 4.3(a), the point P, has x-coordinatex, = 1:2.

Example 4.7. This example covers the case€d < 1. Figure 4.5 shows the conic
C onEw, : Z%(X?+ Y?) = Z*+ 1X2Y2 through P; with x-coordinatex; = 1.5
and P, with x-coordinatex, = 0:7 in Figure 4.5(a). Figure 4.5(b) shows the conic
that has a common tangent withE ., in P; with x-coordinatex,; = 2:2.

Remark 4.8. Note that a complete group law can be given for addition on a tiasted
Edwards curveE,q if ais a square andl is not (see Subsectiori.1.7in Chapter 1).
In this case, the same addition formulas apply to any pair ohput points, but still
computation of the conicC requires case distinctions.

This can be explained as follows: First, we choose the poi@®to always lie on the
conic. It is thus clear that if one of the pointsP, or P, is chosen to beD® we need
to take that into account by means of the intersection multigicity.

Second, we have the distinction between the cades6 P, and P; = P,. In the rst
case, the conic is given by 5 di erent points (not lying on thesame line) which may
be considered as 5 points in general position in the projeati plane, and nding
C is independent of the curveE,.4. Thus the conic coe cients only depend on the
coe cients of P, and P,. For P, = P,, there are less than 5 di erent points and
additional conditions due to intersection multiplicities e. g. the conic is tangent to
the curve. Therefore, the curve coe cientsa and d appear in the formulas.

4.2 Geometric interpretation of the group law

It has been noted in Aene's master's thesisAe08] that the conic C described in
Proposition 4.4 gives a nice geometric interpretation of the group law on andvards

curve, similar to the chord-and-tangent method of ellipticcurves in Weierstra form.

We therefore give the corresponding functions for the coramd the lines from Lemma
4.1in the respective cases that occur in point addition.



4. Pairings on Edwards curves

@)
P1
/
|

E 30
C
o° 100
(@) P16 Py, P1;P2 6 oo (b) PL 6 P, = o°

Figure 4.1: The conicC for P, 6 P, oNE 3 : x>+ y2=1 30x%y? overR.
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Figure 4.2: The conicC for Py = P, onE 3: x>+ y2=1 30x%y? overR.
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Figure 4.3: The conicC for P, 8 P, on E, : x> + y? = 1 + 2 x?y? over R.
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Figure 4.4: The conicC for P = P, on E, : X2 + y? = 1 + 2 x?y? over R.
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(@) P16 P2, P1;P, 6 O° (b) P, = P, 8 O°

Figure 4.5: The conicC on Ei, : X2+ y? =1+ 3x?y? overR.

Let P, and P, be two a ne F-rational points on a twisted Edwards curveE,.q4, and
let P3:=(X3:Y3:Z3)= Py + P, be their sum. Let

|1;p3 = Z3Y Y3Z,; |2;o =X

be the polynomials of the horizontal line. 1.p, and the vertical lineL .o, respectively
(see Lemmad.l). Let

fe= C2(Z%2+ YZ)+ cxy XY + Cxz XZ

be the polynomial of the conicC from Proposition 4.4. De ne homogeneous func-

tions
| _ Il;p3 _ ZgY Ygz . | |2;o X
1 - Z - Z ] 2 — Z - Z )

and
_ fC _ C22(22+ YZ)+ Cxy XY + cxz XZ .
c — ? - ZZ .
The following lemma shows that the twisted Edwards group lamdeed has a geomet-
ric interpretation involving the above functions. It givesus an important ingredient

to compute Miller functions (see Lemmal.96).

Lemma 4.9. LetF be a eld withchar(F) 6 2. Leta;d2 FnfOg, a6 d, and letE g4
be a twisted Edwards curve ovdt. Let Pq; P, 2 E;4(F), and de ne P3 := Py + Ps.
Then we have

div. — =(P)+(Py) (Ps) (O):

1112
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Proof. First, consider the function ¢ on E,4. By Bezout's Theorem (see Theo-
rem 1.21), the intersection of C and E,.q should have eight points counting multi-
plicities. We note that the two points atin nity ; and , are singular points of mul-
tiplicity 2 (Lemma 1.66). The polynomial f ¢ has zeros atP;, P,, and O%and zeros
at ,and ,, which are counted with multiplicity 2. In total, this sums up to seven
points, which means that there is an eighth poin@Q in the intersection. The positive
part of the divisor div( ¢) of ¢ isthus (P1)+(P2)+(0O%+(Q)+2( 1)+2( »).

The Z2-term in the denominator leads to ¢ having double poles at ; and , and

the negative part of div( ¢) being 4( 1) 4( ). Thus the divisor of ¢ is

div( ¢) =(P1)+(P2)+(0)+(Q) 2( 1) 2( 2

Let Ig = “Z;—Q be the function given by the horizontal lineL ;. through Q, and let |,
be the function of the vertical line throughO. Then

div(le) = (Q+( Q) 2( 2);
div(l) = (0)+(0% 2( )

By combining the above divisors we get

div ﬁ =(P)+(P2) ( Q (O):
ol2

We now see that we have an equivalence of divisors

(P) (O)N+((P2) (0) ( Q (O);

showing that Q is indeed equal to the suniP, + P, = P3 (see Theoreml.91). Thus
the line lg is equal tol;, and the lemma follows. O

Remark 4.10. From the proof of the previous lemma, we see th&t; + P, is obtained
as the re ection across they-axis of the eighth intersection point ofE,4 and the
conic C passing through 1; ,;0%P,, and P,.

Example 4.11. We return to the curve and points from Example4.5. We denote
by P; = P;+ P, or P; = [2]P; the sum ofP; and P, or the double ofP,, respectively.
Figures4.6 and 4.7 show the speci c cases as in Exampk5.

Example 4.12. This example shows the geometric interpretation of the Edweds
group law with the curve and points from Example4.6 in Figures4.8and 4.9, The
sum of P; and P, and the double ofP; are again denoted byPs.

Example 4.13. This example shows the group law on the curvé.-, with the points
from Example 4.7. Addition of two di erent points is depicted in Figure 4.10(a),
and doubling of a point is visualized in Figuret.10(b).
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(@) P16 Py, P1;P,6 O% P3= P+ P,
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(b) PL 6 P, = OO, P;=P+ Py

Figure 4.6: Geometric interpretation of the Edwards groupaw for P, 6 P, on

E 3:x2+y?=1 30x%? overR.

(a) P]_: P26 OO, P3:2P1

OO

(b) P]_: P2 = OO, Pg :2002 O

Figure 4.7: Geometric interpretation of the Edwards groupaw for P, = P, on

E 3:x2+y?>=1 30x%? overR.
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P3 I:)3 I— 1;P3
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/ E E
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I L1ps
[
|
(@) P16 Py, P1;P,6 O% P3= P+ P, (b) P16 P, = 0% P3= Py + P,

Figure 4.8: Geometric interpretation of the Edwards groupaw for P; 6 P, on
E,:x%2+ y?=1+2x%y? overR.
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(@) PL=P,6 O% P3=2P; (b) P1=P,= 0% P;=20%= O

Figure 4.9: Geometric interpretation of the Edwards groupaw for P; = P, on
E,:x?+ y?=1+2x%? overR.
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(a) P]_ 6 Pz, Pl;Pz 6 OO, P3 = P1+ P2 (b) P]_ = P2 6 OO, P3 :2P1

Figure 4.10: Geometric interpretation of the group law offEs-, : X2+ y? = 1+ Zx?y?
over R.

We now turn to Miller's formula (see Lemmal.96. Recall that for i 2 Z and
P 2 E,q, a Miller function is a function fip 2 F(Eaq) with divisor

div(fie)=i(P) ([i1P) (@ 1)(O):

We have the following equality of divisors relating the Mikr function f,;p with
fip andfjp fori;j 2 Z:

div(firje) =div(fipfie) +((1IP)+([jIP) ({i+]jlP) (O) (4.4)

(see Lemmal.95 and Lemmal1.96. The previous equality leads to an analog of
Miller's formula for twisted Edwards curves.

Lemma 4.14. Let F be a eld with char(F) 6 2. Let a;d2 Fnf0Og, a 6 d, and
let E,.q be a twisted Edwards curve ovef. Let P 2 E,4. Let ¢ andly; 1, be the
functions corresponding to the conicC and the linesL; and L, occurring in the
addition [i]JP +[j]P =[i + j]P for i;j 2 Z. Then the following formula holds:

firip = fipfip ii (4.5)

Proof. The lemma follows easily from4.4) and Lemma4.9 by setting P, = [i]P and
P=[j]P. O

This formula may now be used in Miller's algorithm (as in Seain 1.2.3 to compute
pairings on twisted Edwards curves.



98 4.3. Explicit formulas for Miller functions

4.3 Explicit formulas for Miller functions

In this section we show how to use the geometric interpretatn of the group law
derived in Section4.2 to compute pairings. LetE,q be a twisted Edwards curve
de ned over a prime eld F,. Let k be the embedding degree df,4 with respect

to a large prime divisor of #E.q4(F,). We assume thatk is even. For pairings
based on the Tate pairing, we assume that the second input piQ is chosen as
the image of a point on a quadratic twist as described in Seon 1.2.3 Note that

on twisted Edwards curves kg, twists a ect the x-coordinate. LetF, have basis
f1; goverFy: with 2= 2 Fu-2 and let Q° = (Xo;Yo) 2 Ea.a (Fy<2) be an

Fo<2-rational point on the curve twisted with . We can useQ = (Xo ;Y o) as the

image ofQ°under the twisting isomorphism. This ensures that the secdnargument

of the pairing is on E,4(Fy) and is not de ned over a smaller eld.

According to Lemma4.14we de ne grp = s with the functions occurring in the
addition of R and P. So the update in the Miller loop computesi.p , evaluates it at
Q =(Xo ;Y o), and updatesf asf f orp(Q) (addition) or as f f2 grr(Q)
(doubling). Given the shape of ¢ and the point Q = ( Xo ;Y o), We see that we need
to compute

Cz2(1+ Yo)+ Cxy XoY o+ Cxz Xo _ CZZ% + Cxy Yo+ Cxz
(Z3Yo  Y3)Xo ZsYo Y ’

where (X3 : Y3 : Z3) are the coordinates of the poinR + P or R + R.

Put = % Note that 2 Fp-2 and that it is xed for the whole computation,
so it can be precomputed. The denominatoZgy, Vs is de ned over F-2; since
it enters the function multiplicatively, the nal exponentiation removes all contri-
butions from it. We can thus avoid its computation completg}l, and only have to
evaluate

_C

(Xo;Y o) =

1l

Czz *+ Cxy Yot Cxz:

The coe cients cz2;cxy , and cxz are de ned overF,. Given these coe cients, the
evaluation at Q can be computed inkm (the multiplications by andy, each need
£m).
In the next sections, we give explicit formulas to e ciently compute c;2; cxy , and
cxz for addition and doubling. For applications in cryptograply we restrict our
considerations to points in a group of prime order. ldeallyfhe number of points
on the curve factors as #E.q(Fy) = 4n for a prime n, and the base pointP has
order n. This implies in particular that none of the additions or dowlings involves
1, 2, or O% The neutral elementO is a multiple of P, namely nP, but none of
the operations in the Miller loop will have it as its input. This means that without
loss of generality we can assume that none of the coordinatdsthe input points is
0. In fact, for this assumption we only need thaP has odd order, so that the points
of order 2 or 4 are not multiples of it.
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4.3.1 Addition

Hisil et al. present new addition formulas for twisted Edwadls curves in HWCDOS].
To save In they extend the representation by a further coordinatd; = X,Y;=2Z;
for points P = (X1 :Y;:Z;) with Z; 8 0. In the following section, we show how to
compute this value as part of the doubling step. As suggestaad [HWCDO03], it is
only computed for the last doubling in a sequence of doublisgnd is not computed
after an addition. Note that no addition is ever followed by aother addition in the
scalar multiplication. Furthermore, we assume that the baspoint P has odd order,
SO in particular, Z1;Z, 6 0. The sum P3 = (X3 : Y3 : Z3) of two di erent points
Pir=(X1:Y1:Zy:Ty)and P, = (X5 : Yy : Z, 1 Ty) in extended representation is
given by

Xz = (X1Yo Y1 Xo)(T1Zo + Z41T));
Y3 = ( aX 1X2 + Y1Y2)(T122 Zsz);
Zg = ( aX 1X2 + Y1Y2)(X 1Y2 Y]_X 2):

Proposition 4.4 (a) in Section 4.1 states the coe cients of the conic section for
addition. We useTy; T, to shorten the formulas.

Cz = XiXo(YiZy YoZi) = Z1Z5(T1Xo X4 To);
Cxy = Zi1Zx(X1Zy Z1Xz+ Xi1Y2 Y1Xy);
Cxz = XoYoZZ X YiZ2+ Y1Yo(X2Zy  X1Z))

= Z1Z5(Z1T> TiZo+ Y1To  TiYo):

Note that all coe cients are divisible by Z,Z, 6 0, and so we scale the coe cients.
The explicit formulas for computingP; = P; + P, and (cz2; cxy ; Cxz ) are given as
follows:

A = Xy X0 B=Y1 Y, C=27, T, D=T1 Z5; E=D+ C;
F = (X1 YY) (Xo+Y)+B A;G=B+aA;H=D C;1 =T, Ty
Czz = (T X1) (Ta+ X2) 1T +Ajcxy =Xy Zy Xz Z1+F;
ckz = (Y1 T (Yo+T,) B+1 H; Xz3=E F; Y3=G H; Z3=F G:

With these formulas,P3; and (cz2; cxy ; Cxz ) can be computed in 181 +1m,. If Tsis
desired as part of the output, it can be computed inth asT; = E H. The point P,
is not changed during pairing computation, and can be givemia ne coordinates,
i.e. Z, = 1. Applying mixed addition, the above costs reduce to Ih + 1m,. Note
that there is no extra speed up from choosing = 1 as in HWCDO8] since all
subexpressions are used also in the computation of the co@ots ¢;2; Cxy ;Cxz . A
mixed addition step in Miller's algorithm for the Tate pairing thus costs M + (k +
11)m +1m,.
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4.3.2 Doubling

Proposition 4.4 (c) in Section 4.1 states the coe cients of the conic section in the
case of doubling. To speed up the computation, we multiply eha coe cient by
2Y1=Z, (remember that f¢ is unique up to scaling). Note also thatY;;Z; 6 O
because all points have odd order. The multiplication by;=Z, reduces the overall
degree of the equations since we can use the curve equatiorsitaplify the formula
for cxy ; the factor 2 is useful in obtaining ars  m trade-o in the explicit formulas
below. We obtain:
G2 = X1(2Y7  2YiZy);
Cxy = 2(Y1Z3 dX2Y2)=Z,=2(Y1Z]} Z¥aXi+ YA+ 2=z,
= Z1(2(Z22 aX? YH)+2Y1Zy);
Cxz = Yl(ZaX f 2Y.Z 1) .
Of course, we also need to compute; = [2]P;. We use the explicit formulas from
[BBJ™ 0] for the doubling, and reuse subexpressions in computingettcoe cients
of the conic.
A = X% B=Y2 C=2Z%D=(X1+ Y% E=(Y1+ Z)%
D (A+B), G=E (B+C),H=aA; |l =H+B,;
J = C I; K=J+C; cxz = Y1 (2H G);CXY:Z]_ (2J+G),
F (Y1 Zy); Xz3=F K;Yz=1 (B H), Zz=1 K:
These formulas computdP; = ( X3 : Y3 :Z3) and (Czz2; Cxy ;Cxz ) iIn 6mM +5s+ 1m,.
If the doubling is followed by an addition, the additional cordinate Tz = X3Y3=Z3
needs to be computed. This is done by additionally computingz = F (B H)in
Im.
If the input is given in extended form asP; = (X1 : Yy : Z; : T;), we can useT; in
the computation of the conic as
G2 = X1(2Y7 2Y1Z1) =2Z1Yi(Ty  Xy);
Cxy Z:(2(22 axX? YA +2YiZy);
Cxz = Y1(2aX12 2Y121) =2 Zl(aX 1T le);
and then scale the coe cients by ¥Z;. The computation of P3 = (X3 : Y3 :Z3: T3)
and (Czz2; Cxy ;Cxz ) is then done in Bn +5s+2m, as
A X2 B=Y%5 C=2%D=(X1+ Y)% E =(Y1+ Z1)%
F D (A+B);,G=E (B+C);H=aA;l=H+B;J=C I;
K = J+C; Cz2 = 2Y1 (Tl Xl), Cxy =2+ G; cxz = 2(aX1 T, B),
X3 = F K;Ys=1 (B H), Zz=1 K; Tz=F (B H):

L
I

CZ 2

For computing the Tate pairing this means that a doubling stp costs M +1S+( k+
6)m +5s+1m, in twisted Edwards coordinates and 1 +1S+(k+6)m+5s+2m,
in extended coordinates.



4. Pairings on Edwards curves 101

4.3.3 Miller loop

Miller's algorithm loops over the bits in the representatio of n. We follow Hisil et
al. [HWCDO08] and denote the system of projective Edwards coordinateX{ : Y; :
Z,) by E and the extended systemX : Yy :Z;:T;) by E®.

If the whole computation is carried out inE® each addition step in the Tate pairing
needs M +(k+14)m +1m, if both points are projective and M +(k+12)m+1m,
if the addition is mixed. A doubling step costs M +1S+(k+6)m +5s+2m,.
We can save fin, per doubling by using the following idea which is already méioned
by Cohen et. al. EMO98]. If we are faced withs consecutive doublings between
additions, we execute the rsts 1 doublings as E ! E , do the last doubling as
2E ! E ¢ and then perform the addition asE®*+ E* ! E . We account for the extram
needed in E ! E © when stating the cost for addition. This way each addition sp
needs M +(k+14)m +1m, if both points are projective and M +(k+12)m+1m,
if the addition is mixed. A doubling costs M +1S+(k+6)m +5s+1mj,.

4.3.4 Comparison

We compare our results with formulas in the literature, in pdicular, with the
pairing formulas for Edwards curves due to lonica and JouxJO8] and the formulas
for Weierstra curves by Chatterjee, Sarkar, and Barua@SB01.

In [HMS09, Hankerson, Menezes, and Scott study pairing computatioon BN
curves BNO6]. All BN curves have the formy? = x® + b and are thus more special
than curves witha, = 3. In their presentation they combine the pairing computa-
tion with the extension- eld arithmetic and thus the operation for the pure pairing
computation is not stated explicitly but the formulas matchthose in [CNO5].

Das and Sarkar DS0{ were the rst to publish pairing formulas for Edwards curve.
We do not include them in our overview in Table4.1 since their study is speci c to
supersingular curves withk = 2.

lonica and Joux [JO8] proposed the thus far fastest pairing formulas for Edwards
curves. Note that they actually compute the 4th power of the @te pairing. This
has almost no negative e ect for usage in protocols. So we lnde their result as
pairings on Edwards curves.

We denote Edwards coordinates bz and Jacobian coordinates byl . The row \this
work™" in the table below reports the results of the previousestion using E ! E
for the main doublings, £ ! E € for the nal doubling, and E®+ E® ! E for the
addition. Using only E® for all operations requires fin, more per doubling.

Each mADD or ADD entry has an additional IM + km in the operation count; each
DBL entry has an additional IM + km + 1S. Since this does not depend on the
chosen representation, we do not report it in this overviewThe symbolsm,, and
my denote multiplication by the constantsa, and d, respectively.

This overview shows that our new formulas solidly beat any fomulas published for
pairing computation on Edwards curves. We point out that on Bwards curves or
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\ | DBL | MADD | ADD
J, [1J08], [CSB0OY Im +11s+1mg,, | 9m +3s |
J;as= 3, [CSB0OY m +4s 9m +3s |
J ;a4 =0, [CNO5], [CSBOY | 6m +55s 9m +3s |
E, [1J08] 8m +4s+1my 14m +4s+1my |
E, this work 6m +5s+1m, 12m +1mg, 14m +1mg,

Table 4.1: Overview of operation counts for doubling and adatbn steps

twisted Edwards curves with very smalla, the multiplication costs m, vanish.

The comparison with Jacobian coordinates depends on tine s ratio and the size
of the parameters. Since botlta, and a can be chosen to be small, multiplications
by them are negligible, i.e. we assumenil,, = 1m, = 0. The number of operations
on the Edwards curve is no more than on the Weierstrass curve-or doubling,
our formulas are as e cient as the most e cient ones (for BN cuves) and cover
more general curves. For addition, we need the same number agferations, but
the formulas have no squarings. So they are slower if squagthare cheaper than
multiplications. Overall, the new formulas are competitie for doubling, if not better,
and slightly worse for mixed addition.

Finally, the penalty for computing full additions instead d mixed additions is sig-
ni cantly worse for Jacobian coordinates where an additiorfwithout computation
of the line function) costs 12n + 4s which is more than the full computation in
Edwards coordinates. Therefore, Edwards curves are the atewinner if for some
reason the input point is not in a ne coordinates.



Chapter 5

Constructing curves of genus 2
with p-rank 1

In this chapter, we discuss the complex multiplication methd for hyperelliptic
curves of genus 2 ang-rank 1. For this purpose, we introduce general facts about
abelian varieties and complex multiplication (CM) in Secion 5.1 Section5.2 and
Section5.4 provide results of joint work with Hitt O'Connor, McGuire, and Streng
[HMNSO]. We present an algorithm for constructing hyperelliptic arves of genus
2 with p-rank 1 that are de ned over F.. The algorithm allows the construction
of curves with a prime number ofFg-rational points on its Jacobian variety of
a cryptographic relevant size. We give examples of curvesnstructed with the
proposed algorithm. In Sections.3 we discuss existing construction algorithms for
genus-2 curves with prescribed embedding degree. FinallySection5.4we propose
an algorithm to construct p-rank-1 curves of genus 2 with a prescribed embedding
degree.

5.1 Abelian varieties with complex multiplication
Let F be a perfect eld, and letF be an algebraic closure of.

De nition 5.1. An abelian variety over F is an absolutely irreducible projective
algebraic group de ned overr.

The reader is referred to fLO54] for a brief introduction to abelian varieties in
view of their application in cryptography. Mumford [Mum74] and Lang [.an83
give an elaborate introduction, and Shimura $hi97 treats the theory of complex
multiplication on abelian varieties. In Chapter1, we have already seen examples of
abelian varieties, namely Jacobian varieties of hypergdtic curves. In particular, an
elliptic curve is an abelian variety.

Let A be an abelian variety overF. For any eld extensionF F F, the set of
F-rational points on A is denoted byA (F), where A = A(F).

103
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De nition 5.2.  An abelian variety A overF is calledsimple overF if for all abelian
varietiesB A de ned over F either B=0 or B = A. Itis called absolutely simple
if it is simple over F.

Let A and B be two abelian varieties over. A morphism A ! B is called a
homomorphismif it is a group homomorphism. A homomorphism is anisogenyif

it is surjective and the kernel of is nite. The abelian varieties A and B are called
isogenousif there exists an isogeny between them.

Any abelian variety A is isogenous to a product of powers of simple abelian varei
(see Mum74, Corollary 1, p. 174] and FLO5a, Section 4.3.4], i.e. there exist a
number| 2 N, simple abelian varietiesA;, 1 i |, each two of which are not
isogenous to each other, and; 2 Ny such that A is isogenous toA]* A .
The A; and the n; are uniquely determined.

An endomorphismof A is a homomorphismA ! A of A to itself. We denote the
set of all endomorphisms oA de ned over F by End=(A). The set End=(A) with
addition given by the group law onA and composition as multiplicative structure
is a ring, the endomorphism ring ofA. The subring of endomorphisms de ned over
FforF F Fisdenoted by End(A). We de ne the endomorphism algebra oh
over F by Endg(A) = Q End:(A). If A is simple overF, End-(A) has no zero
divisors and Encﬁ(A) is a division algebra FL05a, Proposition 4.70].

Let A be isogenous tA]* A " as above, and de neD; := End%(Ai). Then
End2(A) = M,,(D1) M, (D));

where M, (D;) is the matrix ring of (n;  n;)-matrices overD;. The structure of
End%(A) for a simple abelian varietyA is classied in [Mum74, Section 21]. As
already seen for elliptic curves and Jacobians of hyperplic curves, the multi-
plication-by-m map [m] de ned as usual is an endomorphism oA for anym 2 Z.
Let g :=dim( A) be the dimension ofA as a projective variety. For the de nition of
the dimension of a variety, seeHL05a, De nition 4.17], [Ful69, Chapter 6, Section
5], and Har77, Section 11.3]. Every endomorphism' of A has a characteristic
polynomial f-. o 2 Z[T], monic, of degree @ such thatf. (" ) = 0. The constant
term of f. 5 is called thenorm of ' , and the negative of the coe cient of T2 1 is
called thetrace of ' [Mum74, Theorem 4 in Section 18].

For the remainder of this section, we xF to be a nite eld Fy with g elements of
characteristicp. Let A be an abelian variety de ned overF,. The set of p-torsion
points on A is the kernel of the map fp], denoted byA[p]. It is an F,-vector space.

De nition 5.3.  The dimensionr,(A) := dim ,(A[p]) of A[p] as anFp-vector space
is called thep-rank of A.

It holds
0 ry(A) g
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(see Mum74, Proposition on p. 64]). Ifr,(A) = g, then A is called ordinary.
The abelian variety A is called supersingularif it is isogenous to a product of su-
persingular elliptic curves. In this caser,(A) = 0. If g 2, the converse is
also true, i.e. an abelian variety of dimension 1 or 2 is sugéngular if and only if
ro(A) =0 [FLO5a Remark 4.75]. Thep-rank of A is invariant under isogenies, and
itis ro(A B Q,: ro(A) + rp(B). Therefore, if A is isogenous toA]* A,
thenrp(A) = mirp(Ai).

The g-power Frobenius automorphism or, extends to an endomorphism 4 on A,
the Frobenius endomorphism orA. We denote the characteristic polynomial of
by fa :=f ,a. A polynomial f is called ag-Weil polynomial if f = f, for some
abelian variety A over Fy.

Theorem 5.4. Let A and B be abelian varieties oveF,, and letf, andfg be the
characteristic polynomials of their Frobenius endomorpsims. Then the following
statements are equivalent:

(a) A and B are isogenous oveF,.
(b) fa=fg.
(c) # A(F) =# B(F) for all nite extensions F  F,,.
Proof. This is Theorem 1(c) in [fat66]. O

Let A be aroot of the characteristic polynomiaf 5 of the Frobenius endomorphism.
De ne the number eld K = Q( ). In the sequel, we identify 4 with the algebraic
integer . Weil proved the Riemann hypothesis for abelian varietiesyhich states
that every root of f 5 has absolute value” g. Or in other words: the image of A
under every embedding oK into C has absolute valuep J. An algebraic integer
that satis es this property is called ag-Weil number. Two g-Weil numbers ; and

> are conjugate if there exists a eld isomorphisn@Q( 1) ! Q( ) that maps ;
to ,. Honda and Tate proved the following relation betweem-Weil numbers and
isogeny classes of abelian varieties.

Theorem 5.5. The mapA 7! , induces a bijection between isogeny classes of
simple abelian varieties oveFq and conjugacy classes @fWeil numbers.

Proof. This is the main theorem in Hon6d or Treoeme 1(i) in [ Tat71]. O

A g-Welil number thus determines a simple abelian variety thatsi unique up to
isogeny. The following theorem relates thg-Weil number , to the endomorphism
algebra ofA.

Theorem 5.6. Let A be a simple abelian variety oveF, of dimensiong. Let
fa be the characteristic polynomial of the Frobenius endomdrigm , on A. Let
K = Q( a). Then the following statements hold:
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(@) E:=End (F’q(A) is a division algebra with centeK .

(b) 29=[E:K*?[K : Q].

(c) Let e :=[E: K]¥2. Then fA(T) = ma(T)® for some irreducible polynomial
ma(T) 2 Q[T].

Proof. See Jat71, Theoeme 1 (ii) (2) and Remarques 2)]. O

Theorem 2 in [Tat66] states that E is commutative if and only if E = K if and only
if f o has no multiple roots, i. e. it is irreducible. In this case H: Q] =[K : Q] =

Remark 5.7. There is a connection between the number &f,-rational points on
A and the g-Weil number 4: The set of F4-rational points is equal to the kernel of
[1] 4 hence #A(F,) = #ker([1] ¢)- The cardinality of the kernel is equal to
deg([1] ¢) = fa(1) [Mum74, Theorem 4, p. 180]. We thus have

#A(F) = fa(l):

Let E= K = Q( a). If fA(ES) = Qizfl (T i) is the factorization of f 5 in C[X]
with ;:= A,thenf (1) = (1 i)= Nk=g(1  a), the K=Q-normof1l 4.
Therefore, in this case

#A(Fg) = Nk=o(1  4)

(see also Theoreni.77).

Hence we can compute the number &f;-rational points on A from a corresponding
g-Weil number. By xing a number eld K of degree 8, we can choose a-Weil
number 2 K such that the normNk-q(1 ) fullls a given property. In certain
cases, it is possible to construct a simple abelian variey over Fy of dimensiong
with E= K and #A(Fq) = Nk=o(1 ) by using the complex multiplication (CM)
method. This method is brie y explained in Subsectiorb.2.2 below. We conclude
this section by giving some basic de nitions.

De nition 5.8. A eld K is called aCM eld if it is a totally imaginary quadratic
extension of a totally real algebraic number eld. LetO be an order ofK. An
abelian variety A has complex multiplication (CM) by O if Endg(A) = O; it has
CM by K if it has CM by an order O of K.

Example 5.9. An elliptic curve E over a nite eld Fqis an abelian variety. IfE is
ordinary, it has CM by a quadratic imaginary number eld [Sil86, Theorem V.3.1(b)].
An elliptic curve de ned over C has complex multiplication if its endomorphism ring
is strictly larger than Z (see [il86, Remark 11.4.3] and Sectionl.3.1).

De nition 5.10. Let K be a CM eld of degree 3. Let := f';:::;" 40 be
a set of distinct embeddings oK into C such that no two of the' ; are complex
conjugate to each other. Then the pairK; ) is called a CM type. A CM type
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is called primitive if there is no proper subeldK® K such that for the set of
restrictions  ©:= f' jjko; 111" gjkog, the pair (KS 9 is a CM type. There ex eld
of (K; ) is de ned as
( )
R:=Q ) 2K

i=1

P
i.e. B is the number eld generated by all elements 2, 'i( ) for 2 K. If the

context is clear, we omit and say that i is the re ex eld of K.

Example 5.11. (a) If a CM type (K; ) is primitive and K is normal overQ, then
© = K [Shi97 Example 8.4(1)].

(b) Let K be a non-normal quartic CM eld. Then the normal closurel of K has
degree 2 oveK, and its Galois group overQ is the dihedral groupDg of order 8
[Shi97, Example 8.4(2)(C)]. In that case, the re ex eld is non-nomal of degree 4,
contained inL, and not conjugate toK .

5.2 A CM construction for genus-2 curves with
p-rank 1

The abelian varieties that we consider in this section are dabian varieties of hy-
perelliptic curves of genus 2. Note that the Jacobian varigthas dimension equal to
the genus of the curveHlar77, Remark 1V.4.10.9]. Hence when the genus is 2, we
also call the abelian variety anabelian surface We recall from Theorem1.77 and
Example 1.78that the characteristic polynomial of the Frobenius endonmmhism on
the Jacobian variety of a hyperelliptic curveC=F, of genus 2 has the form

fio = TH+ ay T3+ aT?+ auqT +

for integersas;a,. If ng ;= # C(Fy), k211,29, thenn, = gq+1+ a; andn; =
?+1+2a, a2. Inthe following subsection, we discuss curves that have acbbian
with p-rank 1.

5.2.1 Genus-2 curves with  p-rank 1

In De nition 1.74 we have de ned thep-rank of a hyperelliptic curve as thep-

rank of its Jacobian variety. This coincides with De nition 5.3 and we may use
both de nitions synonymously. The following theorem summiazes the results of
Reck [Rec9( and Maisner and Nart [VINO2], and gives conditions omay;a, for a

hyperelliptic genus-2 curveC to have p-rank 1.

Theorem 5.12. Let q = p" for a prime p and a positive integern. Let f =
T4+ a T3+ aT2+qaT+? 2 Z[T],and let = a¢ 4a,+8q, = (a,+20q)? 4q&.
Thenf is the characteristic polynomial of a simple Jacobian vatigof a hyperelliptic
curve of genus2 with p-rank 1 de ned over F, if and only if
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() jauj < 4”5,

(b) 2jasj®q 29 <a,<al=4+2q,

(c) is not a square inZ,

(d) plar) =0,

(e) plaz) n=2

(f) is not a square in thep-adic integers,
where , denotes thep-adic valuation.

Proof. Assume that the conditions (a) - (f) hold. The rst three condtions are
equivalent to f being an irreducible g-Weil polynomial (see MNO2, Lemma 2.1,
Lemma 2.4] and Rec90 Lemma 3.1]). Let be a root off. By Theorem 5.5
there exists a simple abelian surfacé de ned over Fy such that corresponds
to its Frobenius endomorphism. It follows from [INO2, Theorem 2.15] thatA is
absolutely simple. Theorem 4.3 of\N02] then implies that A is isogenous to the
Jacobian of a hyperelliptic curve of genus 2 with charactettic polynomial f . By
[MNO2, Theorem 2.9], the curveC hasp-rank 1.

Conversely, letf be the characteristic polynomial of a simple Jacobian of a pgrel-
liptic curve of genus 2 withp-rank 1. Thenf has the required shape. Note that since
Jc is simple, by Theorem5.6, we havef (T) = m(T)® for some monic irreducible
polynomial m 2 Z[T]. The number e must divide the p-rank of Jc [Gon9§ Prop.
3.2]. Thus for a simple abelian variety withp-rank 1 the characteristic polynomial
of the Frobenius endomorphism is always irreducible. Thigniplies the rst three
conditions by [MINO2, Lemma 2.4]. The last three conditions follow fromNINO2,
Theorem 2.9] becausdc hasp-rank 1. 0

The previous theorem states conditions fdlr; . which are equivalent to the curveC
having p-rank 1. They connect theg-Weil number ;. and the p-rank of C.

Next we consider the endomorphism algebra to see whether tha&cobian of a curve
over Fy with p-rank 1 can have complex multiplication. For an elliptic cuve E=F,
Theorem 1.54 shows that, there are two cases for EA(E) := End 2(E), which
coincide with the two cases for the-rank of E. Either the curve is o?dinary with
p-rank 1, where End(E) is a CM eld of degree 2, or the curve is supersingular
with p-rank 0, where End(E) is a quaternion algebra.

The following lemma shows that the endomorphism algebra E%q{(\]c) for a curve
C with p-rank 1 is a quartic CM eld if Jc is simple. In contrast to the genus-1
case, not only ordinary curves can have a CM eld as their endwrphism algebra.

Lemma 5.13. Let Jc be the Jacobian of a hyperelliptic genud-<curve C de ned
over Fq. Assume thatJc is simple. If C hasp-rank 1, then Jc is absolutely simple
and End? (Jc) = End %q(Jc) is a CM eld of degree 4.
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Proof. Maisner and Nart [VINO2, Corollary 2.17] show that a simple abelian surface
of p-rank 1 is absolutely simple.

By Theorem 5.6, the characteristic polynomial of Frobenius i ;. = m§_ for some
irreducible monic polynomialm;. 2 Z[T]. We have seen in the proof of Theo-
rem 5.12that e= 1. Furthermore, Theorem 5.6 implies that End‘F’q(Jc) is a eld of
degree 4. Itis a CM eld, since ™ q are no roots off ;..

It remains to show End (Jc) = End (F’—q(JC). Let ' 2 Endg—q(Jc). There exists a

nite eld extension F  Fg, such that' 2 Endg(Jc). SinceJc is absolutely simple,
it is simple overF, and it hasp-rank 1. With the same arguments as above, it follows
from Theorem5.6 that Endg(JC) is a eld of degree 4 containing Enaq (Jc). Thus

they are equal and 2 End? (Jc). O

This lemma indicates thatJc has CM by the quartic CM eld K = End (F’q(Jc) if
Jc is simple. Note that if C hasp-rank 1 andJc is not simple, thenJc is isogenous
to the product of an ordinary elliptic curve and a supersinglar elliptic curve. We
do not consider this case in the following but restrict to cures ofp-rank 1 with a
simple Jacobian variety, which then is absolutely simple bkemma5.13

5.2.2 The CM method for genus 2

In Subsection1.3.1, we have seen how the CM method can be used to construct
elliptic curves with CM over a nite eld as the reduction of curves overC with CM
by the same eldK . In principle, this method, although in a more complicated ay,
can also be applied to construct hyperelliptic curves of gas 2. In this subsection,
we brie y discuss the CM method for genus 2. A more detailed deription can be
found in [FLO5b] and [FLO5d].

We aim at obtaining a genus-2 curve over a nite eldFg of characteristic p with
a given number ofF,-rational points on the Jacobian. This means the curve corre
sponds to ag-Weil number that lies in an order O in a given quartic CM eld K
(see Sectiorb.1). We restrict to the case that this order is the maximal orderO .
First we need to nd abelian surfaces ove€ that are suitable candidates for being
reduced.

Any abelian variety of dimensiong over C corresponds to a lattice inCY. For g 2 N,
a lattice in C9 is a Z-module of full rank, i.e. it contains anR-basis ofCY. Let A
be an abelian variety of dimensiorg over C. Then A is isomorphic toC%= for a
lattice C9 [FLO5c, Section 5.1.3]. The groupC9= is called a complex torus A
torus is attached to an abelian variety if and only if there ests a Hermitian form
H onCY and for E = Im( H ), the restriction of E to maps into Z [FLO5c,
Theorem 5.16].

We de ne the dual lattice “of a lattice by

AN

= fx2CUjE(xy)2 Zforally2 g:

An abelian variety A is calledprincipally polarized if "= .
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Remark 5.14. The Jacobian variety of a projective irreducible nonsingal curve
over C is a principally polarized abelian variety FLO5c, Proposition 5.24].

Vice versa, any principally polarized abelian surfac& over C is the Jacobian variety
of a genus-2 curve HLOS5c, Section 5.1.6.a]. The candidates we are looking for
are thus principally polarized abelian surface#& over C with endomorphism ring
isomorphic to Ok for a given quartic CM eld K.
We obtain such abelian surfaces from ideals i@ (compare the CM method for
elliptic curves in Subsectionl.3.1). Let K be a quartic CM eld, and let (K; ) =
(K; f' 1;' »0) be a CM type. Foranideala O ¢ theset (a):= f(' 1( );' 2( )]
2 agis a lattice in C2?, and the torusC2=( a) is an abelian surface which has CM
by Ok, and vice versa, every abelian surface with this property nabe obtained in
this way up to isomorphism FLO5c, Theorem 5.58 and discussion after that]. The
abelian surfaces with principal polarization are obtainedy only using special ideals
and assuming that the totally real quadratic sub eldK, of K has class number 1.
For details, see[fLO5c, Section 5.1.6.d].
The isomorphism class of an elliptic curve is given by ifsinvariant. In the genus-1
CM method, one analytically computes the Hilbert class potyomial the roots of
which are thej-invariants of all isomorphism classes of elliptic curvesver C with
CM by the maximal order in a given quadratic CM eld (see Subsdion 1.3.1).
The isomorphism class of any hyperelliptic curvé& of genus 2 is uniquely deter-
mined by three invariants (1;j2;j3) = (j1(C);j2(C);j3(C)), called the (absolute)
Igusa invariants [Igu60. From a triple of Igusa invariants, a corresponding curve
can be constructed for example with Mestre's algorithm (sg@/les9], [Spa94, and

[Wen01).

De nition 5.15.  Let s be the number of isomorphism classes of principally polar-
ized abelian surfaces ove€ with CM by Oy . Let jf') be the "th Igusa invariant of
a curve in theith isomorphism class for 1 i s. The three polynomials

A& ,
Hoo=  (x §9)2f123g

i=1
are called thelgusa class polynomial®f O .

The Igusa class polynomials have rational coe cients, i.ed- 2 Q[x] for ™ 2 f 1;2; 3g
[FLO5c, Theorem 5.64 (iii)]. The class polynomials ove€ can be computed from
the list of principally polarized abelian surfaces oveC. This method is known
as the complex analytic approach. It is rst described by Sdkek [Spa94. Van
Wamelen [W99] computes the abelian surfaces as lattices € and evaluates Igusa
invariants via Siegel modular forms. Recently, a completauntime analysis of the
complex analytic method was given by StrendsfrO8]. There are also other methods:
Eisentrager and Lauter ELO4] present an algorithm for constructing genus-2 curves
over nite elds that di ers from the classical approach. Their method computes
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the class polynomials using a Chinese Remainder Theorem med. Gaudry et. al.
[GHK™ 05, GHK ™ 06] use ap-adic or 2-adic lifting method. The computation of class
polynomials overC is a precomputation and not considered part of the algorithm
[FLO5b, Section 18.2.2]. Class polynomials for many CM elds can ldtained from
Kohel's database.

Next we need to reduce the abelian surfaces ow@rto obtain abelian surfaces over
nite elds. This reduction can be done by reducing the Igusanvariants and the
class polynomials, respectively. The Igusa invariants aagebraic numbers that lie
in a class eld over the re ex eld I of K [FLO5c, Theorem 5.64 (i)].

Suppose we are given a primg, a CM eld K, and a principally polarized abelian
variety A de ned over C which has CM by Ok . Assume that A is de ned over
a number eld L C. Let p be a prime inO_ over p, and assume thatp does
not divide the denominator of any of the coe cients of the clas polynomialsH;.
Then we can reduce theH; modulo p and obtain class polynomials oveF,. This
corresponds to reducing the Igusa invariants modulp [FLO5b, Section 18.2.5.b].
The reduced invariants are roots of the reduced class polyn@ls and thus lie in
an extensionF; F,. We denote the abelian surface corresponding to the reduced
invariants by A.

It is shown in [Shi97, Proposition 12 in 11.1] that the endomorphism ring End(A)
can be embedded into Eng(A). Therefore, if we choose &-Weil number 2 Oy,
we have 2 Endg,(A) and thus Endg (A) containsK .

The splitting behavior of pin K determines thep-rank of the reduction A=F, of A
modulo p. If A = E is an elliptic curve, a criterion of Deuring Deu4]] states that
E is supersingular ifp is either rami ed or inert in K, and E is ordinary if p splits
completely inK . If A has dimension 2, then there are more cases to consider.
For dimension 2, Goren distinguishes these cases@pf97] assumingp is unrami ed
in K. If an ordinary curve shall be constructed, therp needs to split completely
in K. Gaudry, Houtmann, Kohel, Ritzenthaler, and Weng in GHK" 05 extend
Goren's results to the rami ed case. They show that whenevé{ is cyclic, then the
reduction of A is either ordinary or supersingular, but ifK is non-normal, then it is
possible forA to have p-rank 1. If K is normal, non-cyclic, thenA is not absolutely
simple. As simplep-rank-1 varieties are absolutely simple, we restrict to thease
that K is non-normal. The part of the results of Gor97] and [GHK ™ 05] that applies
to p-rank 1 is as follows:

Lemma 5.16. Let K be a quartic CM eld, and letC be a curve of genu over a
number eld L K with endomorphism ringOk . Let p be a prime number, and let
p be a prime ofO, lying overp. The reduction C of C modulop is a genus2 curve
with p-rank 1 if and only if (p) decomposes ifDx as (p) = pipP2ps Or (P) = P1P2pP3.
In this case, J¢ is absolutely simple.

Proof. This is [GHK™ 05, Theorem 3.5 (3)]. O

Ihttp://echidna.maths.usyd.edu.au/echidna/dbs/index. html
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Thus when looking for curves ofp-rank 1, we require that () splits as p.p.ps or

P1P2P3.
Summarizing, the genus-2 CM method is as follows: Supposeigsut we are given
a quartic CM eld K, a prime p, and ag-Weil number ,i.e. = g, whereqis a

power of p. Obtain the Igusa class polynomialdi,, H,, H3 for K from a database
or in a precomputation with the above mentioned methods. A®f the genus-1 CM
method, the discriminant of K needs to be small enough such that thel; can be
computed.

Reduce the Igusa class polynomials modulp and compute all possible triples
(1i2:03) 2 Fg from the roots of H; modp, H, modp, and Hz modp. If s is the
degree of the class polynomials, we obtain at most triples (j1;j2;j3) 2 Fg. But
not all of them are triples of invariants. If Mestre's algorihm is used, it must be
applied to all triples. If a useful triple is chosen, the cure obtained from it may
still be a twist of the curve that yields the correct group or@r. The correct triples
and twists, if they exist, can be selected by probabilistichecking of the order of
Jc, which is Nk=q(1 ) for the correct curve C (see Sectiorb.1). Gaudry et. al.
[GHK™ 05 propose to replaceH»(x) and Hz(x) by two other polynomials in such
a way that they directly only yield the correct n triples (j1;j2;j3). For details, see
[GHK™ 05, Section 4].

5.2.3 Algorithms

In this subsection, we present two algorithms to construct yperelliptic curves of
genus 2 withp-rank 1. Algorithms 5.1 and 5.2 construct a curveC de ned over F.
such that # Jc(Fy2) is a prime of a given bitsize. The algorithms require as inpa
quartic CM eld K and a desired bitsize for the group order.

Both algorithms apply the prime decomposition |§) = p;p.ps. The following remark
shows that the other case is not useful for constructing cueg for cryptography since
the choices fomp are very limited:

Remark 5.17. Let p be a prime that decomposes IOk as (p) = pip.p3. Then p
has rami cation index 2 at ps, thus p is a rami ed prime. Therefore,p divides the
discriminant of the CM eld K. When we x K in advance, this means thap is an
element of a small nite set of primes.

The two algorithms di er as follows: Algorithm 5.1 chooses a prime of suitable
size until the splitting behavior in Ok, the ring of integers inK, is (p) = p1p2ps
(see Lemma5.16. From the prime decomposition ofp, the correspondingp?-Weil
number isdenedas = ~— Ip,if pp =( )is a principal ideal generated by .
Algorithm 5.2 instead selects candidate elements for2 Ok of prime normp rst.

The p?-Weil number is computed from thatas = 2 with =p = 1 Inboth
algorithms, it can then be checked whether the group ordddx-q(1 ) is prime.
Finally the curve C is constructed by the CM method (see Subsection2.2).
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Input: A non-Galois CM eld K of degree 4 and a positive integer.
Output: A prime p of n bits, a prime r, and a curveC of genus 2 over. with
p-rank 1 such thatr =# Jc(Fp2).
1: Take a random primep of n bits.
2. If pOk factors asp;p.ps, Whereps has degree 2, continue.
Otherwise, go to Stepl.
3: If py is principal and generated by , let = — p. Otherwise, go to Stepl.
4: 1f N(1 u ) is prime for some root of unityu 2 K, then replace by u and
setr = N(1 ). Otherwise, go to Stepl.
5. Compute a curveC corresponding toK, p, and using the CM method.
6: return p;r; C.

Algorithm 5.1:  Generatep-rank-1 curves of genus 2 ovefy: ()

Input: A non-Galois CM eld K of degree 4 with real quadratic sub eldK, and a
positive integern.
Output: A prime p of n bits, a prime r, and a curveC of genus 2 overF,. with
p-rank 1 such thatr =# Jc(F2).
1: Take a random element of Ok n Ok, the norm of which hasn bits.
2: If p= N( )is prime in Z, continue. Otherwise, go to Stepl.
3:1f =p ! lisprimein Ok, and remains prime inOy, then let =
Otherwise, go to Stepl.
4: 1f N(1 u ) is prime for some root of unityu 2 K, then replace by u and
setr = N(1 ). Otherwise, go to Stepl.
5. Compute a curveC corresponding toK , p, and using the CM method.
6: return p;r; C.

2

Algorithm 5.2:  Generatep-rank-1 curves of genus 2 oveff. (ll)

Proposition 5.18. For both Algorithms 5.1 and 5.2, the following holds: If the
algorithm terminates, the output is correct, i. e. the consticted curveC of genus2

has p-rank 1, is de ned over Fy., and has the stated prime number d¥g.-rational

points.

Proof. In both algorithms, we have — = p?, so is a p?>-Weil number. Let =

p = 1 Then pfactors in K as a product of three primes — , so the output has
p-rank 1 by Lemma5.16 By Section 5.1, the curve is de ned overF, and has a
prime numberN (1 ) of Fp-rational points on its Jacobian. O

Examples of curves such that their Jacobian group orders av&,. have crypto-
graphic relevant bitsizes are given in the next subsectionThe curves were con-
structed using Algorithm 5.1
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5.2.4 Examples

The following examples each describe @mrank-1 curve C de ned over a quadratic

eld Fp such that the Jacobian varietyJc(Fy2) has prime order. The CM eld is

K = Q(!) in each case, wheré is a root of X 4+ 34X ?+217 2 Q[X]. We give the

prime p, the coe cients a; and a, of the characteristic polynomial of the Frobenius
endomorphism and the coe cientsc 2 Fy. of the curve equation

C:y?= X8+ ex®+ cax* + X3+ X%+ X + ¢!

The group order of the Jacobian can be computed asd#(Fp:) = p*+1+ ay(p? +

1) + a,: The eld Fy = Fp is given asF

f = X2+3 2 Fy[X]in each case, i.e. =
of the group Jc(Fy2) in bits. The three example bit sizes are suitable for the 80-
96- and 128-bit security levels.

160-bit groupsize

192-bit groupsize

ag
ap

Cq
C3
C2
C1

= 924575392409

n( IC),_where has the minimal polynomial

3. Section headings describe the size

= 3396725192754
= 4585861472127472591045899

= 377266258806
= 494539789092
= 904019288751
= 309144556572
= 58888332305

= 115624782924
= 156203470202

236691298903769
9692493559086

+ 915729517707
+ 415576796385
+ 345679289510
+ 430866212243
+ 588111907455
+580418244294
+ 110258906818

53053369677708708650361238059

52558588104658

52389593530844

218737207208837
172428310717706
123239683911263
153772853838243
215981952231090

+99902692259559
+158973424741312
+181252769658898
+ 8801118005418
+ 7283283410239
+205198867568386
+ 34417850754628
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256-bit groupsize

p = 15511800964685067143

a; = 2183138494024250742

a = 390171452893965844512858417075864299559
Ce = 4150612463019545210 + 12947607883594839049
Ccs = 1151467134418557330 + 14300579473277935991
Cs = 1530498141898130345 + 14555772239394475007
c3 = 1718208704069543708 +3224111154139828576
C; = 13826236770513916637 + 8502326661843998285
c1 = 1128433341144760472 +6897664900087390978
Co = 456182377334184445 + 12945866133209209503

5.3 Prescribed embedding degree in genus 2

In genus 2 similar to genus 1 we may take supersingular Jacahs for pairing-

based cryptosystems, because as in genus 1 there also exstspper bound on the
embedding degree. GalbraithGal0Z shows that this upper bound is 12 in genus
2. For achieving better security levels, one needs to nd Jabians for which it is

larger. Again, we need to look for non-supersingular curves

Example 5.19. Freeman, Stevenhagen, and Streng$S0§ propose an algorithm
to construct ordinary simple abelian varieties which have arescribed embedding
degree. By applying the CM method, the algorithm can be used tconstruct hy-
perelliptic curves of genus 2 or 3 with small embedding degre

Let K be a quartic CM eld, k 2 N the desired embedding degree, anda prime,
the supposed prime divisor of the group order. ArWeil number ful lling the
conditions

Nk=o(1 ) 0 (modr);
k() 0 (modr):

can be found as the type norm of an element in the rin@, of integers of the re ex
eld ® of K. This element is constructed using the prime decompositioof r in

Op. From Lemma 1.108and Remark5.7, it follows that r divides the group order
and k is the embedding degree of the constructed curve.

Example 5.20. Freeman [re0d shows that it is possible to do the algorithm of
Freeman, Stevenhagen, and Streng-$S0§ with the prime r parametrized by a
polynomial r(x) 2 Z[x]. This results in parametrizations (x) 2 K|[x] such that
g(x) = (x) (x) represents primes. Once such a parametrization is foundh@looks
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for an integer xo which leads to = (Xg) and g = (Xo) ful lling the conditions
from the previous example. The CM method can be used to acthalnd examples.
It turns out that, as in the elliptic curve case, -values tend to be smaller than those
obtained by the unparametrized method. Freeman gives exameg with -value
around 6.

Example 5.21. Kawazoe and Takahashi{ T08] restrict to hyperelliptic curves of
genus 2 with an equationy? = x° + ax. The advantage of using such a curve is
that for certain primes p the group order of the Jacobian ovef, can directly be
determined by a formula which depends op and a. This means that one can
directly choose parameters such that the conditions for a sih embedding degree
are satis ed.

As an example for primegp 1;3 (mod 8) of the formp = ¢ + 2d? wherec;d2 Z
andc 1 (mod 4), Kawazoe and Takahashi take explicit formulas foht character-
istic polynomial f ;. (T) determined by Furukawa, Kawazoe, and TakahashiKT04]
corresponding to a curve of the given form. The formulas carelfjound by computing
Jacobsthal sums over characters &, which is possible for the curves of this form.
Since these formulas depend a1 d, and a only, one may solve the system

fic. (1) 0 (modr);
k(P) 0 (modr);
p = Z+2d% withc 1 (mod4)

for a prime r chosen in advance. This gives curve parameters directly waut
going through the e ort of the CM method. Solutions to the abeoe system are rst
computed modulor and then lifted to the integers until a suitable primep is found.
Therefore,c and d are roughly of the size of which leads top being roughly of the
size ofr2. This shows that such Jacobians have avalue of about 4.

5.4 Prescribed embedding degree for p-rank 1

Algorithm 5.3 can be used to construct hyperelliptic curves of genus 2 wigitrank
1 and a prescribed embedding degree. It is modeled after theetimod by Freeman,
Stevenhagen, and Streng-[5S04.

Proposition 5.22. If Algorithm 5.3 terminates, then the constructed curve has
p-rank 1 and embedding degrele with respect to the primer.

Proof. The number is de nedin Step5by = 2 |, wherep factors into primes of
Ok as — ,justasin Algorithm 5.2 In particular, the facts that the output has p-
rank 1 and a Jacobian of ordeN (1 ) are proved as in the proof of Propositio®.18
We follow [FSS0§ to proof that the embedding degree of the constructed curvs
k. Recall that r splits completely inK, i.e. in Ok it decomposes asr() = rrqg. We
use the notation of the algorithm, whereqq = s. Furthermore, p decomposes iy



5. Constructing curves of genus 2 with p-rank 1 117

Input: A non-Galois CM eld K of degree 4 with real quadratic sub eldK,, a
positive integerk, and a primer 1 (mod ) which splits completely inK .
Output: A prime p and a curve C of genus 2 overF,. that has p-rank 1 and
embedding degred with respect tor.
1: Let r be a prime ofK dividing r and lets=rr
2: Choose a random element of F, and a primitive 2kth root of unity
3: Compute 2 Ok n Ok, such that

1

modr=x; modr=x; mods=x 1
using the Chinese Remainder Theorem.

4: If p= N( )is prime in Z and di erent from r, continue.
Otherwise, go to Step2.

5:1f =p = lisprimein Ok, and remains prime inO , let =
Otherwise, go to Step2.

6: Compute a curveC corresponding toK , p, and using the CM method.

7: return p;C.

2

Algorithm 5.3:  Generate p-rank-1 curves of genus 2 oveF,: with prescribed
embedding degree

as = — ,where isaprimeinOk andin Ok, and ~is a prime inOk,. The
eld Kg is normal of degree 2 ovef), and thus it has a non-trivial automorphism
. Since —“and arenotinQ, itfollows ( 7)= .

We nd modr=( modr)? ( 7)modr). In F,, the right hand side is equal to

( modr)’( mods)2=1,sorjN(L ). On the other hand,

p>modr = ( modr)’(CTmodr)?( ( ) modr)?
( modr)?( modr)?( — mods)?:

As s =S, we have { mods) = ( modS) = ( mods), sop?modr = ( mod
rN2( modr)?( mods)*= 2is a primitive kth root of unity. By Lemma 1.108and
Remark 5.7, the facts that p? is a primitive kth root of unity modulo r and that
rjN(1 ) imply that Jc has embedding degrek with respect tor. O

Freeman, Stevenhagen, and Stren§$S0§ give a heuristic analysis of their method.
They show in FSS08 Theorem 3.4] that one expects the primg to yield a -value
of about 8 for genus 2, which means that logf = 4log(r). The same reasoning
holds for our algorithm. The primep computed as the norm of the element in
Step4 is therefore expected to give log) = 4log(r). Since the constructedp-rank-1
curve is de ned overF, its -value is =2log(p?)=log(r) 16.

Since the curves are de ned ovef,z, and since pairing values areth roots of unity,
the embedding eld could be smaller than indicated by the endxlding degre& when
working with odd k (as pointed out by Hitt [HitO7]). This in uences the security
of pairing-based protocols. But loss of security can easibe avoided by choosing
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curves with an even embedding degrdeor by explicitly checking if the rth roots of

unity are already de ned over a smaller extension df,.

For cryptographic applications, one requires that the primar has at least 160 bits,
sincer is the order of the subgroup used in protocols. Thep already has 640
bits. This makes eld and curve arithmetic very slow, compaed to elliptic curve

implementations of the same security level, where it is pabke to haver of the same
size asp.

Thus the curves produced by algorithnd.3 currently have no relevance for practical
applications in cryptography. Still, we may conclude thatm principle pairing-based
cryptography seems possible fqu-rank 1.



Appendix A

Compressed torus arithmetic

A.1 Veri cation of formulas

We verify the formulas given in Lemma3.18 Let ; 2 Te(Fg) nflg with ¢( )=

(a0;a1), 6( )=(bo;hy), and (ap;a1) 6 ( kv, ly). We rst give the Magma [BCP97]
code of the formulas in the lemma:

R<a0,b0,al,bl,xi> := PolynomialRing(Rationals(),5);

rO0 := a0"2 + 1/3*xi;

rl := b0"2 + 1/3*xi;

sO = xi*(al*b1*(a0*b0 + xi) + al”2*rl + b1”2*r0);
sl := al*bl*xi*(a0*bl + al*b0) + rO*rl,

s2 = al"2*b172*xi + aO*al*rl + bO*bl1*rO;

t0 := al*bl*xi*(a0 + b0);
tl = al*bl*xi*(al + bl);
t2 = b1*r0 + al*rl;

u = tON3 + tIN3*xi + t2/3*xi"2 - 3*Xi*t0*t1*t2;
uo := t0"N2 - t1*t2*xi;

ul := t272*xi - tO*t1;

u2 = t1"2 - to*t2;

vO := sO*u0 + s1*u2*xi + s2*ul*xi;

vl := sO*ul + s1*u0 + s2*u2*xi;

The compressed representative is then given ag¥€u;v;=u). The formulas can be
deduced as follows: Recall that

X
X

a+a; +a 2with a,=(3a3+ )=(3a; );
b+ b + by 2with b, =@+ )=3b ):

Then is represented by ¢( ) = (cCo;C1). Itholds X =g+ ¢ + ¢ 2and

119
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=(X )=(X  + ). By Lemma3.8itis
X X +

X =——
X +X

We multiply in numerator and denominator with a;b, . The fraction X  can then
be computed as@o+ d; +d, ?)=(e+ e, + e 2). The following code can be used to
determine the coe cients ofdp+d; +d; 2:= ajby (X X + )ande+e +e 2:=
aby (X + X ):

d0 := a0*bO0*al*bl*xi + b0O"2*al”2*xi + 1/3*al”2*xi"2
+ a0"2*b1n2*xi + 1/3*b172*xi"2 + al*bl*xi"2;
dl := a0*al*bh1"2*xi + al*2*b0*bl*xi + a0"2*b0"2
+ 1/3*a0"2*xi + 1/3*b0"2*xi + (1/3*Xi)"2;

d2 := alr2*bh172*xi + a0*al*b0"2 + 1/3*a0*al*xi
+ a0"2*b0*bl + 1/3*b0*bl*xi;

e0 := (a0 + b0O)*al*bl1*xi;

el := (al + bl)*al*bl*xi;

e2 = bl*@0”"2 + 1/3*xi) + al*(b0"2 + 1/3*xi);

We compute He + e, + & ?) as

(ote +e??)(epte ? +e ?)
NFq3=Fq(eo+el +e 2 .

where 2 F, is the primitive 3rd root of unity with 9 = . The numerator
fo+rfs +fo 2 =(ep+e, +& 2% (ep+e 2 +e 2)andthe denominator
g:= NFq3=Fq(eo + e + & 2)can be computed as follows:

fo ;= e0"2 - el*e2*xi;

fl = e2"2*xi - e0*el,

f2 .= el”2 - e0*e2;

g = (e0"3 + el"3*xi + e2"3*xi"2 - 3*xi*e0*el*e2);

Finally we calculate the product g+ hy +hy 2) = (fo+f, +f, 2)(do+dy +dy 2):

hO := dO*0 + d1*f2*xi + d2*f1*xi;
hl = dO*1 + d1*f0 + d2*f2*xi;
h2 = dO*2 + d1*f1 + d2*f0;

The result is then given asX = (ho+ hy + h, ?)=g, represented by fo=g; h=0),
and it can be checked thathg = v, h; = vy, and g = u, and thus the formulas for
multiplication given in Lemma 3.18are correct.



A. Compressed torus arithmetic 121

The formulas for squaring can be checked similarly: We rstige the Magma code
of the squaring formulas.

R<a0,al,xi> := PolynomialRing(Rationals(),3);

ro := a0O"5 + xi*(@a0"3 - 2*a0"2*al”3) + xi"2*(1/3*a0 - al”3);
rl ;= a0O"5 + xi*(2*a0"3 - 2*a0"2*al”3) + xi"2*(a0 - 2*al”3);
sO := a0*(a0*r0 + al”6*xi"2 + 1/27*xi"3) - 1/3*al”3*xi"3;

sl = al*(@0*rl + al”6*xi"2 + 4/27*xi"3);

s = 2*(@0*r0 + al”e*xi"2 + 1/27*xi"3);

Then the square is represented asdg=s; s=S). To obtain these formulas we conduct
the following steps: Compute
x .= X4

“TTX
by (do+ dy +dy 2)=(ep+ € + e 2),wheredg+d; +dp 2:= a (X?2+ )and
ete +e 2:=2aX

d0 = 3*a0"2*al”2*xi + 5/3*al’2*xi"2;

dl := 2*a0*al”3*xi + a0™ + 2/3*a0"2*xi + (1/3*xi)"2;
d2 = al™M*xi + 2*a0"3*al + 2/3*a0*al*xi;

e0 = 2*a0*al”2*xi;

el = 2*al’"3*xi;

e2 = 2*a0"2*al + 2/3*al*xi;

We invert gg + e, + & 2 and multiply the inverse with dy + d; + d, 2 exactly as
for multiplication.

fO (= e0”2 - el*e2*xi;

fl1 ;= e27"2*xi - e0*el;

f2 .= el”2 - e0*e2;

g = (e0"3 + el"3*xi + e2"3*xi"2 - 3*xi*e0*el*e2);
hO := dO*f0 + d1*f2*xi + d2*f1*xi;

hl = dO*f1 + d1*f0 + d2*f2*xi;

h2 = dO0*f2 + d1*f1 + d2*fO;

It can be checked thatg = 4s 2a3, hy = 4sy 2a3, and h; = 4s; 2a3. Therefore,
ho=g= sp=s and h;=g = s;=s, which shows that the formulas for squaring are also
correct.
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A.2 Pseudo code

The two algorithms given here show three-operand pseudo @tbr multiplication
and squaring of elements ofg(Fp2) in compressed representation. They realize the
formulas in Example3.25

Input: (Ao :Aq:A)2 P(Fp); A2 F,
Output: (Cp : Cy : C) representing the square of4q : Ay 1 A)

1.rq A(z), 18: I %r4, 35: S SOA,

2: Iy Aorl, 19: rq Isto, 36: S() SOA(),

3 Sy riro, 20:rg g 4, 37: S 25,

4ty A? 21: 1, 2ry, 38:ry A4y,

5: 14 roto, 22: Iy rqg I, 39: 11 o+ Iy,

6: I's A%, 23: Ig 2r0, 40: Sl S]_+ rq,

7. I's Airs, 24: Iy 2r4, 41: S SiAq,

8:r3 Iqrs, 25: Sy Spt ro, 42:r1  rsty,

9 ry, 4 I3, 26: Sy SpAo, 43: 17 3 3y,

10: rg g , 27: S S)+ Iy, 44: So So r,

11: rg 2ro, 28: S; S;Ao, 45: Write S = s + isq,
12: S5 Sp + ro, 29: 1o ré, 46: ' (S() iS]_),
13:r4  f4 I3, 30: r, Iy %, 47: Co  Sory,

14: 14 g , 31: Iy t1to, 48: C, Sirq,

15: Sy Sp+ ra, 32: 1y 35 Mg, 49: C  Sry= s+ c<,
16: t;  t3, 33: 1] o+ Iy, 50: return (Cp: C;: C)
17: 14 t1A0, 34: S So+ rq,

Algorithm A.1:  Compressed squaring iTg(Fp2) for k = 12.
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Input: (Ao:A1:A);(Bo:B1:B)2Fe FrnfOg Fp
Output: (Co:Cy:C)=(Ap:A1:A) (Bp:B;1:B)

1: Ry A3, 29:Sy  Sp+ ra, 57:r3 I3,

2: 1, A? 30: r, BiRy, 58: Uy g I3,
3. I3 %tl, 31: Ig r4B, 59: r3 r3T0

4. RQ R0+ I3, 32: T2 T2 + I, 60: I3 3r3,

5 Ry BS, 33: Is r4Bo, 61: T T s,
6: t;, B2, 34:S, S,+ 15, 62: r3  ToTq,

7. I's %tl, 35: Iy rsBq, 63: U; ro ,

8: R; Ri+r3 36: S S+ Fa, 64: U; U, rs3,
9:I's A1B4, 37: So Sy 65: I's ToTo,,

10: Iy AgBo, 38: Ty AgB, 66: U ri rs,
11: tq AB, 39: I'y4 BoA, 67: Vo SoUp,

12: rg t, , 40: Ty To + ry4, 68: I'g SU,,

13: 14 Mg+ I's, 41: Ty reTo, 69: I'1 S,Uq,

14: Sy I3ly, 42: Ty A.B, 70: I'g o+ 'y,
15: S, 12 43: 1, BiA, 71: 19 fo ,

16: S, S, , 44: T4 Ty + 1y, 72: Vg Vo + g,
17: 14 AoB1, 45: T4 Tirg 73: 'V, SoUl,

18: rs  A;By, 46: 19 T, 74: 19 S$1Up,

19: 1y g+ I's, 47: 14 le, 75: V1 Vi + 1o,
20: rg rs, 48: 1o T22, 76: g S,Us,

21: S; Il 4, 49: T roTo, 77: I'g lo ,

22: Iy RoR; 50: r3 riyTq, 78: Vy Viro,

23:' S, S+ 1y, 51: rz3 I3, 79: Write T = tg + it 4,
24: Iy ARy, 52: T T+r3 80: Iq (to itl),
25: I's r4Aoq, 53: I3 r.T,, 81: Co Vor1,

26: S, S, + 15, 54: 13 s 2, 82: C, Virq,

27: T, T4A, 55: T T+ rg, 83: C  Sry=t3+ ct?
28:ra  r4Aq, 56: r3  T1To, 84: return (Co:C;:C)

Algorithm A.2:  Compressed multiplication inTg(Fy2) for k = 12.
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Summary

Constructive and Computational Aspects
of Cryptographic Pairings

The security of many public-key cryptosystems relies on thexistence of groups
in which the discrete logarithm problem (DLP) is infeasible Subgroups of the
Jacobian varieties of elliptic and hyperelliptic curves ar nite elds are widely used
to realize such cryptosystems. On these groups, it is podsilio de ne pairings.
A cryptographic pairing is a bilinear, non-degenerate maphtat can be computed
e ciently. It maps a pair of points in the Jacobian variety into the multiplicative
group of a nite eld.

Pairings were rst used in cryptography to attack the DLP on asupersingular elliptic
curve by reducing it to the DLP in a nite eld that is easier to solve. Later
on, they led to a variety of constructive applications. Whenaiming at practical
implementation of pairings, there are two main problems asing: The rstisto nd
pairing-friendly curves which allow an e cient pairing computation. The second is
to make computations more e cient and suitable for di erent applications. This
dissertation addresses aspects of both problems and advasithe state of the art in
the associated research areas.

An important condition for a pairing-friendly curve is to have an embedding degree
that is small enough. Curves with this property are rare andeed to be constructed.
We give a method to construct pairing-friendly elliptic cuves with embedding degree
12. The proposed curves have many nice properties favoringry e cient imple-
mentation, such as a prime order group of rational points ovehe ground eld and
a twist of degree 6.

The Jacobian group order of a pairing-friendly curve must hee a large prime divisor
which satis es the embedding degree condition. It is therefe necessary to rst
X the group order and then construct the curve. As an esserdl tool for the
construction, one uses the complex multiplication (CM) médtod. We show how to
use the CM method to construct curves of genus 2 witprrank 1.

If pairings need to be implemented on devices with restriaciememory, it may be
interesting to compute pairings in compressed form. Usindhé fact that pairing
values are elements of algebraic tori, they can be represeatin a more e cient way,
requiring less storage space than general eld elements. \leow how to do pairing
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computation in a compressed form. On curves with a twist of dgee 6 the proposed
variant of Miller's algorithm can be done without any eld inversions.

Recently, it has been shown, that in many cases the ellipticuove group law can
be implemented most e ciently using Edwards curves. It was a open problem to
nd advantageous formulas for pairing computation on Edwads curves. We state
a geometric interpretation of the group law on twisted Edwals curves, give the
corresponding functions, and show how to use them to compytairings on Edwards
curves. We present explicit formulas for the doubling and alition steps in Miller's

algorithm that are more e cient than all previously proposed formulas for pairings
on Edwards curves and are competitive with formulas for paig computation on

Weierstra curves.
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