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Introduction

In 1976, Di�e and Hellman published their groundbreaking paper New Directions
in Cryptography [DH76], in which they introduced the concept of public-key crypto-
graphy. By then, the conventional cryptosystems were builton symmetric tech-
niques, where a common secret key is used to encrypt data sentfrom one party to
another. In contrast to that, Di�e and Hellman proposed asymmetric methods: A
user A provides a public key, with which other users encrypt messages destined for
A. The userA holds a corresponding secret key, only known toA, with which A can
decrypt those messages. This solves the problem of securelydistributing keys over
insecure channels that always occurs in symmetric, secret-key systems. While sym-
metric methods are still the most e�cient choice for encrypting data, asymmetric
techniques provide key agreement, digital signatures, andauthentication.

The security of cryptosystems as proposed by Di�e and Hellman relies on the exis-
tence of one-way functions. Evaluating such functions is easy, while inverting is in-
feasible. Exponentiation of integers modulo a prime numberq is the most important
example in [DH76]. Cryptosystems based on this function rely on the intractability
of the discrete logarithm problemin the multiplicative group of a �nite �eld Fq for
su�ciently large primes q. The discrete logarithm problem (DLP) is de�ned for any
group G as follows: Givena; y 2 G, �nd an integer x with y = ax if it exists. For
an abelian group, this problem is often formulated additively: Given P; Q 2 G with
Q = [ x]P being the x-fold sum ofP, �nd x. If the DLP is hard to solve in a group
G, then G can be used for realizing public-key protocols as indicatedby Di�e and
Hellman.

It was suggested independently by Miller [Mil86b] and Koblitz [Kob87] to use the
group of rational points on an elliptic curve de�ned over a �nite �eld. Later, Koblitz
[Kob89] also proposed the Picard group of a hyperelliptic curve over a �nite �eld.
Since then, cryptosystems based on elliptic and hyperelliptic curves and algorithms
to solve the DLP in the corresponding groups have been studied thoroughly, and
have been widely used. In practice, one takes subgroups of prime order. The size
of such groups must be large enough such that with all known algorithms the DLP
in the group is infeasible to solve. With respect to the best known algorithms, the
DLP on a curve group is harder than in a �nite-�eld group of the same size. Hence
curve groups have the advantage that the same security levelcan be achieved with
smaller parameters.

1



2 Introduction

Pairings in cryptography

The group of points on an elliptic curve or the Picard group ofa hyperelliptic curve
is equipped with additional structure. With the help of suchcurves, it is possible to
de�ne pairings. For two additive groupsG1 and G2 and a multiplicative group G3,
a pairing is a bilinear, non-degenerate map

e : G1 � G2 ! G3:

The �rst example of a pairing used in cryptography was the Weil pairing on an
elliptic curve E over a �nite �eld Fq. For a prime r di�erent from the characteristic
of Fq, the Weil pairing is a map Wr : E [r ] � E [r ] ! � r . The group E[r ] is the
group of r -torsion points on E, and � r is the group ofr th roots of unity, which is
contained in an extension ofFq. The degreek of the minimal extensionFqk � Fq

that contains � r is called the embedding degree ofE with respect to r . The �rst
appearance of the Weil pairing in cryptography was of a destructive nature. Menezes,
Okamoto, and Vanstone [MOV93] applied the Weil pairing for attacking theelliptic-
curve discrete logarithm problem (ECDLP). They showed that for anr -torsion point
P 2 E[r ], the Weil pairing yields a group isomorphism : hPi ! � r � F�

qk from
the cyclic group hPi of order r generated byP to the group of r th roots of unity,
which lies in Fqk . Instead of solving the ECDLP given byQ = [ x]P, one can solve
the DLP in F�

qk given by  (Q) =  (P)x . If k is small, this reduction provides
a way of solving the ECDLP more easily because of the subexponential attacks
on the DLP in �nite �elds. Elliptic curves which have a small embedding degree
should therefore be avoided for conventional curve-based cryptography. Frey and
R•uck [FR94] generalized this to a reduction of the DLP in the Picard group of an
arbitrary projective, irreducible, non-singular curve byusing another pairing, the
Tate-Lichtenbaum pairing, an explicit version of theTate pairing. First constructive
applications of pairings arose in 2000 as key agreement protocols with new features.
Joux [Jou00] proposed a one-round, tripartite key agreement protocol,and Sakai,
Ohgishi, and Kasahara [SOK00] showed how to realize identity-based non-interactive
key agreement. In 2001, Boneh and Franklin [BF01, BF03] solved a long-standing
open problem by proposing a practical way to realize identity-based encryption with
pairings. These papers initialized a variety of constructive applications inpairing-
based cryptography. Paterson [Pat05] gives a survey of such applications.
Most of the pairings used in practice are variants of the Tatepairing on elliptic
curves, such as the ate pairing or the twisted ate pairing [HSV06]. Many improve-
ments [MKHO07, ZZH08, LLP08] have led to the notion of optimal pairings intro-
duced by Vercauteren [Ver08] and the framework of pairing lattices, under which
He� [He�08] subsumes all variants of the Tate pairing.
For all applications, the choice of curve parameters is crucial. It is important that
in all three groupsG1; G2, and G3, the DLP is infeasible, i. e. the subgroups of prime
order r must be large enough. The embedding degree then determines the size of
qk and thus the di�culty of the DLP in F�

qk . Computation of pairings is done with
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variants of Miller's algorithm [Mil86a]. It comprises arithmetic on the elliptic curve
or in the Picard group, respectively, and arithmetic inF�

qk . If the embedding degree
is too large, the pairing can not be computed e�ciently.
Under these conditions, curves for pairing applications should be chosen to be as
economical as possible, i. e. the prime divisorr of the group order should be as large
as possible in relation to the full group size. The relative size of r compared to the
group order is expressed by the� -value � = glog(q)=log(r ), where g is the genus of
the curve. The optimal � -value is 1, which means that the Picard group overFq has
prime order r . Since for randomly chosen curves and large primesr the embedding
degree is of the size ofr which is much too large in general [BK98, LMS04], it is
necessary to systematically constructpairing-friendly curves.
To improve the e�ciency of practical applications of pairings in cryptography, it is
required to solve two closely related problems:

� Construct pairing-friendly curves with a small embedding degree and small
� -value.

� Improve the e�ciency and 
exibility of algorithms to comput e pairings.

These problems suggest the distinction between constructive and computational
aspects. This work contributes to the solution of both problems.

Overview

Chapter 1 provides the foundations for the remaining chapters. We de�ne Pi-
card groups (Jacobian varieties, respectively) of elliptic and hyperelliptic curves,
which are the groups that are used for cryptographic applications. For that, we
discuss a�ne and projective curves, their properties such as irreducibility and non-
singularity, maps between them, their function �elds, and divisors. In order to give
a geometric interpretation of the group law on elliptic curves in Weierstra� form
and Edwards curves as well as to deduce functions for pairingcomputation, we in-
troduce intersection multiplicities and state B�ezout's Theorem. In this work, we
mainly consider Weierstra� curves, Edwards curves, and hyperelliptic curves.
We introduce the Tate-Lichtenbaum pairing and the Weil pairing on the Jacobian
of a hyperelliptic curve and deduce practical relevant variants of the Tate pairing.
Detailed discussions are given for pairings on elliptic curves, including the description
of Miller's algorithm and formulas for line functions. We illustrate the use of twists
for a more e�cient representation of curve points.
Finally, we describe conditions for pairing-friendly curves, and with a focus on elliptic
curves, we describe methods for their construction. This includes an overview of
the complex multiplication (CM) method to construct elliptic curves with a given
number of rational points.
In Chapter 2, we describe a parametrized family of pairing-friendly elliptic curves
with embedding degree 12 and prime order (� -value 1). The results in this chapter
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are based on joint work with Barreto [BN06]. After discussing existence and a con-
struction method, we consider properties of these curves that can be used to improve
pairing computation, e. g. the existence of a twist of degree6, the use of e�cient
endomorphisms, and the possibilities for point compression and pairing-value com-
pression. We show how to compute all parameters needed for implementing pairings
on such curves, and give examples of curves with di�erent bitsizes corresponding to
di�erent levels of security.
Compressed pairing computation is the topic of Chapter3. This chapter is based
on joint work with Barreto and Schwabe [NBS08]. Pairing values are elements of
algebraic tori. This fact leads to a compressed representation for pairing values and
the possibility to implicitly carry out computations on the compressed values. We
de�ne compressed pairings and describe a way for their computation by including
the compression into the Miller loop. The method can be applied for elliptic curves
with even embedding degree, giving a compression of pairingvalues to one half of
their original length. For the special case that 6 divides the embedding degree, the
compression factor is one third. In particular, this methodworks for the curves
introduced in Chapter 2, and can be implemented without using any �nite �eld
inversions. We determine explicit formulas for the evaluation of line functions and
torus arithmetic. Timing results for a C-implementation of the proposed compressed
pairings are given and are compared to conventional pairings.
Chapter 4 is dedicated to pairing computation on Edwards curves. The contents of
this chapter result from joint work with Ar�ene, Lange, and Ritzenthaler. We give a
geometric interpretation of the group law on a twisted Edwards curve. In contrast
to the group law on a Weierstra� curve, not only lines are involved, but also conic
sections. We deduce the necessary curves of degree 1 and 2, and describe a variant of
Miller's algorithm that uses functions arising from these lines and conics. This shows
that pairings can be computed directly on the Edwards curve,without transforming
back to Weierstra� form. Explicit formulas for the addition and doubling steps
in Miller's algorithm are given. The formulas are more e�cient than previously
proposed formulas for pairings on Edwards curves and are competitive with formulas
for pairing computation on Weierstra� curves.
In Chapter 5, we propose algorithms to construct genus-2 curves withp-rank 1
using the complex multiplication method. The chapter contains joint work with Hitt
O'Connor, McGuire, and Streng [HMNS08]. First, we give theoretical foundations
on abelian varieties and complex multiplication (CM). After that, we discuss genus-2
curves with p-rank 1 and the CM method in genus 2. The proposed algorithms can
be used to construct curves de�ned over a �eldFp2 that have a prime number of
Fp2 -rational points on their Jacobian. Examples with di�erent bit sizes of the group
order are given. Finally, we propose an algorithm for the construction of p-rank 1
curves of genus 2 with a small embedding degree.



Chapter 1

Preliminaries

In this chapter, we provide de�nitions and fundamental results for the subsequent
chapters. We discuss the necessary background for curves inSection 1.1. In Sec-
tion 1.2, we de�ne pairings, and explain how they can be computed. Section 1.3
gives a brief introduction to the problem of constructing pairing-friendly curves along
with algorithms to solve it, mainly for elliptic curves. The theoretical background
for Chapter 5 is not given here. Instead, fundamentals on abelian varieties and
complex multiplication can be found in Section5.1, since they are not required in
Chapters2, 3, and 4.

1.1 Curves

In this section, we give a brief introduction to plane curves. We de�ne a�ne and
projective curves, discuss general concepts and properties, and then move to elliptic
and hyperelliptic curves. There are almost no proofs in thissection since we just
gather results that are necessary for the following chapters. Details and proofs can
be found in the following references: For a general treatiseon algebraic geometry, we
refer to Hartshorne's book [Har77]. The more speci�c theory focusing on algebraic
curves is presented by Fulton [Ful69]. Lorenzini [Lor96] gives a detailed introduction
to plane curves in the context of arithmetic geometry. For results on function �elds
and a view on curves from that perspective, we point at Stichtenoth [Sti93]. Many
facts about curves and in particular elliptic curves can be found in Silverman's book
[Sil86]. An overview of the background on curves required for cryptography is given
in [FL05a]. We follow parts of these books in this chapter.

1.1.1 A�ne and projective curves

Let F be a perfect �eld, and letF be an algebraic closure ofF. For a positive integern,
we de�ne the a�ne n-spaceAn (F) to be the n-fold Cartesian productAn(F) := F

n
.

The spaceA1(F) = F is calleda�ne line , and A2(F) = F � F is calleda�ne plane .
For any �eld F � ~F � F, we call An (~F) = ~Fn � An (F) the set of ~F-rational points

5



6 1.1. Curves

in An (F). Given a polynomial f 2 F[x1; x2; : : : ; xn ] in n variables, we can evaluate
f at a point P = ( a1; a2; : : : ; an ) 2 An (F) as f (P) = f (a1; a2; : : : ; an ) 2 F.

De�nition 1.1. Let f 2 F[x1; x2; : : : ; xn ] be a polynomial inn variables. De�ne an
algebraic setCf by

Cf := f P 2 An (F) j f (P) = 0 g: (1.1)

For any algebraic �eld extensionF � ~F � F, the set

Cf (~F) = f P 2 Cf j P 2 An (~F)g

of points with coordinates in~F is called theset of ~F-rational points in Cf .

In this thesis, we mainly consider setsCf � A2(F). We then usually write the
polynomial ring in two variables overF asF[x; y].

De�nition 1.2. Let f 2 F[x; y] be a polynomial in two variables. The algebraic set
Cf is called ana�ne plane curve. The degreeof Cf is de�ned as the degree off .

Example 1.3. An a�ne plane line is an a�ne plane curve of degree 1. It is given
by a polynomial l = cxx + cyy + c1 2 F[x; y] of degree 1, i. e. (cx ; cy) 6= (0 ; 0).
Note that a line is uniquely determined by two di�erent points. We call an a�ne
plane curve of degree 2 ana�ne plane conic . It is given by a polynomial f C =
cx2 x2+ cy2 y2+ cxy xy + cxx+ cyy+ c1 2 F[x; y] of degree 2, i. e. (cx2 ; cy2 ; cxy ) 6= (0 ; 0; 0).
An a�ne plane curve of degree 3 is called ana�ne plane cubic, and an a�ne plane
curve of degree 4 is called ana�ne plane quartic .

Let P = ( a1; a2; : : : ; an+1 ) 2 An+1 (F) be a point in the a�ne ( n + 1)-space. Suppose
P 6= (0 ; : : : ; 0). Then P de�nes a unique line that passes throughP and the origin
(0; : : : ; 0). We identify all non-zero points on this line, i. e. we de�ne an equivalence
relation � on An+1 (F) n f (0; : : : ; 0)g as follows: We say thatP = ( a1; a2; : : : ; an+1 )
and Q = ( b1; b2; : : : ; bn+1 ) are equivalent, i. e.P � Q, if there exists � 2 F

�
with

(a1; a2; : : : ; an+1 ) = � (b1; b2; : : : ; bn+1 ) = ( �b 1; �b 2; : : : ; �b n+1 ):

We denote the equivalence class with respect to� that contains P by

P � := ( a1 : a2 : � � � : an+1 ) := f Q 2 An+1 (F) j Q � Pg:

The setP � contains all points on the above mentioned line throughP and (0; : : : ; 0),
except for the point (0; : : : ; 0) itself. We de�ne the projective n-spacePn (F) to be
the set of all such equivalence classes,

Pn (F) := f P � j (0; : : : ; 0) 6= P 2 An+1 (F)g:
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The set P1(F) is called projective line, and the setP2(F) is called projective plane.
An equivalence classP � is called aprojective point. The set of ~F-rational points in
Pn (F) for F � ~F � F is de�ned as

Pn (~F) := f P � = ( a1 : a2 : � � � : an+1 ) j 9 � 2 F
�

with �a i 2 ~F for all ig � Pn (F):

The a�ne n-spaceAn (F) can be embedded into the projectiven-space by identifying
(a1; a2; : : : ; an ) 2 An (F) with the point ( a1 : a2 : � � � : an : 1) 2 Pn (F).

Lemma 1.4. Let Un+1 := f (a1 : a2 : � � � : an+1 ) 2 Pn (F) j an+1 6= 0g � Pn(F). Then
the map

' n+1 : Un+1 ! An (F);

(a1 : a2 : � � � : an+1 ) 7!
�

a1

an+1
;

a2

an+1
; : : : ;

an

an+1

�

is a bijection.

Proof. This is [Har77, Proposition I.2.2].

The inverse map' � 1
n+1 is given by (a1; a2; : : : ; an ) 7! (a1 : a2 : � � � : an : 1). From now

on, we understandAn (F) as a subset ofPn(F). When speaking of points inPn (F),
we abuse notation and denote the classP � by P as well. We have chosen one special
embedding of the a�ne space into the projective space by choosing Un+1 , i. e. �xing
the last coordinate to be di�erent from 0. Of course, we couldalso take each of the
other coordinates, and get in this wayn + 1 di�erent sets Ui , 1 � i � n + 1, with
corresponding embeddings of the a�ne space intoPn (F) (see [Har77, Section I.2]).
The setsUi cover all ofPn (F).
To de�ne a projective curve, we need to explain what it means that a projective point
is a zero of a polynomial. A polynomialf 2 F[x1; : : : ; xn+1 ] may have a zero at one
representative of a projective point, while it might be di�erent from zero at another
representative. Therefore, we considerhomogeneous polynomials. The monomials of
a homogeneous polynomial all have the same degree. Thusf (�a 1; �a 2; : : : ; �a n+1 ) =
� df (a1; a2; : : : ; an+1 ) for a homogeneous polynomialf 2 F[x1; x2; : : : ; xn+1 ] of degree
d. This shows that for homogeneous polynomials either all representatives of a
projective point are a zero or none.
From now on, we write homogeneous polynomials with capital letters. Also the
variables for homogeneous polynomials are written with capital letters to distinguish
between the a�ne and the projective case.

De�nition 1.5. Let F 2 F[X 1; X 2; : : : ; X n+1 ] be a homogeneous polynomial inn+1
variables. De�ne a projective algebraic set

CF := f P 2 Pn (F) j F (P) = 0 g: (1.2)
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For any �eld F � ~F � F, the set

CF (~F) := f P 2 CF j P 2 Pn (~F)g

of points in the projective space over~F is called theset of ~F-rational points in CF .

As above for a�ne algebraic sets, we choose di�erent notation for the variables when
de�ning projective algebraic setsCF � P2(F).

De�nition 1.6. Let F 2 F[X; Y; Z ] be a homogeneous polynomial in three variables.
The projective algebraic setCF is called aprojective plane curve. Its degreeis de�ned
as the degree of the polynomialF .

Example 1.7. We use the same terminology as for a�ne curves. Aprojective plane
line is a projective plane curve of degree 1. A plane line is given by a polynomial
L = cX X + cY Y + cZ Z, where at least one of the coe�cientscX ; cY ; cZ is di�erent
from 0. A projective plane conicis a projective plane curve of degree 2. It is given
by a polynomial

FC = cX 2 X 2 + cY 2Y 2 + cZ 2Z 2 + cXY XY + cXZ XZ + cY Z Y Z

with at least one of the coe�cients cX 2 ; cY 2 ; cZ 2 ; cXY ; cXZ ; cY Z being di�erent from
0. Projective plane curves of degree 3 and degree 4 are calledprojective plane cubics
and projective plane quartics, respectively.

Let F 2 F[X 1; X 2; : : : ; X n+1 ] be a homogeneous polynomial. De�ne thedehomoge-
nization F� of F as

F� (x1; x2; : : : ; xn ) := F (x1; x2; : : : ; xn ; 1) 2 F[x1; x2; : : : ; xn ]:

And vice versa, for a polynomialf 2 F[x1; x2; : : : ; xn ] of degreed, we de�ne the
homogenization off as

f � (X 1; X 2; : : : ; X n+1 ) := X d
n+1 f (X 1=Xn+1 ; X 2=Xn+1 ; : : : ; X n=Xn+1 );

a polynomial inF[X 1; X 2; : : : ; X n+1 ]. Note that (f � )� = f for all f 2 F[x1; : : : ; xn ]. If
X n+1 - F , then (F� )� = F . By means of homogenization and dehomogenization and
the map ' 3, we may associate to every a�ne plane curve a corresponding projective
plane curve and to every projective plane curve a special a�ne plane curve. Any
projective curve CF contains the a�ne curve CF � . The points that only lie in CF

and not in CF � , i. e. the points of form (a1 : a2 : 0), are calledpoints at in�nity .

Remark 1.8. Throughout this work, we use the well-known notationCf : f = 0
and CF : F = 0 for plane curves.
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Curves as de�ned here are specialalgebraic sets(see [Har77, Sections I.1 and I.2]
and [Ful69, Chapters 1 and 4]). An algebraic set is the set of common zeros of a
collection of polynomials. Algebraic sets form the closed sets of a topology on a�ne
and projective n-space, theZariski topology [Har77, Sections I.1 and I.2]. A�ne
and projective spaces are thus equipped with the structure of a topological space,
and we can de�ne the notion ofirreducibility as follows: A nonempty subsetX of a
topological space is calledirreducible, if it can not be expressed as the union of two
proper subsets, each one of which is closed inX [Har77, De�nition in Section I.1].
For an algebraic set, this means that it can not be expressed as the union of two
non-trivial algebraic subsets.
The Zariski topology depends on the base �eld, over which thealgebraic set is
de�ned. An algebraic set that is irreducible overF might become reducible over an
extension �eld. If it stays irreducible when considered over any algebraic extension
of F, i. e. it stays irreducible overF, we call it absolutely irreducible.

De�nition 1.9. A curve over F is called absolutely irreducibleif it can not be
expressed as the union of two distinct nontrivial algebraicsubsets overF.

For a plane curve, we can determine irreducibility by considering the associated
polynomial. A polynomial over F is called absolutely irreducibleif it is irreducible
as a polynomial overF.

Lemma 1.10. An a�ne plane curve Cf (or a projective plane curveCF , respec-
tively) is absolutely irreducible, iff (or F , respectively) is absolutely irreducible.

Proof. This is Example 4.15 (ii) from [FL05a].

Any algebraic set can be written uniquely as a union of distinct irreducible algebraic
sets, each one of which is not contained in another (see [Har77, Proposition I.1.5] and
[Ful69, Chapter 1, Theorem 2 and Chapter 4, Section 2]). These algebraic sets are
called the irreducible componentsof the algebraic set. For an a�ne plane curveCf

overF, the factorization of f displays the decomposition into irreducible components
[Ful69, Chapter 1, Section 6, Corollary 3]. The homogenizations ofthe irreducible
components are the irreducible components of the corresponding projective curve
Cf � [Ful69, Chapter 4, Section 3, Proposition 3].

1.1.2 Singular points and tangent lines

From now on, we restrict ourselves to plane curves. This means that curves are
given by a polynomialf 2 F[x; y] or by a homogeneous polynomialF 2 F[X; Y; Z ].

De�nition 1.11. Let Cf be an a�ne curve with f 2 F[x; y]. A point P 2 Cf is
called singular if both partial derivatives of f vanish at P, i. e. (@f=@x)(P) = 0 =
(@f=@y)(P).
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De�nition 1.12. Let CF be a projective curve andF 2 F[X; Y; Z ]. A point P 2 CF

is calledsingular if all three partial derivatives of F vanish at P, i. e. (@F=@X)(P) =
(@F=@Y)(P) = ( @F=@Z)(P) = 0.

Let C be an a�ne or a projective curve. If P 2 C is a singular point, C is called
singular at P. Otherwise, it is callednonsingular at P, and the point P is called
nonsingular. If there are no singular points onC, it is called nonsingular.

Remark 1.13. The de�nition of a singular point on a projective curve as in De�ni-
tion 1.12is the same as De�nition 3.9 in Chapter VI of [Lor96]. Usually, a point on
a projective curve is said to be singular if the corresponding a�ne point in a suitable
dehomogenization is singular. The following lemma states that these de�nitions are
equivalent.

Lemma 1.14. Let P = ( X P : YP : ZP ) 2 CF be a point on the projective curveCF ,
which lies in U3, i. e. ZP 6= 0 (see Lemma1.4). Then P is singular if and only if
the point (X P =ZP ; YP =ZP ) is singular on CF � .

Proof. This is Lemma 3.10 from Chapter VI of [Lor96].

Remark 1.15. In his book, Fulton uses the terminologysimple point for a nonsin-
gular point [Ful69, Chapter 3, Section 1]. The notionsimple can be explained as
follows: To each pointP 2 CF a multiplicity mP (CF ) is assigned. The multiplicity
of a projective point P on a projective curveCF is de�ned as the multiplicity of the
corresponding a�ne point P� on the a�ne curve CF � . Dehomogenization is done
with respect to a nonzero coordinate ofP.
Let Cf be an irreducible a�ne curve. Transform the curve by shifting the coordinates
of P to (0; 0). The multiplicity of P on Cf is de�ned to be the minimal degree of
all monomials in the resulting curve polynomial. For details, see [Ful69]. A point
P 2 CF is nonsingular if and only ifmP (CF ) = 1.

If we have a nonsingular point on a curve, there is a unique tangent line to the curve
in that point. It is given by the partial derivatives of the de�ning polynomial as
follows:

De�nition 1.16. Let Cf be an a�ne curve, f 2 F[x; y], and P = ( xP ; yP ) 2 Cf a
nonsingular point. The line

t f;P :
@f
@x

(P)(x � xP ) +
@f
@y

(P)(y � yP ) = 0

is called thetangent line to Cf at P.

De�nition 1.17. Let CF be a projective curve,F 2 F[X; Y; Z ], and P 2 CF a
nonsingular point. The line

TF;P :
@F
@X

(P)X +
@F
@Y

(P)Y +
@F
@Z

(P)Z = 0

is called thetangent line to CF at P.
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Remark 1.18. Note that the de�ning polynomials of the tangents in the previous
de�nitions have degree 1 sinceP is nonsingular; in particular, they are not 0. The
de�ning polynomial for the projective tangent line dependson the representative of
the point P, but since the partial derivatives are homogeneous polynomials of degree
one less thanF , the tangent line is uniquely determined [Lor96, Section VI.7].
One might expect the projective tangent line atP = ( X P : YP : ZP ) to be de�ned
as

TF;P :
@F
@X

(P)(X � X P ) +
@F
@Y

(P)(Y � YP ) +
@F
@Z

(P)(Z � ZP ) = 0 :

Since @F
@XX + @F

@YY + @F
@ZZ = deg(F )F as polynomials, we get@F

@X(P)X P + @F
@Y(P)YP +

@F
@Z(P)ZP = 0, and both de�nitions of the tangent line are equal.

Let P = ( xP ; yP ) 2 Cf be nonsingular. Then from Lemma1.14 it follows that
P � := ' � 1

3 (P) = ( xP : yP : 1) is a nonsingular point onCf � and the tangent line
Tf � ;P � is given by the homogenization oft f;P [Lor96, Section VI.7].

1.1.3 Intersection numbers and B�ezout's Theorem

We abbreviate A2 := A2(F), and let F(A2) := F(x; y) := Quot( F[x; y]) be the
rational function �eld in two variables. Its elements arerational functions on A2,
i. e. fractions of polynomials inF[x; y]. For a point P 2 A2, we de�ne

OP (A2) := f g=h2 F(A2) j h(P) 6= 0g:

The subring OP (A2) � F(A2) is a local ring with maximal ideal

M P (A2) := f g=h2 O P (A2) j g(P) = 0 g

(see [Sti93, Appendix B.1]). Let f; g 2 F[x; y], then f; g 2 O P (A2). Let ( f; g ) denote
the ideal in OP (A2) generated byf and g. Then OP (A2)=(f; g ) is an F-vector space.
Let P2 := P2(F). Similarly, we de�ne the rational function �eld

F(P2) := f G=H j G; H 2 F[X; Y; Z ] homogen.; H 6= 0; deg(G) = deg(H )g [ f 0g;

as the �eld of homogeneous rational functions, i. e. fractions of homogeneous poly-
nomials of the same degree. For a pointP 2 P2, we de�ne

OP (P2) := f G=H 2 F(P2) j H (P) 6= 0g:

The ring OP (P2) is a local ring with maximal ideal

M P (P2) := f G=H 2 O P (P2) j G(P) = 0 g

(see [Sti93, Appendix B.2]). Note that F(P2) is F-isomorphic to F(A2) [Sti93, Ap-
pendix B.3], and hence also the local rings atP and ' 3(P) are isomorphic forP 2 U3.
We map a homogeneous polynomialF 2 F[X; Y; Z ] of degreed into OP (P2) by
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choosing a projective lineL, not passing throughP, and setting F� := F=Ld. If
P 2 U3, i. e. it is a point with a nonzeroZ-coordinate, we can chooseL = Z , and
F� is the usual dehomogenizationF� . Let F; G 2 F[X; Y; Z ] be homogeneous, then
F� ; G� 2 O P (P2). If ( F� ; G� ) denotes the ideal generated byF� and G� , the ring
OP (P2)=(F� ; G� ) is an F-vector space.

De�nition 1.19. Let f; g 2 F[x; y] and P 2 A2(F). The intersection number ofCf

and Cg at P is de�ned as

I (P; Cf \ Cg) := dim F(OP (A2)=(f; g )) ;

where (f; g ) is the ideal in OP (A2) generated byf and g.
Let F; G 2 F[X; Y; Z ] be two homogeneous polynomials andP 2 P2(F). The inter-
section number ofCF and CG at P is de�ned as

I (P; CF \ CG) := dim F(OP (P2)=(F� ; G� )) ;

where (F� ; G� ) is the ideal in OP (P2) generated byF� and G� .

It is clear from the de�nition that for a projective point P 2 U3, it holds I (P; CF \
CG) = I (' 3(P); CF � \ CG� ). The intersection number is the unique integer that
satis�es the seven properties given in [Ful69, Chapter 3, Section 3]. We only list a
selection of those properties, which are important for further considerations.

Lemma 1.20. The intersection number de�ned in De�nition 1.19 satis�es the fol-
lowing properties: (We use the notation of the a�ne case.)

(a) I (P; Cf \ Cg) 2 N0 for any f; g , and P such thatCf and Cg intersect properly
at P, i. e. they have no common component which passes throughP. If the
curves do not intersect properly atP, I (P; Cf \ Cg) = 1 .

(b) I (P; Cf \ Cg) = 0 if and only if P =2 Cf \ Cg. The intersection number only
depends on the components off and g that pass throughP.

(c) I (P; Cf \ Cg) � mP (Cf )mP (Cg), with equality if and only if Cf and Cg have
no tangent lines in common atP. In particular, if P is a nonsingular point
on bothCf and Cg, then I (P; Cf \ Cg) = 1 if and only if Cf and Cg have no
tangent lines in common atP. See Remark1.15 for the de�nition of mP (Cf ).

Proof. See Theorem 3 in Chapter 3, Section 3 of [Ful69].

The above properties su�ce to understand the simple cases weconsider in this work.
Next we state B�ezout's Theorem, which tells us how many intersection points two
projective curves of given degrees have.
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Theorem 1.21 (B�ezout's Theorem). Let F; G 2 F[X; Y; Z ] be two homogeneous
polynomials of degreed and e, respectively, such that the curvesCF and CG have no
component in common. Then

X

P 2 CF \ CG

I (P; CF \ CG) = d � e:

Proof. This is the main theorem in [Ful69, Chapter 5, Section 3] or [Har77, Corollary
I.7.8].

B�ezout's Theorem shows that two projective curves of degree d and e that are
su�ciently di�erent intersect at exactly d � e points when counting multiplicities in
the right way.

1.1.4 Functions, morphisms, and twists

We have already seen examples of function �elds, namely the rational function �elds
corresponding to the a�ne space and to the projective space.Now we are going
to associate a function �eld to every absolutely irreducible curve. We follow [Sti93,
Appendix B].
Let Cf be an absolutely irreducible, a�ne curve with absolutely irreducible de�ning
polynomial f 2 F[x; y]. Let (f ) � F[x; y] be the ideal in F[x; y] generated byf .
Then (f ) is a prime ideal and the ring

F[Cf ] := F[x; y]=(f )

is an integral domain. It is called thecoordinate ring of Cf .

De�nition 1.22. The quotient �eld F(Cf ) := Quot( F(Cf )) is called the function
�eld of Cf .

Elements of the function �eld are calledrational functions, and are fractions of
polynomials modulo the curve equation. LetGF=F be the Galois group ofF=F. The
action of GF=F on F can be extended to a�ne space, polynomial rings, and thus to
coordinate rings and function �elds.
We de�ne F[Cf ], the coordinate ring of Cf over F, and F(Cf ), the function �eld of
Cf over F, as the subsets ofF[Cf ] and F(Cf ), respectively, that are �xed under the
action of GF=F. The �eld F is contained inF(Cf ), and Cf is absolutely irreducible if
and only if F is algebraically closed inF(Cf ) [Sti93, Corollary III.6.7].
The elements inF(Cf ) de�ne functions on Cf since polynomials inF[x; y] are maps
A2(F) ! F. For the projective space, the situation is di�erent since polynomials
in F[X; Y; Z ] yield di�erent values when evaluated at di�erent representatives of a
projective point.
Let CF be an absolutely irreducible, projective curve with an absolutely irreducible
and homogeneous de�ning polynomialF 2 F[X; Y; Z ]. Denote by (F ) the homo-
geneous idealin F[X; Y; Z ] which is generated byF . As in the a�ne case, de�ne
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the homogeneous coordinate ring ofCF by Fhom[CF ] := F[X; Y; Z ]=(F ). It is an
integral domain, and we denote its quotient �eld byFhom(CF ) := Quot( Fhom [CF ]).
An element g 2 Fhom[CF ] is called aform if there exists a homogeneous polynomial
G such that g = G + ( F ).

De�nition 1.23. The function �eld of CF is the sub�eld of Fhom(CF ) given by
F(CF ) := f g=hj g; h 2 Fhom [CF ] are forms of the same degree andh 6= 0g [ f 0g.

The function �eld F(CF ) over F is de�ned as the �xed �eld under the action of the
Galois groupGF=F on F(CF ). The elements ofF(CF ) de�ne functions on CF since
they are represented as quotients of forms of the same degree. Therefore, the value of
such an element is independent of the chosen representativeof the projective point.
The map ' 3 : U3 ! A2(F); P = ( X P : YP : ZP ) 7! (X P =ZP ; YP =ZP ) induces an
F-isomorphism

(' � 1
3 )� : F(CF ) ! F(CF � ):

Thus the function �eld of a projective curve is isomorphic tothe function �eld of
the a�ne curve given by the dehomogenization (see [Lor96, Proposition VI.8.5] and
[Sti93, Appendix B.3]).
The localization of the coordinate ring at a pointP is a subring ofF(CF ) given by

OP (CF ) := f g=h2 F(CF ) j h(P) 6= 0g:

It is a local ring with maximal ideal

M P (CF ) := f g=h2 O P (CF ) j g(P) = 0 g

[Sti93, Appendix B.2]. If P is nonsingular (i. e. simple, see Remark1.15), OP (CF )
is a discrete valuation ring [Sil86, Proposition II.1.1]. In this case, we can de�ne a
valuation on OP (CF ).

De�nition 1.24. Let P 2 CF be a nonsingular point. Thevaluation on OP (CF ),
de�ned by

ordP : OP (CF ) ! N0 [ f1g ;

� 7! maxf m 2 Z j � 2 M P (CF )mg

is called theorder of � at P.

The order function is extended to the whole function �eld by de�ning

ordP : F(CF ) ! Z [ f1g ; � = f=g 7! ordP (f ) � ordP (g):

An element t 2 F(CF ) with ord P (t) = 1 is called a uniformizing parameter for CF

at P.
Since algebraic sets are de�ned by polynomials, the naturalmaps between them
are also given by polynomials. In terms of the Zariski topology, we consider maps
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which are continuous with respect to that topology. Amorphism of a�ne curves
is a map ' : Cf ! Cg given by a pair (' x ; ' y) of polynomials in F[x; y] that maps
a point P 2 Cf to the point ( ' x(P); ' y(P)) 2 Cg. If ' x ; ' y 2 F[x; y], we say that
' is de�ned over F. Any morphism between curves induces anF-algebra morphism
' � : F[Cg] ! F[Cf ] between the coordinate rings. By [FL05a, Remark 4.37],' � is
injective if and only if ' is surjective, and if' � is surjective, then' is injective. The
map ' is an isomorphismif there exists an inverse map that is a morphism. This is
equivalent to ' � being anF-algebra isomorphism [FL05a, De�nition 4.38].
From now on, we only consider irreducible projective curves, always keeping in mind
that we have the a�ne part given by dehomogenization. LetCF ; CG be absolutely
irreducible, projective plane curves de�ned overF. In our description of morphisms,
we follow [Sil86, xI.3].
A rational map from CF to CG is a map� : CF ! CG given by a triple (� X ; � Y ; � Z )
with � X ; � Y ; � Z 2 F(CF ) such that for every point P 2 CF at which � X ; � Y ; � Z are
de�ned, � (P) = ( � X (P) : � Y (P) : � Z (P)) 2 CG. We say that � is de�ned over F if
there exists� 2 F

�
such that �� X ; �� Y ; �� Z 2 F(CF ).

De�nition 1.25. Two curvesCF and CG are calledbirationally equivalent if there
exist rational maps � : CF ! CG and  : CG ! CF such that  � � and � �  are
the identities on CF and CG, respectively. In that case,� is called abirational map.

A rational map � : CF ! CG is called regular at P 2 CF if there exists a func-
tion g 2 F(CF ) such that g� X ; g� Y ; g� Z are all de�ned at P and at least one of
g� X (P); g� Y (P); g� Z (P) is di�erent from 0.

De�nition 1.26. A morphism betweenCF and CG is a rational map � : CF ! CG

that is regular at every point P 2 CF . The map � is called anisomorphismif there
exists a morphism : CG ! CF such that  � � and � �  are the identities on
CF and CG, respectively. Let Mor(CF ; CG) be the set of morphisms fromCF to
CG and Isom(CF ; CG) be its subset of isomorphisms. The sets of morphisms and
isomorphisms that are de�ned over~F for F � ~F � F are denoted by Mor~F(CF ; CG)
and Isom~F(CF ; CG), respectively. The curvesCF and CG are calledisomorphic over
~F or ~F-isomorphic if there exists an isomorphism de�ned over~F.

Remark 1.27. Let � : CF ! CG be a rational map between the projective, non-
singular, absolutely irreducible curvesCF and CG, then � is a morphism [Sil86,
Proposition II.2.1]. If � : CF ! CG is a morphism, then� is either constant or sur-
jective [Sil86, Theorem II.2.3]. By composition,� induces an injection of function
�elds � � : F(CG) ! F(CF ); f 7! f � � [Sil86, Theorem II.2.4]. The extension degree
[F(CF ) : � � (F(CG))] is called the degree of� .

De�nition 1.28. Let C be a projective, nonsingular curve de�ned overF. A non-
singular curveC0 de�ned over F is called atwist of C if C0 is isomorphic toC over
F. This means that the set Isom(C; C0) is not empty. We denote by Twist(C=F) the
set of F-isomorphism classes of curves that are twists ofC and de�ned overF.
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If C0=F is a twist of C=F, there exists an isomorphism 2 Isom(C; C0) and a �nite
�eld extension ~F � F such that  is de�ned over ~F.

De�nition 1.29. Let C=F be a projective curve andC0=F a twist of C. The minimal
extension degreed for which there exists an isomorphism 2 Isom(C; C0) that is
de�ned over ~F with [ ~F : F] = d is called thedegree of the twistC0. A twist of degree
2 is called aquadratic twist, one of degree 3 acubic twist and so on.

Remark 1.30. The set Twist(C=F) is determined by the Galois groupGF=F and the
group Isom(C) of isomorphisms ofC to itself. For details, we refer to [Sil86, xX.2].

1.1.5 Divisors, the Picard group and the genus

In this subsection, we de�ne thePicard group Pic0
F(C). This group is used in curve-

based cryptographic applications for realizing discrete-logarithm-based protocols. In
its description we follow [Sil86, xII.3] and [FL05a, Section 4.4].
Let C=F be an absolutely irreducible, nonsingular, projective curve de�ned over
F with C : F (X; Y; Z ) = 0. The divisor group Div( C) is the free abelian group
generated by the points ofC. An element D 2 Div( C) is written as a formal sum
D =

P
P 2 C nP (P), where nP 2 Z for all P and nP = 0 for all but �nitely many

P. Any such D is called adivisor of C. The integer deg(D) :=
P

P 2 C nP is called
the degree of the divisorD. The set of all pointsP for which nP 6= 0 is called the
support ofD. The subgroup of Div(C) containing all divisors of degree0 is denoted
by Div 0(C) := f D 2 Div( C) j deg(D) = 0 g. Since the Galois groupGF=F acts on
the points of C, it also acts on divisors. A divisor that is �xed under that action
is said to bede�ned over F and is called anF-rational divisor. The subgroups of
Div( C) and Div0(C) of divisors de�ned overF are denoted by DivF(C) and Div0

F(C),
respectively.
With a nonzero element� of the function �eld F(C) we associate a divisor div(f ) :=P

P 2 C ordP (� )(P). A divisor D 2 Div( C) is calledprincipal if there exists a function
� 2 F(C)� with D = div( � ). We denote the set of all principal divisors by Princ(C).
The degree of a principal divisor is 0 [Sil86, Proposition II.3.1]. Note that Princ(C) �
Div0(C) is a subgroup of Div0(C).

De�nition 1.31. The divisor class group of degree0 on C, also called thePicard
group ofC, is de�ned as

Pic0(C) := Div 0(C)=Princ(C):

The subgroup of Pic0(C) �xed by the Galois group GF=F is the group of divisor classes
de�ned over F and is denoted by Pic0F(C).

Remark 1.32. There exists a nonsingular, absolutely irreducible, projective variety
JC de�ned over F such that JC (~F) is isomorphic to Pic0

~F(C) for all intermediate �elds
F � ~F � F. The variety JC is called theJacobian variety ofC. It has the structure
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of a group, and the group law can be described by a morphismJC � JC ! JC . Thus
it is an algebraic group. A projective, algebraic group is called anabelian variety.
More details can be found in [FL05a, Section 4.4.4]. We return to abelian varieties
in Chapter 5.

We conclude this subsection by introducing the genus of a curve. This notion occurs
in the important theorem of Riemann-Roch, which we state in the simpli�ed version
as in [FL05a, Theorem 4.106].
But before doing so, we need to de�ne a partial order on Div(C) as follows: A divisor
D =

P
P 2 C nP (P) is called positive (or e�ective) if nP � 0 for all P 2 C. We write

D � 0 in that case. LetD1; D2 2 Div( C). Then we write D1 � D2 if D1 � D2 � 0.
This notation is very useful for describing zeros and poles of a function. For example,
the inequality div(� ) � (P) � 5(Q) implies that the function � has a zero of order
at least 1 at P and a pole of order at most 5 atQ. The inequality div(� ) � � 2(P)
means that � has a pole of order at most 2 atP. Let D 2 Div( C) be a divisor of
C. De�ne

L (D) := f � 2 F(C)� j div( � ) � � Dg [ f 0g:

The setL (D) is a �nite dimensional F-vector space [Sti93, Lemmas I.4.6 and Propo-
sition I.4.9]. We denote its dimension bỳ (D) := dim F(L (D)).

Theorem 1.33 (Riemann-Roch). Let C=F be an absolutely irreducible, nonsingular
curve overF. Then there exists an integerg � 0 such that for every divisorD 2
Div( C)

`(D) � deg(D) � g + 1:

If D 2 Div( C) and deg(D) � 2g � 2, then `(D) = deg(D) � g + 1.

Proof. See [FL05a, Theorem 4.106]; or [Sti93, Theorem I.5.15], [Sil86, Theorem
II.5.4], and [Har77, Theorem IV.1.3] for the full version of the theorem.

De�nition 1.34. The number g in Theorem 1.33 is called thegenusof C.

1.1.6 Elliptic curves

This subsection is dedicated to elliptic curves. We summarize results that we need
in the following chapters. In large parts we follow [Sil86]. In this subsection, letF
be a perfect �eld.

De�nition 1.35. An elliptic curve overF is a nonsingular, absolutely irreducible,
projective curve E of genus 1 de�ned overF together with an F-rational point
O 2 E(F).

Using the Riemann-Roch Theorem1.33, it can be shown that each such curve is
isomorphic to a plane curve given by a special equation, called Weierstra� equation.
In fact, the plane curves overF given by Weierstra� equations are exactly the elliptic
curves overF.
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Proposition 1.36. Let E=F be an elliptic curve de�ned overF. Then E is isomor-
phic overF to a curveC given by aWeierstra� equation

C : Y 2Z + a1XY Z + a3Y Z2 = X 3 + a2X 2Z + a4XZ 2 + a6Z 3 (1.3)

with coe�cients a1; a2; a3; a4; a6 2 F. The corresponding isomorphism maps the point
O to (0 : 1 : 0). Conversely, every nonsingular cubic given by a Weierstra�equation
(1.3) is an elliptic curve de�ned overF. We can takeO = (0 : 1 : 0).

Proof. This is part of [Sil86, Proposition III.3.1].

Although an elliptic curve is a projective curve, we often write the corresponding
a�ne equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6: (1.4)

It can be seen easily by considering the homogenized curve equation that (0 : 1 : 0)
is the only point at in�nity on E. Because of Proposition1.36, we �x the point
O := (0 : 1 : 0).
If char(F) 6= 2, we may use the transformation (x; y) 7! (x0; y0) = ( x; y+ 1

2(a1x+ a3)),
and after substituting (x; y) for (x0; y0) again, we obtain the curve

E 0 : y2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4
;

where b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6. The above transformation
is an F-isomorphismE ! E 0 [FL05a, Section 4.4.2.a]. Assuming additionally that
char(F) =2 f 2; 3g, we further carry out the isomorphism (x; y) 7! (x0; y0) = ( x+ b2

12; y).
This yields the curve

E 00: y2 = x3 �
c4

48
x �

c6

864
;

where c4 = b2
2 � 24b4 and c6 = � b3

2 + 36b2b4 � 216b6. Furthermore, de�ne b8 :=
a2

1a6 + 4a2a6 � a1a3a4 + a2a2
3 � a2

4 = 1
4(b2b6 � b2

4), as well as

� := � b2
2b8 � 8b3

4 � 27b2
6 + 9b2b4b6 and j :=

c3
4

�
:

The quantity � is called the discriminant of E, while j is called thej -invariant of
E. We also use the notationj (E) := j .
The curve E 00is isomorphic toE. Thus if char(F) =2 f 2; 3g, we may assume thatE
is given by ashort Weierstra� equation

E : y2 = x3 + ax + b; a; b2 F: (1.5)

In that case, the discriminant andj -invariant can be computed as

� = � 16(4a3 + 27b2) and j = � 1728
(4a)3

�
:
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When starting with a curve equation (1.4), the discriminant determines whether this
equation de�nes a nonsingular curve or not. The curveE is nonsingular if and only
if � 6= 0 [Sil86, Proposition III.1.4(a)]. The j -invariant determines the isomorphism
class of an elliptic curve, since two elliptic curves are isomorphic over F if and only
if they have the samej -invariant [Sil86, Proposition III.1.4(b)].

Example 1.37. Let char(F) =2 f 2; 3g and f = y2 � x3 � b for 0 6= b2 F. We consider
the curveE = Cf : y2 = x3 + b over F. We compute � = � 16� 27b2. This is nonzero
as all factors are nonzero inF and thus E is nonsingular and describes an elliptic
curve. The j -invariant is j = 0. Hence all curvesE : y2 = x3 + b for b 6= 0 are
elliptic curves. Each two of them are isomorphic overF because they have the same
j -invariant.

Proposition 1.38. For every j 0 2 F, there exists an elliptic curveE de�ned over
F(j 0) with j -invariant j (E) = j 0. If char(F) =2 f 2; 3g, the curveE can be given by
the following short Weierstra� equations:

(a) If j 0 = 0, then E : y2 = x3 + b, for any 0 6= b 2 F.

(b) If j 0 = 1728, then E : y2 = x3 + ax, for any 0 6= a 2 F.

(c) If j 0 6= 0; 1728, then E : y2 = x3 � 27j 0
4(j 0 � 1728)x � 27j 0

4(j 0 � 1728) .

Proof. The �rst statement is [Sil86, Proposition III.1.4(c)]. It can be checked easily
that for char(F) =2 f 2; 3g the given curves have the claimedj -invariant. Notice that
the discriminant is non-zero in all three cases.

Of course, if char(F) 2 f 2; 3g, the curves can be given as well [Sil86, Proof of
Proposition III.1.4(c)]. We now turn to Picard groups of elliptic curves.

Proposition 1.39. Let E be an elliptic curve. For every divisorD 2 Div0(E),
there exists a unique pointP 2 E such thatD � (P) � (O). Denote this point by
� (D). Then it follows for all D1; D2 2 Div0(E) that � (D1) = � (D2) if and only if
D1 � D2. The map � is surjective and thus induces a bijection of sets

� : Pic0(E) ! E:

Proof. This is [Sil86, Proposition III.3.4].

Since Pic0(E) carries the structure of an abelian group, the bijection from the pre-
vious proposition induces a group structure onE. The sets Pic0(E) and E are then
isomorphic as groups. Choosing a Weierstra� equation forE, the group law onE
can be given by formulas involving the point coordinates. Wegive the formulas in
the case char(F) =2 f 2; 3g for a short Weierstra� equation.

Lemma 1.40. Let char(F) =2 f 2; 3g, and let E : y2 = x3 + ax + b be an elliptic curve
over F. The commutative group law induced by� from Proposition 1.39 is given as
follows: (We denote the group law by+ as addition.)
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(a) For all P 2 E, it holds P + O = P, i. e. O is the neutral element.

(b) If P = ( x1; y1), then (x1; y1) + ( x1; � y1) = O, i. e. the additive inverse (or
negative) ofP is � P = ( x1; � y1).

(c) Let P1 = ( x1; y1) and P2 = ( x2; y2) with P1 6= � P2. De�ne

� =

(
(y2 � y1)=(x2 � x1) if P1 6= P2;

(3x2
1 + a)=(2y1) if P1 = P2:

The point P3 = P1 + P2 is given byP3 = ( x3; y3) with

x3 = � 2 � x1 � x2;

y3 = � (x1 � x3) � y1:

Proof. Combine [Sil86, Proposition III.3.4(e)] and [Sil86, Algorithm III.2.3] or see
[FL05a, Section 4.4.5].

Remark 1.41. The group law on an elliptic curveE has a geometric interpretation,
from which the above formulas can be derived. To add two points P1 and P2, one
takes the line L passing through them. If the points are equal, take the tangent
to E in P1. From B�ezout's Theorem 1.21, we know that L intersects with E in a
third point. The re
ection of this third intersection point about the x-axis is the
sumP3. Figure 1.1shows the geometric interpretation of the group law on the curve
E : y2 = x3 � x over R. In Figure 1.1(a), the point P1 has x-coordinatex1 = � 0:9
and P2 hasx2 = � 0:3; in Figure 1.1(b), P1 hasx-coordinatex1 = � 0:65.

b
b

b

b

P1
P2

P3

� P3

L

E

(a) Addition

b

b

b

P1

P3

� P3

L

E

(b) Doubling

Figure 1.1: Addition and doubling onE : y2 = x3 � x over R.

Next we consider morphisms between elliptic curves that arecompatible with the
group law. Let E1; E2 be two elliptic curves. We denote the neutral elements inE1

and E2 by O1 and O2, respectively. A morphism' : E1 ! E2 with ' (O1) = O2 is
called an isogeny. If there is an isogeny betweenE1 and E2, the curves are called
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isogenous. It turns out that all isogenies are group homomorphisms, which is shown
in [Sil86, Theorem III.4.8]. We denote by Hom(E1; E2) the set of all isogenies from
E1 to E2, i. e. the set of all morphisms that are group homomorphisms.The subset
of all isogenies de�ned overF is denoted by HomF(E1; E2).

Remark 1.42. Since we are mainly interested in the group structure ofE, all mor-
phisms of elliptic curves that occur in the following shall be group homomorphisms.
In particular, when we speak of isomorphisms, we mean group isomorphisms.

The set Hom(E1; E2) is an abelian group, sinceE2 is an abelian group, which means
that the sum of two isogenies can be de�ned pointwise. IfE1 = E2, the composition
of isogenies turns Hom(E1; E1) into a ring.

De�nition 1.43. The endomorphism ringEnd(E) of an elliptic curve E is de�ned
as End(E) := Hom( E; E ). The invertible elements in End(E) are calledautomor-
phisms, and the set of all automorphisms is denoted by Aut(E). It is a group with
respect to composition. The sets of endomorphisms and automorphisms that are
de�ned over F are denoted by EndF(E) and Aut F(E), respectively.

Example 1.44. For m 2 Z de�ne the multiplication-by-m map [m] : E ! E on
an elliptic curve E=F as follows: LetP 2 E be an arbitrary point. If m = 0, then
[m]P := O. If m > 0, then [m]P := P + P + � � � + P is the m-fold sum of P with
itself. Finally, if m 2 Z, m < 0, then de�ne [m]P := � [� m]P. The map [m] is an
endomorphism overF, i. e. [m] 2 EndF(E).

De�nition 1.45. For 0 6= m 2 Z, the kernel of the multiplication-by-m map is
denoted by E[m] := ker([ m]) = f P 2 E j [m]P = Og. It is called the m-torsion
subgroup ofE. Elements ofE[m] are calledm-torsion points. The set ofF-rational
m-torsion points is denoted byE(F)[m].

Lemma 1.46. Let E be an elliptic curve overF and 0 6= m 2 Z. Suppose that
char(F) = 0 or that m is prime to char(F). Then,

E[m] �= Z=mZ � Z=mZ;

in particular, if m > 0 is a prime, thenE[m] is a 2-dimensionalFm -vector space.

Proof. See [Sil86, Corollary III.6.4].

The endomorphism ring of an elliptic curve is a domain of characteristic 0 [Sil86,
Proposition III.4.2(c)]. Since all the maps [m] are in End(E) for all m 2 Z, the
ring Z can be embedded into End(E). Therefore, the endomorphism ring always
contains a copy ofZ.

Theorem 1.47. Let E be an elliptic curve. Then the ringEnd(E) is isomorphic
either to Z, to an order in a quadratic imaginary �eld, or to an order in a quaternion
algebra.
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Proof. This statement is [Sil86, Corollary III.9.4].

De�nition 1.48. If the endomorphism ring End(E) of an elliptic curve E is iso-
morphic to an order in a quadratic imaginary �eld, we say thatE has complex
multiplication (CM) .

In contrast to endomorphisms, the automorphisms ofE are rather rare. Over �elds
of characteristic di�erent from 2 or 3, the automorphism group is a cyclic group of
order 2, 4, or 6.

Theorem 1.49. Let char(F) =2 f 2; 3g, and let E be an elliptic curve overF. Then,

Aut( E) �= � n ;

where� n is the group ofnth roots of unity with n = 2 if j (E) =2 f 0; 1728g, n = 4 if
j (E) = 1728, and n = 6 if j (E) = 0 .

Proof. This is [Sil86, Corollary III.10.2].

An automorphism of E always has the form (x; y) 7! (u2x; u3y) for someu 2 F
�
.

This means thatau� 4 = a and bu� 6 = b. Depending on whethera or b are 0 or not,
this explains the above theorem.
We next describe the twists ofE more closely. According to our convention that
an isomorphism is a group isomorphism (see Remark1.42), we only consider twists
given by isomorphisms' : E1 ! E2 with ' (O1) = O2, i. e. ' is an isogeny. The set
of F-isomorphism classes of these twists is denoted by Twist((E; O)=F). Such twists
are related to the automorphism group ofE (see De�nition 1.28and [Sil86, xX.5]).

Proposition 1.50. Let E be an elliptic curve de�ned over the �eldF with char(F) =2
f 2; 3g. Let E be given by an equationE : y2 = x3 + ax + b. Let � = 2 if j (E) =2
f 0; 1728g, � = 4 if j (E) = 1728 and � = 6 if j (E) = 0 .
There is a bijection F� =(F� )� ! Twist(( E; O)=F). For � 2 F� the twist E � , corre-
sponding to� mod (F� )� has the equation

E � : y2 = x3 + � � 2ax + � � 3b if j (E) =2 f 0; 1728g (� = 2) ;

E � : y2 = x3 + � � 1ax if j (E) = 1728 (� = 4) ;

E � : y2 = x3 + � � 1b if j (E) = 0 ( � = 6) :

Proof. This is [Sil86, Proposition X.5.4] with � replaced by� � 1. This can be done,
since� 1 and � 2 are in the same class modulo (F� )� if and only if � � 1

1 and � � 1
2 are.

Remark 1.51. The corresponding isomorphism� � : E � ! E is given by

(x1; y1) 7! (�x 1; � 3=2y1) if j (E) =2 f 0; 1728g (� = 2) ;

(x1; y1) 7! (� 1=2x1; � 3=4y1) if j (E) = 1728 (� = 4) ;

(x1; y1) 7! (� 1=3x1; � 1=2y1) if j (E) = 0 ( � = 6) :
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Recall De�nition 1.29for the degree of a twist. The maximal degrees that can occur
are given by� . The following table lists the degreed of the twist depending onj (E)
and � :

j (E) � � d
=2 f 0; 1728g 2 2 (F� )2 1

=2 (F� )2 2
1728 4 2 (F� )4 1

2 (F� )2, =2 (F� )4 2
=2 (F� )2 4

0 6 2 (F� )6 1
2 (F� )3, =2 (F� )2 2
2 (F� )2, =2 (F� )3 3
=2 (F� )2, =2 (F� )3 6

For all the cases withd = 1 we can take � 1 := � 1=� 2 F� and get an isomorphism
E � �

1
! E; (x; y) 7! (� 2

1x; � 3
1y). In the same way, all the cases withd = 2 can be

treated like the cases withj (E) =2 f 0; 1728g by taking a (�=2)th root of � .

From now on, we consider elliptic curves over a �nite �eld. We�x F = Fq, a �eld of
order q. Let p = char(Fq) be the characteristic ofFq. Since there are only �nitely
many elements that can occur as coordinates ofFq-rational points, the set E(Fq) is
�nite. Hasse's Theorem gives bounds for its cardinality.

Theorem 1.52 (Hasse). Let E=Fq be an elliptic curve de�ned overFq. Then

# E(Fq) = q+ 1 � t; wherejtj � 2
p

q: (1.6)

Proof. This is [Sil86, Theorem V.1.1].

The number t from the previous theorem is called thetrace of the Frobenius en-
domorphism ofE over Fq. This terminology is justi�ed in the following example.
Note that the q-power Frobenius automorphism on a �nite �eld extensionFqk =Fq

generates the Galois groupGFqk =Fq for any k 2 N. As already mentioned in Subsec-
tion 1.1.4, the action of any �eld automorphism in GFqk =Fq extends to points on the
elliptic curve E=Fq. Extending the Frobenius automorphism in this way results in
an Fq-endomorphism ofE:

Example 1.53. If E is an elliptic curve de�ned overFq, the map

� q : E ! E; (x1; y1) 7! (xq
1; yq

1)

is an endomorphism ofE, called theFrobenius endomorphism. Since theqth power
map is the identity on Fq, the set of points �xed by � q is the group E(Fq) of Fq-
rational points on E. The endomorphism� q satis�es � 2

q � [t]� � q+[ q] = 0, see [Sch85,
p. 485]. Therefore, we call� q := T2 � tT + q 2 Z[T] the characteristic polynomial
of � q.
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Deuring [Deu41] describes the endomorphism ring of an elliptic curve over a�nite
�eld. It can not be isomorphic to Z, since it always contains� q. Therefore, it
is isomorphic to an order in a quaternion algebra or to an order in a quadratic
imaginary �eld, see Theorem1.47. The following theorem relates the structure of
End(E) with that of E[p].

Theorem 1.54. Let E be an elliptic curve de�ned overFq. The following statements
are equivalent:

(a) The endomorphism ringEnd(E) is non-commutative.

(b) The ring End(E) is an order in a quaternion algebra.

(c) The p-torsion subgroup isE[p] = fOg .

(d) The trace of Frobeniust is divisible byp, i. e. p j t.

If the above conditions do not hold, thenE[p] �= Z=pZ.

Proof. The theorem follows from [Sil86, Theorem V.3.1] with [Wat69, Theorem 4.1
and the de�nition before] or [Sil86, Exercise 5.10] concerning condition (d).

De�nition 1.55. An elliptic curve E=Fq is calledsupersingularif one of the condi-
tions in Theorem 1.54holds. Otherwise, the curve is calledordinary.

Returning to Hasse's Theorem, the question arises whether for any number t with
jtj � 2

p
q there exists an elliptic curve withq + 1 � t rational points. For most of

such numberst this is true. There are only a few exceptions (see [Wat69, Theorem
4.1] and [Sch87, Theorem 4.2 and Theorem 4.6]). In the following lemma, we only
state the case that we need later.

Lemma 1.56. Let t 2 Z with jtj � 2
p

q and p - t. Then there exists an ordinary
elliptic curve E de�ned over Fq, such that # E(Fq) = q + 1 � t. In particular, if
q = p is prime, then for everyt 6= 0 with jtj � 2

p
p there exists an ordinary elliptic

curve overFp with # E(Fp) = p + 1 � t.

Proof. This result follows immediately from [Wat69, Theorem 4.1].

Consider the twists of an elliptic curve over a �nite �eld Fq as described in Propo-
sition 1.50and Remark1.51. The number ofFq-rational points on the twist can be
given in terms of the tracet of the original curve E and the order q of the �eld.
He�, Smart, and Vercauteren [HSV06] determine the possible group orders of the
twists of an ordinary elliptic curve over a �nite �eld, which we give in the following
proposition. Note that # E(Fqd ) = # E 0(Fqd ) for a twist of degreed.

Proposition 1.57. Let E be an ordinary elliptic curve de�ned overFq, and let
# E(Fq) = q + 1 � t. Let E 0 be a twist ofE of degreed. The possible group orders
of E 0(Fq) are given as follows:
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d # E 0(Fq)
2 q+ 1 + t
3 q+ 1 � (3v � t)=2 with t2 � 4q = � 3v2

q+ 1 � (� 3v � t)=2 with t2 � 4q = � 3v2

4 q+ 1 � v with t2 � 4q = � v2

q+ 1 + v with t2 � 4q = � v2

6 q+ 1 � (3v + t)=2 with t2 � 4q = � 3v2

q+ 1 � (� 3v + t)=2 with t2 � 4q = � 3v2

Proof. This is [HSV06, Proposition 8].

The groups of points on elliptic curves used in cryptographyare cyclic groups of a
large prime order. LetE be an elliptic curve de�ned overFq with n := # E(Fq). Let
r 6= p be a prime dividing n.

De�nition 1.58. The embedding degree ofE with respect tor is the smallest integer
k such that r j (qk � 1).

If r - (q � 1), the embedding degree determines the smallest extensionof Fq over
which all r -torsion points of E are de�ned.

Theorem 1.59. Let E=Fq be an elliptic curve,n = # E(Fq), r a prime with r j n
and r - (q � 1). Then E[r ] � E(Fqk ) if and only if r j (qk � 1).

Proof. See [BK98, Theorem 1].

Let k > 1 be the embedding degree ofE with respect to r . Sincer j n, we know
that there are r -torsion points de�ned over Fq. Let � q be the q-power Frobenius
endomorphism as in Example1.53. Since anr -torsion point is again mapped to an
r -torsion point by � q, its restriction to E[r ] is a group endomorphism.

Lemma 1.60. Let E=Fq be an elliptic curve, r 6= p a prime with r j # E(Fq),
k > 1 the embedding degree ofE with respect to r , and � q the q-power Frobenius
endomorphism.
Then E[r ] is a 2-dimensional vector space overFr . The restriction of � q to E[r ],
� q : E [r ] ! E [r ] is a bijective linear map, which has the two eigenvalues� 1 = 1 and
� 2 = q. We have the following vector space decomposition into eigenspaces:

E[r ] = (ker( � q � [1]) \ E [r ]) � (ker(� q � [q]) \ E [r ]):

It is ker(� q � [1]) \ E [r ] = E(Fq)[r ] and ker(� q � [q]) \ E [r ] � E(Fqk )[r ].

Proof. It is clear that E[r ] is a 2-dimensionalFr -vector space (see Lemma1.46). It
can be seen easily that� q is injective and thus bijective onE[r ]. There arer -torsion
points in E(Fq), becauser j # E(Fq). Points de�ned over Fq are �xed under � q and
so 1 is an eigenvalue of� q, and the corresponding eigenspace is ker(� q � [1])\ E [r ] =
E(Fq)[r ]. The characteristic polynomial of the vector space homomorphism � q is
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the polynomial � q from Example 1.53. From r j q + 1 � t = � q(1), it can also be
seen that (T � 1) j � q modulo r . Over Fr , the polynomial � q = T2 � tT + q splits as
(T � 1)(T � q) 2 Fr [T], showing that the other eigenvalue of� q on E[r ] is q. Thus E[r ]
is the direct sum of the eigenspaces. The statement ker(� q � [q]) \ E [r ] � E(Fqk )[r ]
follows from r j n and k > 1.

1.1.7 Edwards curves and twisted Edwards curves

In this subsection, we brie
y describe Edwards curves and twisted Edwards curves.
Edwards curves were introduced as a new normal form for elliptic curves by Edwards
in 2007 [Edw07]. Their importance for cryptography was shown by Bernsteinand
Lange [BL07].
Let F be a �eld of characteristic di�erent from 2. An Edwards curve overF is a
curve

Ed : x2 + y2 = 1 + dx2y2; d 2 F n f 0; 1g: (1.7)

A group law on Ed can be de�ned as follows: The sum of two pointsP1 = ( x1; y1)
and P2 = ( x2; y2) in Ed(F) is given by

P1 + P2 =
�

x1y2 + y1x2

1 + dx1x2y1y2
;

y1y2 � x1x2

1 � dx1x2y1y2

�
: (1.8)

The neutral element with respect to this addition is (0; 1). The point (0; � 1) has
order 2 and the points (1; 0) and (� 1; 0) have order 4. The above group law has the
advantage that it is complete for certain values ofd, i. e. there are no exceptional
cases, the formulas work for any pair of input points. Theorem 3.3 in [BL07] shows
that this is the case ifd is not a square inF.
Bernstein, Birkner, Joye, Lange, and Peters generalize theconcept of Edwards curves
and introduce twisted Edwards curvesin [BBJ+ 08].

De�nition 1.61. Let F be a �eld with char(F) 6= 2. A twisted Edwards curve over
F is a curve

Ea;d : ax2 + y2 = 1 + dx2y2; a; d 2 F� ; d 6= a: (1.9)

Remark 1.62. In fact, a twisted Edwards curve is a quadratic twist of an Edwards
curve. The curveEa;d is a quadratic twist of the curveE1;d=a, see [BBJ+ 08, Section 2].
Note that for a = 1, the curve Ea;d = E1;d is an Edwards curveEd as de�ned before.

The fact that many elliptic curves are birationally equivalent to twisted Edwards
curves can be used to represent elliptic curves by Edwards curves or twisted Edwards
curves. The following theorem shows that an elliptic curveE over F which has a
point of order 4 is birationally equivalent to an Edwards curve Ed.

Theorem 1.63. Let F be a �eld with char(F) 6= 2. Let E be an elliptic curve over
F that has a point of order4. Then there existsd 2 F n f 0; 1g such that the curve
Ed : x2 + y2 = 1 + dx2y2 is birationally equivalent toE over F.
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Proof. This is Theorem 3.3 in [BBJ+ 08].

The algorithm of how to determine the curveEd from a given elliptic curve E is
described in the proof of [BBJ+ 08, Theorem 3.3]. Moreover, the group law on
the elliptic curve E corresponds to the group law on the Edwards curve under the
birational equivalence. Theorem 3.2 in [BL07] shows that two corresponding points
add to the corresponding point of the sum.
As a generalization of Edwards curves, twisted Edwards curves naturally cover a
larger set of elliptic curves that can be represented. The set of twisted Edwards
curves covers all elliptic curves that can be transformed into a Montgomery curve.

De�nition 1.64. Let F be a �eld with char(F) 6= 2. Let A 2 F n f� 2; 2g and
B 2 F� . A curve

E M
A;B : By2 = x3 + Ax 2 + x

is called aMontgomery curve.

Details on Montgomery curves can be found in [DL05a, Section 13.2.3].

Theorem 1.65. Every twisted Edwards curve overF is birationally equivalent over
F to a Montgomery curve, and conversely, every Montgomery curve overF is bira-
tionally equivalent overF to a twisted Edwards curve.

Proof. This is proved as Theorem 3.2 in [BBJ+ 08].

The speci�c transformations are given in the proof of [BBJ+ 08, Theorem 3.2]. Over
a �nite �eld Fq, many Montgomery curves are even birationally equivalent to an
Edwards curve. This is the case ifq � 3 (mod 4) [BBJ+ 08, Theorem 3.4].
The group law on a twisted Edwards curve is very similar to that on an Edwards
curve. For P1 = ( x1; y1); P2 = ( x2; y2) 2 Ea;d(F) the sum of the two points is given
by

P1 + P2 =
�

x1y2 + y1x2

1 + dx1x2y1y2
;

y1y2 � ax1x2

1 � dx1x2y1y2

�
: (1.10)

If a is a square inF, Ea;d is F-isomorphic to E1;d=a under the isomorphism (x; y) 7!
(
p

ax; y) that �xes the neutral element (0; 1). Therefore, the above formulas are
complete onEa;d(F) if a is a square inF and d is a nonsquare inF (see also [BBJ+ 08,
Section 6]).
For the remainder of this subsection, we consider a twisted Edwards curve in its
projective form

Ea;d : (aX 2 + Y 2)Z 2 = Z 4 + dX 2Y 2:

The point O := (0 : 1 : 1) is the neutral element of the addition, and the point
O0 := (0 : � 1 : 1) has order 2. The points (1=

p
a : 0 : 1) and (� 1=

p
a : 0 : 1) both

have order 4. All a�ne points are nonsingular, but there are two singular points at
in�nity.
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Lemma 1.66. Let Ea;d be a twisted Edwards curve overF with char(F) 6= 2. The
points 
 1 := (1 : 0 : 0) and 
 2 := (0 : 1 : 0) are the only points at in�nity on Ea;d.
Both points are singular, and their multiplicities arem
 1 (Ea;d) = 2 = m
 2 (Ea;d).

Proof. Let f = ( aX 2 + Y 2)Z 2 � Z 4 � dX 2Y 2 be the polynomial de�ning Ea;d. A
point P = ( X P : YP : 0) 2 Ea;d must satisfy dX 2

P Y 2
P = 0. Since d 6= 0, the only two

possible points withZ -coordinate equal to 0 are 
2 = (1 : 0 : 0) and 
 2 = (0 : 1 : 0).
We compute the partial derivatives

@f
@X

= 2X (aZ2 � dY2);
@f
@Y

= 2Y(Z 2 � dX 2);
@f
@Z

= 2Z(aX 2 + Y 2 � 2Z 2);

and see that they all vanish at 
1 and 
 2. According to De�nition 1.12, both
points are singular. To show that the multiplicity of each point is 2, we follow
Remark 1.15. Dehomogenizef with respect to the �rst coordinate such that 
 1

corresponds to the a�ne point (0; 0) on the a�ne curve given by the polynomial
az2 + y2z2 � z4 � dy2. The lowest-degree monomialsaz2 and � dy2 have degree 2,
which means thatm
 1 (Ea;d) = 2. The point 
 2 is handled similarly.

1.1.8 Hyperelliptic curves

In this section, we give a basic introduction to hyperelliptic curves, mainly to intro-
duce notation for hyperelliptic curves of genus 2. LetF be a perfect �eld.

De�nition 1.67. A nonsingular projective curveC=F of genusg is called ahyper-
elliptic curve of genusg if its function �eld F(C) is a separable extension of degree
2 of the rational function �eld F(x), i. e. [F(C) : F(x)] = 2.

With the help of the Riemann-Roch Theorem1.33, it can be shown that a hy-
perelliptic curve of genusg can be given by a nonsingular plane a�ne curve (see
Section 4.4.2.b in [FL05a]). For the purpose of this work, it su�ces to characterize
hyperelliptic curves by their a�ne plane parts as given in the following proposition.

Proposition 1.68. The function �eld of a hyperelliptic curve of genusg over F is
the function �eld of a nonsingular, plane, a�ne curve given by

C : y2 + h(x)y = f (x);

whereh(x); f (x) 2 F[x], deg(f ) 2 f 2g + 1; 2g + 2g, deg(h) � g + 1.

Proof. This follows from Theorem 4.122 in [FL05a].

A Weierstra� point on C is a �xed point under the hyperelliptic involution induced
by the nontrivial automorphism of the �eld extension F(C)=F(x). For details, see
[FL05a, Section 4.4.2.b]. If there exists anF-rational Weierstra� point, the curve is
birationally equivalent to one of the form

C : y2 + h(x)y = f (x);

whereh(x); f (x) 2 F[x], deg(f ) = 2 g + 1, deg(h) � g. The homogenization of any
such curve has a singular point at in�nity.
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Remark 1.69. If deg(f ) = 2 g+1 and char(F) 6= 2, the equation can be transformed
by completing the square to achieveh(x) = 0 [ FL05a, p.74]. If we have a curve given
by an equationy2 = f (x), a point P = ( xP ; yP ) being singular means thatyP = 0
and xP is a double root of f (x). Therefore, a hyperelliptic curve over a �eld of
characteristic di�erent from 2 can be given asC : y2 = f (x) such that f has only
simple roots inF[x].

With the above de�nition of hyperelliptic curves we may subsume elliptic curves as
hyperelliptic curves of genus 1. But ifg > 1, the points onC do not form a group any-
more. Therefore, we use the Picard group Pic0(C), or in other words, the Jacobian
variety JC for cryptographic applications (see De�nition1.31and Remark1.32). The
following theorem gives a nice representation for elementsof Pic0(C), from which
their �eld of de�nition can be read o�.

Theorem 1.70 (Mumford representation). Let C : y2 + h(x)y = f (x) be a hy-
perelliptic curve of genusg with h; f 2 F[x], deg(f ) = 2 g + 1, deg(h) � g. Let
F � ~F � F. Each nontrivial group element inPic0

~F(C) can be represented by a
unique pair of polynomials(u(x); v(x)) , u; v 2 ~F[x], where

(a) the polynomial u is monic,

(b) deg(v) < deg(u) � g,

(c) u j (v2 + vh � f ).

Proof. See [FL05a, Theorem 4.145].

Remark 1.71. Arithmetic in the group Pic0
~F(C) with elements in Mumford repre-

sentation can be done withCantor's algorithm, see [Can87] or [DL05b, Algorithm
14.7]. The Mumford representation in the previous theorem shows that the Picard
group Pic0

Fq
(C) of a hyperelliptic curve C over a �nite �eld Fq is �nite.

From now on, we identify the Jacobian varietyJC (see Remark1.32) with Pic 0(C).
For the sake of brevity, we use the notationJC , always keeping in mind that for
us, elements ofJC are divisor classes. We denote the class of a divisorD by D. It
has already been mentioned thatJC is an abelian variety (see Remark1.32). An
endomorphism ofJC is a morphism of abelian varietiesJC ! JC , i. e. a morphism of
varieties that additionally is a group homomorphism (see [FL05a, Section 4.3.3]). In
particular, it �xes the neutral element of JC . We denote the set of all endomorphisms
of JC by End(JC ). The set of all endomorphisms de�ned over a �eld~F with F �
~F � F is denoted by End~F(JC ).

Example 1.72. An important endomorphism ofJC is the multiplication-by-m map
[m] : JC ! JC for m 2 Z. An element D 2 JC is mapped to [m]D , which is de�ned
as the m-fold sum of D, understandingm = 0 and negative m as usual (compare
with Example 1.44). The kernel of [m] is denoted by

JC [m] := f D 2 JC j [m]D = 0g;
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where0 is the class of the zero-divisorD = 0. The set JC [m] is called thesubgroup
of m-torsion points on JC . For any F � ~F � F, the subset of~F-rational divisor
classes inJC [m] is denoted byJC (~F)[m].

The previous example shows that there is an embeddingZ ! EndF(JC ). Next we
state the generalization of Lemma1.46.

Theorem 1.73. Let C be a hyperelliptic curve of genusg de�ned over F and let JC

be its Jacobian variety. Let0 6= m 2 Z. If char(F) = 0 or if m is prime to char(F),
then

JC [m] �= (Z=mZ)2g:

If char(F) = p > 0, then JC [pe] �= (Z=peZ)s, where0 � s � g for all e � 1.

Proof. This is [DL05b, Theorem 14.11].

De�nition 1.74. The number s in Theorem 1.73is called thep-rank of C over F.

For the remainder of this section, we consider hyperelliptic curvesC over �nite �elds
F = Fq.

De�nition 1.75. If the p-rank of C is equal tog, then JC is calledordinary. The
JacobianJC is calledsupersingularif it is the product of supersingular elliptic curves.
The curve C is called ordinary or supersingular ifJC is ordinary or supersingular,
respectively.

Remark 1.76. An elliptic curve is supersingular if and only if it hasp-rank 0. For
curves of genus larger than 1, we have that ifC is supersingular, then it hasp-rank
0. The converse only holds forg � 2 [FL05a, Remark 4.75].

If we extend theq-power Frobenius automorphism ofFq to points on C, to divisors,
and �nally to divisor classes, we obtain an endomorphism� q : JC ! JC , called
the Frobenius endomorphism onJC . When using the Mumford representation, the
endomorphism is carried out by applying theq-power map to the coe�cients of the
polynomials u and v.

Theorem 1.77. The endomorphism� q satis�es a characteristic polynomialof de-
gree2g given by

� q(T) = T2g + a1T2g� 1 + � � � + agTg + � � � + a1qg� 1T + qg 2 Z[T]:

Let � i 2 C be the roots of� q over C, i. e.

� q(T) =
2gY

i =1

(T � � i ):

Then the following statements hold:
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(a) The numbers� i satisfy j� i j =
p

q for all 1 � i � 2g. There exists an ordering
of the � i with � i + g = � i , i. e. � i � i + g = q for all 1 � i � g.

(b) For any positive integerk, it holds

# C(Fqk ) = qk + 1 �
2gX

i =1

� k
i ; # JC (Fqk ) =

2gY

i =1

(1 � � k
i );

as well asj# C(Fqk ) � (qk + 1) j � gb2qk=2c. In particular, # JC (Fq) = � q(1).

Proof. See Theorem 14.16 and Theorem 14.17 in [DL05b].

Example 1.78. Let C be a hyperelliptic curve of genus 2 over the �nite �eldFq.
The characteristic polynomial of the Frobenius endomorphism onJC is

� q(T) = T4 + a1T3 + a2T2 + a1qT + q2

with a1; a2 2 Z. The equations in Theorem1.77 lead to a relation between the
coe�cients a1; a2 and nk := # C(Fqk ), k 2 f 1; 2g.
We have � q = T4 �

P 4
i =1 � i T3 +

P
i<j � i � j T2 � q

P 4
i =1 � i T + q2. It follows that

a1 = � (� 1 + � 2 + � 3 + � 4) and thus n1 = q + 1 + a1. Computing a2
1 shows that

n2 = q2 + 1 + 2 a2 � a2
1. Knowing a1 and a2, it is possible to computen1 and n2

and vice versa. From the inequality in part (b) of the previous theorem, it follows
ja1j � 2b2

p
qc and � 2q � a2 � 10q. More accurate are the following bounds

depending ona1 (see [R•uc90, Theorem 1.1]):

2ja1j
p

q � 2q � a2 �
a2

1

4
+ 2q:

The techniques from the example can be applied for arbitrarygenusg. Thus the
order of the JacobianJC (Fq) can be computed from the number ofFqk -rational
points on C for 1 � k � g. Knowing the coe�cients of the characteristic polynomial
of the Frobenius endomorphism means knowing #C(Fqk ) for 1 � k � g.

1.2 Pairings

In this section, we de�ne pairings and introduce the Tate-Lichtenbaum pairing and
the Weil pairing on the Jacobian of a hyperelliptic curve. Inthe case of elliptic
curves, we describe the details of pairing computation for di�erent variants of pair-
ings.
Pairings used in cryptography are e�ciently computable bilinear maps on torsion
subgroups of the Jacobian variety of a hyperelliptic curve that map into the mul-
tiplicative group of a �nite �eld. We call such a map a cryptographic pairing. In
contrast to the mathematical concept of a pairing, this additionally includes the
existence of algorithms for e�cient pairing computation.
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De�nition 1.79. Let G1; G2 be �nite abelian groups written additively, and let G3

be a multiplicatively written �nite abelian group. A cryptographic pairing is a map

e : G1 � G2 ! G3

that satis�es the following properties:

(a) It is non-degenerate, i. e. for all 0 6= P 2 G1 there is aQ 2 G2 with e(P; Q) 6= 1,
and for all 0 6= Q 2 G2 there is aP 2 G1 with e(P; Q) 6= 1.

(b) It is bilinear, i. e. for P1; P2 2 G1 and Q1; Q2 2 G2 we have

e(P1 + P2; Q1) = e(P1; Q1)e(P2; Q1);

e(P1; Q1 + Q2) = e(P1; Q1)e(P1; Q2):

(c) It is e�ciently computable.

An important property that is used in most applications, andthat follows immedi-
ately from bilinearity is e([a]P; [b]Q) = e(P; Q)ab = e([b]P; [a]Q) for all a; b2 Z and
for all P 2 G1 and Q 2 G2.
The �rst applications in cryptography used the Weil pairing. Menezes, Okamoto,
and Vanstone [MOV93] describe a way of reducing the discrete logarithm problem
(DLP) on a supersingular elliptic curve to a DLP in the multiplicative group of a
�nite �eld. They construct a group isomorphism from the Weil pairing. Frey and
R•uck [FR94] use a map deduced from the Tate pairing for a more general reduc-
tion of the DLP in a torsion subgroup of the Jacobian of a curve. First construc-
tive applications were the identity-based non-interactive key agreement of Sakai,
Ohgishi, and Kasahara [SOK00], Joux's tripartite one-round key agreement [Jou00],
the identity-based encryption scheme by Boneh and Franklin[BF01, BF03], and the
short signature scheme by Boneh, Lynn, and Shacham [BLS04b]. Currently, most
cryptographic pairings are variants of the Tate pairing.

1.2.1 The Tate-Lichtenbaum pairing

The Tate pairing can be de�ned on an arbitrary abelian variety. It induces a pairing
on the r -torsion subgroup of the abelian variety for a primer . A brief overview of the
de�nition of the Tate pairing can be found in [DF05a, Sections 6.2 and 6.3]. Lichten-
baum describes a version of the Tate pairing which can be computed very e�ciently
(see [DF05a, Corollary 6.17]). Since we are interested in practical implementations,
we restrict ourselves to discussing the Tate-Lichtenbaum pairing [DF05a, De�nition
6.15]. We also refer to it simply as the Tate pairing, knowingthat we use Lichten-
baum's approach.
Let C be a hyperelliptic curve of genusg de�ned over a �nite �eld Fq of characteristic
p. Let JC be the Jacobian variety ofC. Note that we regard elements ofJC as divisor
classes represented by a divisor of degree 0. Letn = # JC (Fq) and r > 5 be a prime
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di�erent from p with r j n. The embedding degree can be de�ned as for elliptic
curves (De�nition 1.58).

De�nition 1.80. The smallest integerk with r j (qk � 1) is called theembedding
degree ofC with respect tor .

Remark 1.81. The embedding degree as de�ned in the previous de�nition is a
function of r and q and actually does not depend on the curve itself. Nevertheless,
we attach it to the curve C if the prime r divides #JC (Fq).
If k is the smallest integer withr j (qk � 1), then the order of q modulo r is k.
Furthermore, the smallest �eld extension ofFq that contains the group� r of all r th
roots of unity is Fqk . This does not mean thatFqk is the smallest extension ofFp

that contains � r . As shown by Hitt [Hit07], this observation may have an in
uence
on the security of pairing-based cryptosystems.

De�nition 1.82. Let C be a hyperelliptic curve of genusg over the �nite �eld
Fq of characteristic p, and let r 6= p be a prime dividing #JC (Fq). Let k be the
embedding degree ofC with respect to r . The Tate-Lichtenbaum pairing(or simply
Tate pairing) is a map

Tr : JC (Fqk )[r ] � JC (Fqk )=[r ]JC (Fqk ) ! F�
qk =(F�

qk )r

de�ned as follows: Let P 2 JC (Fqk )[r ] be an Fqk -rational divisor class of order
dividing r represented by a divisorDP , and let Q 2 JC (Fqk ) be an Fqk -rational
divisor class represented by a divisorDQ such that its support is disjoint from the
support of DP . Let f r;P 2 Fqk (C) be a function onC with div( f r;P ) = rD P . Then

Tr (P; Q + [ r ]JC (Fqk )) = f r;P (DQ)(F�
qk )r :

The evaluation of f r;P at a divisor D =
P

R2 C nR (R) is given as

f r;P (D) =
Y

R2 C

f r;P (R)nR :

Proposition 1.83. The Tate pairing as de�ned in De�nition 1.82 is well de�ned,
bilinear, non-degenerate, and can be computed inO(log2(r )) operations in F�

qk .

Proof. This is Proposition 2.3 in [FR94] and [DF05a, Theorem 6.15 and Corollary
6.17].

For a suitable curve, the Tate pairing is hence a cryptographic pairing in the sense
of De�nition 1.79. The following lemma gives a simple statement from elementary
group theory that can be used to represent the groupJC (Fqk )=[r ]JC (Fqk ) with points
in JC (Fqk )[r ].

Lemma 1.84. Let G be a �nite abelian group written additively, and letr be a
prime dividing jGj. Let G[r ] be the subgroup of all points of order dividingr and rG
the set of allr -fold sums of elements inG. If there is no element of orderr 2 in G,
then G[r ] �= G=rG.
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Proof. We show that the mapG[r ] ! G=rG; g 7! g + rG is a group isomorphism.
It is clear that it is a group homomorphism. Supposeg1 + rG = g2 + rG for
g1; g2 2 G[r ]. Then it follows that g1 � g2 2 rG, i. e. g1 � g2 = rg for someg 2 G.
Sinceg1; g2 2 G[r ], we have 0 = rg1 � rg2 = r 2g. As there is no element of order
r 2 by assumption, we haverg = 0 and thus g1 = g2. Therefore, the above map is
injective. Consider the group homomorphismG ! rG; g 7! rg. The kernel of this
map is G[r ] and it follows G=G[r ] �= rG. HencejGj = jG[r ]j � j rGj. This proves the
lemma.

Corollary 1.85. If there are no points of orderr 2 in JC (Fqk ), we have

JC (Fqk )[r ] �= JC (Fqk )=[r ]JC (Fqk );

i. e. we can choose ther -torsion points as representatives of the classes on the right
hand side.

Remark 1.86. Sincer j # JC (Fq), there are r -torsion points in # JC (Fq), and we
may restrict the �rst argument to be taken from this set. Thus we can also de�ne
the Tate pairing as a map

Tr : JC (Fq)[r ] � JC (Fqk )=[r ]JC (Fqk ) ! F�
qk =(F�

qk )r :

From now on, we assume thatJC (Fqk ) does not contain any point of orderr 2. In
this case, by Corollary1.85, the Tate pairing can be given as a map

Tr : JC (Fq)[r ] � JC (Fqk )[r ] ! F�
qk =(F�

qk )r :

Nevertheless, we keep in mind that we can take any other representative in JC (Fqk )
of a class for the second argument.
Values of the Tate pairing are classes inF�

qk =(F�
qk )r . By applying the multiplicative

version of Lemma1.84, we see thatF�
qk =(F�

qk )r �= � r , the subgroup ofr th roots of
unity in F�

qk . The isomorphism is made explicit by computing

F�
qk =(F�

qk )r ! � r ; a(F�
qk )r 7! a(qk � 1)=r :

This map is called the�nal exponentiation.

Taking into account all the modi�cations made in the previous remark, we can de�ne
a version of the Tate pairing suitable for practical implementations (compare with
the description in [DF05b, Section 16.1.1]).

De�nition 1.87. The reduced Tate pairingis the map

er : JC (Fq)[r ] � JC (Fqk )[r ] ! � r � F�
qk ;

(P; Q) 7! Tr (P; Q)(qk � 1)=r = f r;P (DQ)(qk � 1)=r ;

induced by the Tate pairing.
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1.2.2 The Weil pairing

Early applications in cryptography used the Weil pairing onsupersingular elliptic
curves (see [MOV93] or [BF03]). Here, we de�ne the Weil pairing for arbitrary
hyperelliptic curves. Let the assumptions be as in the previous subsection. In
particular, let k be the embedding degree ofC with respect to r .

De�nition 1.88. The Weil pairing is de�ned as

Wr : JC [r ] � JC [r ] ! � r � F�
qk ;

(P; Q) 7!
f r;P (DQ)
f r;Q (DP )

:

The functions and divisors are de�ned as in the de�nition of the Tate-Lichtenbaum
pairing in De�nition 1.82.

Note that there is no need for a �nal exponentiation. The pairing value itself is an
r th root of unity.

Remark 1.89. Rubin and Silverberg [RS08, Theorem 3.1] show that theq-eigenspace
U = JC [r ] \ ker(� q � [q]) of the Frobenius endomorphism� q on JC [r ] is con-
tained in JC (Fqk ), and that the Weil pairing induces a non-degenerate pairing
JC (Fq)[r ] � U ! � r . For practical applications, one may therefore restrict the
Weil pairing to these groups.

Remark 1.90. Both the Weil and the reduced Tate pairing map into the group� r

of r th roots of unity. As already mentioned, in some cases, ifq is not a prime, it
might happen that this group lies in an extension ofFp that is a proper sub�eld of
Fqk but not an extension ofFq. Then the discrete logarithm problem in� r is easier
to solve than that in Fqk . For details, we refer to Hitt's paper [Hit07].

We have introduced the Tate pairing and the Weil pairing. We proceed with a more
detailed description of pairing computation on elliptic curves. But before doing so,
we shall note that pairings can only be computed e�ciently ifthe embedding degree
of the underlying curve is small enough, since computationsin the �eld F�

qk must
be performed. Such curves are rare and need to be constructed. We return to this
problem in Section1.3.

1.2.3 Pairing computation on elliptic curves

In [Mil86a], Miller gives an algorithm to compute the Weil pairing on elliptic curves.
A more detailed description of this algorithm, which is known asMiller's algorithm ,
is presented in [Mil04]. It explains an e�cient way to compute the functions f r;P (DQ)
used in the Weil and Tate pairings.
Let E be an elliptic curve over the �nite �eld Fq of characteristicp > 3 given by a
short Weierstra� equation E : y2 = x3 + ax + b, a; b2 Fq. Let r 6= p be a prime such
that r j n = # E(Fq), and let k > 1 be the embedding degree ofE with respect to r .
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Theorem 1.91. Let D =
P

P 2 E nP (P) 2 Div( E). Then D is a principal divisor
if and only if deg(D) = 0 and

P
P 2 E [nP ]P = 0, where the latter sum describes

addition on E.

Proof. This is Corollary III.3.5 in [Sil86] or Theorem 1 in [Mil04].

We use Proposition1.39 to replace divisor classes by points, and �nd the reduced
Tate pairing to be the map

er = E(Fq)[r ] � E(Fqk )[r ] ! � r � F�
qk ;

(P; Q) 7! f r;P (DQ)(qk � 1)=r :

When computingf r;P (Q), i. e. whenrD P is supposed to be the divisor of the function
f r;P , we can chooseDP = ( P) � (O), see Proposition1.39. The divisor DQ �
(Q) � (O) needs to have a support disjoint fromfO ; Pg. To achieve that, one may
choose a suitable pointS 2 E(Fqk ) and representDQ as (Q + S) � (S).
The Weil pairing is the map

Wr = E[r ] � E [r ] ! � r � F�
qk :

(P; Q) 7! f r;P (DQ)=f r;Q (DP ):

For the computation of f r;Q (P), we can takeDQ = ( Q) � (O) and need to choose a
suitable point R such that DP = ( P + R) � (R) has support disjoint from fO ; Qg.
In the following, we describe how to compute the functionsf r;P and f r;Q . Since
both computations are totally analogous, we choose notation for f r;P , but allow
P 2 E(Fqk ). We need to compute the functionf r;P having divisor div(f r;P ) =
r (P) � r (O). Theorem1.91shows that form 2 Z the divisor m(P) � ([m]P) � (m �
1)(O) is principal, such that there exists a functionf m;P 2 Fq(E) with div( f m;P ) =
m(P) � ([m]P) � (m � 1)(O). SinceP is an r -torsion point, we see that div(f r;P ) =
r (P) � r (O), and f r;P is actually a function we are looking for, which justi�es our
notation.

De�nition 1.92. Given m 2 Z and P 2 E(Fqk )[r ], a function f m;P 2 Fqk (E) with
divisor div(f m;P ) = m(P) � ([m]P) � (m � 1)(O) is called aMiller function .

The computation of f r;P makes use of the lines arising when two points on the curve
are added. The following three lemmas discuss divisors of functions related to these
lines, give their de�ning polynomials, and �x notation for later use.

Lemma 1.93. Let P1; P2 2 E. Let lP1 ;P2 be the homogeneous polynomial de�ning
the line throughP1 and P2, being the tangent to the curve inP1 if P1 = P2. The
function LP1 ;P2 = lP1 ;P2 (X; Y; Z )=Z has the divisor

div(LP1 ;P2 ) = ( P1) + ( P2) + ( � (P1 + P2)) � 3(O):



1. Preliminaries 37

Proof. See [Mil04, Proposition 2].

Next we give a�ne polynomials for the lines occurring in the previous lemma. Com-
pare these to the formulas of the addition law described in Lemma 1.40.

Lemma 1.94. Let P1 = ( x1; y1); P2 = ( x2; y2); Q = ( xQ ; yQ) 2 E. For P1 6= � P2

de�ne

� =

(
(y2 � y1)=(x2 � x1) if P1 6= P2;

(3x2
1 + a)=(2y1) if P1 = P2:

Then the dehomogenization(lP1 ;P2 )� of lP1 ;P2 evaluated atQ is given by

(lP1 ;P2 )� (Q) = � (xQ � x1) + ( y1 � yQ):

If P1 = � P2, then (lP1 ;P2 )� (Q) = xQ � x1.

Proof. This follows from the formulas for the elliptic-curve grouplaw (Lemma1.40)
and their geometric interpretation (Remark1.41).

Lemma 1.95. Let P1; P2 2 E. The function gP1 ;P2 := LP1 ;P2=LP1+ P2 ;� (P1+ P2) has
the divisor

div(gP1 ;P2 ) = ( P1) + ( P2) � (P1 + P2) � (O):

Proof. The result follows easily from Lemma1.93.

The function from the previous lemma can be used to compute Miller functions
recursively as shown in the next lemma.

Lemma 1.96 (Miller's formula) . The Miller functions f m;P can be chosen such that
f 1;P = 1 and such that form1; m2 2 Z, it holds

f m1+ m2 ;P = f m1 ;P f m2 ;P g[m1 ]P;[m2 ]P ; (1.11)

f m1m2 ;P = f m2
m1 ;P f m2 ;[m1 ]P = f m1

m2 ;P f m1 ;[m2 ]P : (1.12)

Proof. See Lemma 2 in [Mil04] and Lemma IX.17 in [Gal05].

Remark 1.97. We state some special cases of the formulas from the previouslemma.
Let m 2 Z, then

(a) f m+1 ;P = f m;P g[m]P;P ,

(b) f 2m;P = f 2
m;P g[m]P;[m]P ,

(c) f � m;P = ( f m;P g[m]P;� [m]P )� 1.

Note that f 0;P = 1 for all P 2 E and gP1 ;P2 = 1 if P1 or P2 equals the point at in�nity
O. These formulas show that any functionf m;P can be computed recursively as a
product of line functions. The functions are de�ned over the�eld of de�nition of P.
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Miller's algorithm uses these formulas along a scalar multiplication to compute [r ]P.
Its general form works for the Weil pairing, as well as the Tate pairing. We state the
algorithm in the case of the Tate pairing to be able to includeseveral simpli�cations,
some of which bene�t from the �nal exponentiation. For example, the evaluation of
f r;P at the divisor DQ can be replaced by the evaluation at the pointQ.

Lemma 1.98. Let P 2 E(Fq)[r ] and Q 2 E(Fqk )[r ], Q =2 E(Fq), then the reduced
Tate pairing can be computed aser (P; Q) = f r;P (Q)(qk � 1)=r .

Proof. This is [BLS04a, Theorem 1].

Algorithm 1.1 can be used to computef r;P (Q) for P 2 E(Fq)[r ] and Q 2 E(Fqk )[r ]
up to irrelevant factors lying in a proper sub�eld ofFqk . Sincek > 1, these factors
are mapped to 1 by the �nal exponentiation.

Input: P 2 E(Fq)[r ], Q 2 E(Fqk )[r ], r = ( r l ; : : : ; r0)2.
Output: f r;P (Q) as representative of the classf r;P (Q)(F�

qk )r .
1: R  P, f  1
2: for (i  l � 1; i � 0; i � � ) do
3: f  f 2 � gR;R (Q)
4: R  [2]R
5: if (r i = 1) then
6: f  f � gR;P (Q)
7: R  R + P
8: end if
9: end for

10: return f

Algorithm 1.1: Miller's algorithm for elliptic curves

Remark 1.99. Note that the functions gR;R and gR;P in steps 3 and 6 of Algo-
rithm 1.1 are fractions and that the inversions in each step of the loopcan be
postponed until the end of the loop by keeping track of numerator and denominator
separately.
To complete the pairing computation, the �nal exponentiation has to be applied
to the result of Miller's algorithm. For this, one uses fast exponentiation methods
in the �nite �eld Fqk (see [Doc05a] and [Doc05b]). It can be accelerated by using
actions of the q-power map onF�

qk [GS08]. For recent improvement on the �nal
exponentiation, see [SBC+ 08].

In practice, the Tate pairing is computed as

er : G1 � G2 ! G3 = � r � F�
qk ;
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with

G1 = E[r ] \ ker(� q � [1]) = E(Fq)[r ];

G2 = E[r ] \ ker(� q � [q]) � E(Fqk )[r ]:

For the second pairing argument, one must assure that it has anon-trivial component
in the second eigenspace of the Frobenius, since choosing both points from the �rst
results in a trivial pairing value.
If the embedding degree is even, there are further improvements of Miller's algorithm
by exploiting twists of E to represent the points inG2.

Proposition 1.100. Let � = 2 if j (E) =2 f 0; 1728g, � = 4 if j (E) = 1728, and
� = 6 if j (E) = 0 . If � j k, there exists a unique twistE 0 of E of degree� with
r j # E 0(Fqk=� ).

Proof. This is a consequence of the discussion in Section IV.C of [HSV06]. See in
particular the last paragraph of that section.

Lemma 1.101. Let E 0 be the twist from Proposition1.100, and let � � : E 0 ! E be
the corresponding isomorphism given by� 2 Fqk=� as in Remark1.51. The restriction
of � � to E 0(Fqk=� )[r ] is a group isomorphism

� � : E 0(Fqk=� )[r ] ! G2

of cyclic groups of orderr . If Q 2 G2, then its x-coordinate lies in a proper sub�eld
of Fqk .

Proof. Since � � is a group homomorphismE 0 ! E , it maps points of order r to
points of order dividing r . Since it is nontrivial on E 0(Fqk=� )[r ] and r is prime, the
image ofE 0(Fqk=� )[r ] is a cyclic group of orderr contained in E(Fqk )[r ]. It is shown
in [HSV06, Section V] that � � (E 0(Fqk=� )[r ]) is stable under � q and therefore must
be G2 since it is not contained inG1, and these are the only eigenspaces of� q.
Therefore, � � is a group isomorphismE 0(Fqk=� )[r ] ! G2. The statement about the
x-coordinates follows from the form of� � given in Remark1.51. Note that � 6= 3.

The previous lemma shows that we can de�ne a pairingG1 � E 0(Fqk=� )[r ] ! G3 by
simply mapping points fromE 0(Fqk=� )[r ] to G2 via � � and then computing the Tate
pairing.

De�nition 1.102. De�ne G0
2 := E 0(Fqk=� )[r ]. The pairing

e0
r : G1 � G0

2 ! G3; (P; Q0) 7! er (P; � � (Q0))

is called thetwisted Tate pairing.
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If k is even, there is always the possibility to use a quadratic twist, i. e. a twist of
degree 2. In this case, thex-coordinates of all points inG2 and G0

2 lie in a proper
sub�eld of Fqk . The denominators of the functionsgR;R or gR;P in Miller's algorithm
are polynomials de�ning vertical lines, and thus are of the form x � x[2]R or x � xR+ P .
Since the pointsR and P are de�ned overFq, the valuesgR;R (Q) and gR;P (Q) lie in
a proper sub�eld of Fqk . Therefore, the �nal exponentiation maps them to 1.

Proposition 1.103. Let k be even. Then the denominators of the functionsgR;R

and gR;P in Steps3 and 6 of Miller's algorithm can be discarded without changing
the value of the reduced Tate pairing.

Proof. See Theorem 3 in [BLS04a].

We conclude this section by giving a brief overview of other variants of the Tate
pairing which can be computed with a shorter loop in Miller'salgorithm.

Remark 1.104 (ate pairing). He�, Smart, and Vercauteren introduce theate pairing
in [HSV06]. The map

at � 1 : G2 � G1 ! G3;

(Q; P) 7! f t � 1;Q(P)(qk � 1)=r

de�nes a non-degenerate bilinear pairing [HSV06, Theorem 1], called theate pairing.
Note that for the ate pairing the �rst argument is de�ned over Fqk and thus curve
arithmetic is more costly than for the Tate pairing. But the loop length in Miller's
algorithm, which is given by the bit length oft � 1, may be much shorter.

Remark 1.105 (Twisted ate pairing or Eta pairing). The Eta pairing has �rst been
introduced by Barreto, Galbraith, �O h�Eigeartaigh, and Scott in [BGOS07] on Jaco-
bians of supersingular curves in small characteristic. He�, Smart, and Vercauteren
generalize the idea to ordinary curves in large characteristic and call the resulting
pairing the twisted ate pairing [HSV06]. Let d j k such that the curveE has a twist
of degreed. De�ne e := k=d. As for the ate pairing, we set� e := ( t � 1)e mod r .
The map

� � e : G1 � G2 ! G3;

(P; Q) 7! f � e ;P (Q)(qk � 1)=r

de�nes a bilinear, non-degenerate pairing [HSV06, Lemma 11] called thetwisted ate
pairing. It has the advantage of a shorter loop while curve arithmetic can be done
over Fq. But the loop length is in general larger than for the ate pairing.

There are so-called optimized and generalized versions of the ate and twisted ate
pairing that can be computed with even shorter loop length. The parameterst � 1
and (t � 1)e can be replaced by any of their powers modulor . Naturally one chooses
the power with the smallest bit length [ZZH08]. They can also be replaced with
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other integersS � q (mod r ) to obtain a shorter loop length [MKHO07]. Another
approach is given in [LLP08].
Vercauteren introduces optimal pairings discussing a lower bound on the length of
the loop in Miller's algorithm and giving pairing functionswhich are optimal in that
sense [Ver08]. All the previous pairing functions are subsumed under theframework
of pairing lattices that He� proposes in [He�08].

1.3 Constructing pairing-friendly curves

Let Fq be a �nite �eld of characteristic p. Let C be a hyperelliptic curve of genus
g de�ned over Fq, and let JC be its Jacobian variety. We denote byn the order of
JC (Fq). We recall De�nition 1.80 of the embedding degree: For a prime divisorr
of n, r 6= p, the embedding degree ofC with respect tor is de�ned as the minimal
integer k with r j (qk � 1).

De�nition 1.106. Let C=Fq be a hyperelliptic curve of genusg and r the largest
prime divisor of n = # JC (Fq). The parameter

� := glog(q)=log(r ) � 1

is called the� -value ofC.

A pairing-based cryptosystem is only secure if the primer is large enough such that
the discrete logarithm problems (DLP) in the subgroups ofJC (Fqk ) of order r are
infeasible, and such that the DLP in the multiplicative group F�

qk is infeasible. For
a �xed size of r , the size ofqk depends on the embedding degreek and the � -value.
The goal is to choose a curve with� as small as possible and an embedding degree
that is small, but large enough to guarantee the DLP inFqk to be infeasible.
The embedding degreek has several interpretations, as was already indicated in
Remark 1.81. The following lemma adds another very simple, but important obser-
vation.

Lemma 1.107. Assume thatk 2 N with r - k. The embedding degree ofC=Fq with
respect to the primer is k if and only if r j � k(q), where � k is the kth cyclotomic
polynomial.

Proof. The number k is the embedding degree with respect tor if and only if q has
order k in Fr , i. e. q is a primitive kth root of unity in Fr (see Remark1.81). This
is equivalent to q being a root of � k over Fr [LN97, De�nition 2.44].

In light of Theorem 1.77, we reformulate the conditions for a curve to have embedding
degreek in the following lemma.
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Lemma 1.108. Let C=Fq be a hyperelliptic curve, and letJC be its Jacobian. Letr
be a prime number andk 2 N with r - k. Then k is the embedding degree ofC with
respect tor if and only if the following conditions hold:

� q(1) � 0 (mod r ); (1.13)

� k(q) � 0 (mod r ); (1.14)

where� q is the characteristic polynomial of the Frobenius endomorphism as in The-
orem 1.77, and � k is the kth cyclotomic polynomial.

Proof. This is an easy consequence of Lemma1.107and the de�nition of the em-
bedding degree.

One approach to �nding q and r that satisfy equation (1.14) is to parametrize them
as polynomialsq(l) and r (l) over Z such that the condition is ful�lled in Z[l ]. The fol-
lowing lemma by Galbraith, McKee, and Valen�ca provides a way of �nding suitable
polynomials.

Lemma 1.109. Let q(l) 2 Q[l] be a quadratic polynomial and� k a primitive kth
root of unity in C. Then

� k(q(l)) = n1(l)n2(l)

for irreducible polynomialsn1(l); n2(l) 2 Q[l] of degree' (k) if and only if the equa-
tion

q(z) = � k

has a solution inQ(� k). Otherwise, � k(q(l)) is irreducible of degree' (k).

Proof. This is [GMV07, Lemma 5.1].

It is unlikely for a randomly chosen curve to have a small embedding degree and
a good � -value (see the discussion in [DF05a, Section 6.4.2]). For elliptic curves,
this is shown by Balasubramanian and Koblitz [BK98]. The probability that an
elliptic curve over a prime �eld Fp with a prime number of Fp-rational points has
an embedding degree less than (log2 p)2 is very small [BK98, Theorem 2]. Luca,
Mireles, and Shparlinski extend this result and make similar conclusions in more
general cases [LMS04]. This means that pairing-friendly curves are rare and need
to be constructed.
A successful approach is to �x a numberk and to �rst �nd the following parameters:
a prime powerq and a potential group ordern having a large prime divisorr such
that the conditions (1.13) and (1.14) are satis�ed. Then one uses the complex mul-
tiplication (CM) method to construct a hyperelliptic curve over Fq with n rational
points on its Jacobian. The following subsection brie
y explains the CM method
for elliptic curves.
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1.3.1 The CM method for elliptic curves

The CM method for elliptic curves has been introduced by Atkin and Morain [AM93]
for elliptic curve primality proving. We recall De�nition 1.48: An elliptic curve E
has complex multiplication (CM) if its endomorphism ring End(E) is isomorphic to
an order in a quadratic imaginary �eld K . Note that an elliptic curve E over C
has either End(E) �= Z or End(E) �= R for an order R in a quadratic imaginary
number �eld. Thus a curve overC has complex multiplication if its endomorphism
ring End(E) is strictly larger than Z.
To describe the CM method, we need to introduce lattices. Alattice in C is a
discrete additive subgroup � � C that contains an R-basis ofC. We start with an
elliptic curve E=C. From Corollary VI.5.1.1 in [Sil86], we know that there exists
a lattice � for which there is a group isomorphismC=� �= E(C). Without loss of
generality we may assume that there exists a� 2 C with positive imaginary part
(i. e. it lies in the upper half plane) and � = Z + Z� [FL05c, Corollary 5.36]. This
means that to every elliptic curve overC, we can associate a number� 2 C with
Im(� ) > 0 and a lattice � = Z + Z� . Two elliptic curves E and E 0 over C with
corresponding lattices � and � 0 are isogenous if and only if there exists an� 2 C�

with � � � � 0. They are isogenous and isomorphic if and only if there exists an
� 2 C� with � � = � 0 [Sil86, Theorem VI.4.1 and Corollary VI.4.1.1]. This gives a
new interpretation of the endomorphism ring ofE as

End(E) �= f � 2 C j � � � � g:

If E has complex multiplication, then End(E) is in fact isomorphic to an orderR in
Q(� ) [FL05c, Theorem 5.47]. Vice versa, one may start with an imaginary quadratic
�eld K , an order R in K , and an ideal � of R. The ideal � is a lattice in C and
there exists an elliptic curveE=C with C=� �= E(C) and End(E) �= R [FL05c,
Proposition 5.46].
We �x the order R to be the maximal order, i. e. the ring of integersOK in K .
Every ideal in OK is a lattice and thus leads to an elliptic curve. It follows from
[Sil86, Corollary VI.4.1.1] that ideals lying in the same ideal class lead to isomorphic
elliptic curves. Furthermore, it can be shown that there is abijection between the
ideal class group and the set of isomorphism classes of elliptic curves overC with
endomorphism ringOK [Sil86, Proposition C.11.1]. Thus the class numberhK of K
is equal to the number of isomorphism classes of such curves.For the de�nition of
the class group and class number, see [IR90, x12.2] or [Lor96, Chapter V].

Theorem 1.110. Let E=C be an elliptic curve withEnd(E) �= OK , the ring of
integers in an imaginary quadratic �eld K . The j -invariant j (E) is an algebraic
integer overQ. There are only �nitely many isomorphism classes of elliptic curves
with endomorphism ring isomorphic toOK . The correspondingj -invariants are
exactly the roots of the minimal polynomial ofj (E) over Q.

Proof. These results are given in [FL05c, Theorem 5.47 and Corollary 5.48] and
[Sil86, Corollary C.11.1.1].
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De�nition 1.111. The minimal polynomial of j (E) from Theorem 1.110is called
the Hilbert class polynomial ofK , denoted byHK .

Note that HK (x) 2 Z[x] sincej (E) is an algebraic integer and that its degree is equal
to the class numberhK . For methods to compute the class number and the Hilbert
class polynomial for a given quadratic �eld, see [Coh93, Section 5.3 and Section 7.6]
or [FL05b, Section 18.1.3]. The computation of the Hilbert class polynomial can
only be done e�ciently if the discriminant of K is small enough. For the current
state of the art of class polynomial computation see Sutherland's homepage1.

Example 1.112. The class number ofK = Q(
p

� 3) is hK = 1, and its Hilbert
class polynomial isHK (x) = x. Thus all elliptic curves overC with endomorphism
ring isomorphic to OK are isomorphic and havej -invariant 0. One example is the
curve E : y2 = x3 + 1. Compare this with Example 1.37.

The CM method constructs an ordinary elliptic curve�E=Fp for a primep by reducing
a curveE=C modulo a prime ideal lying overpOK . Deuring's lifting Theorem states
that any ordinary elliptic curve over Fp can be obtained by reduction of a curve over
a number �eld [Lan87, Theorem 14 in Chapter 13]. To obtain an ordinary curve,
the prime p needs to split in the �eld K .

Theorem 1.113. Let E=C be an elliptic curve with CM byOK for an imaginary
quadratic �eld K . Let p - �( E) be a prime which splits completely inOK , i. e. there
exist prime idealsp1 6= p2 with pOK = p1p2. Then the reduction �E of E modulo p1

is an ordinary curve de�ned overFp, and End(E) �= End( �E).

Proof. See Theorem 12 in Chapter 13 of [Lan87].

Since the endomorphism ring is not changed by the reduction,we are able to choose
an endomorphism ring for �E that has an element� of norm p and trace t = � + ��
such that p+1 � t is the desired number ofFp-rational points on �E, see Theorem1.52.
This means that the element� corresponds to the Frobenius endomorphism on the
curve �E. The j -invariant of such a curve can be found by reducing the Hilbert class
polynomial modulop as is shown in the following theorem.

Theorem 1.114. Let K = Q(
p

D) be an imaginary quadratic �eld, i. e.D < 0, and
let HK be its Hilbert class polynomial. Letp be a prime. The primep is a norm in
K , i. e. there exists� = u + v

p
D 2 O K with p = � �� = u2 � Dv2, if and only if the

reduction of HK modulo p has only simple roots all of which lie inFp.

Proof. This is part of [AM93, Theorem 3.2].

Since thej -invariant of an elliptic curve only determines the curve upto isomor-
phism, the curve with the desired group order may be a twist ofthe curve we have
constructed. The twist with the correct group order can be found easily.

1http://www-math.mit.edu/ � drew/
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Summarizing, we get the following method: Suppose, we have aquadratic imaginary
number �eld K = Q(

p
D) with Hilbert class polynomial HK and a prime p that

satis�es p = � �� in OK and n = p + 1 � t, t = � + �� . Let HK;p be the reduction of
HK modulo p. Then HK;p has only simple roots inFp. Let j 0 be one of its roots.
We can construct an elliptic curve �E over Fp with j -invariant j 0 by Proposition 1.38,
and one of the twists of �E hasn points. The equationp = � �� is often called theCM
norm equation. The element� can be written as1

2(t + v
p

D) and the norm equation
becomes

p =
1
4

(t2 � Dv2) or t2 � 4p = Dv2: (1.15)

Hilbert class polynomials overC can be precomputed. Their computation is not
considered part of the CM algorithm [FL05b, Remark 18.1].

1.3.2 Elliptic curves with small embedding degree

Supersingular elliptic curves have embedding degree at most 6 [MOV93]. Therefore
they are natural candidates for the use in pairing-based cryptographic protocols.
But since higher security demands need higher embedding degrees, ordinary elliptic
curves are the more 
exible choice.
Let E=Fq be an elliptic curve andr a prime dividing # E(Fq). The conditions from
Lemma 1.108translate into the following:

q+ 1 � t � 0 (mod r ); (1.16)

� k(q) � 0 (mod r ); (1.17)

where t is the trace of the Frobenius endomorphism, in particularjtj � 2
p

q.

Example 1.115 (MNT curves). Miyaji, Nakabayashi, and Takano [MNT01] intro-
duce the �rst parametrized families that yield ordinary elliptic curves with embed-
ding degreek 2 f 3; 4; 6g. The curves have� -value 1. The families are given by
parametrizations forp and t as polynomials inZ[l ] with n(l) = p(l) + 1 � t(l) and

n(l) j � k(p(l)) :

To �nd an MNT curve, one chooses polynomials as in the table below for the em-
bedding degree of choice.

k p(l) t(l)
3 12l2 � 1 � 1 � 6l
4 l2 + l + 1 � l or l + 1
6 4l2 + 1 1 � 2l

Curves can be constructed using the CM method by �rst solvingthe corresponding
norm equation for a given CM discriminant (see Section1.3.1). Any solution which



46 1.3. Constructing pairing-friendly curves

leads ton and p prime gives a curveE=Fp with n = # E(Fp) and the chosen embed-
ding degree. The idea to parametrize the primep and the group ordern leads to
other families, e. g. the family of curves described in Chapter 2, which were found
by exploiting the following simple observation.

Remark 1.116. Equation (1.16) implies that q � t � 1 (mod r ), and thus for
any polynomial f 2 Z[x] it holds that f (q) � f (t � 1) (mod r ). In particular,
Equation (1.17) can be replaced by �k(t � 1) � 0 (mod r ).

Example 1.117 (Freeman curves). The family found by Freeman [Fre06] consists
of curves with embedding degreek = 10 over a prime �eld and � -value 1. It is given
via the parametrization

n(l) = 25l4 + 25l3 + 15l2 + 5l + 1;

p(l) = 25l4 + 25l3 + 25l2 + 10l + 3;

which has been found by using the embedding degree conditionof the form in Re-
mark 1.116and one of the quadratic families in [GMV07]. To get a curve in that
family for a group ordern and a primep given by the above polynomials, one needs
to carry out the CM construction just as for MNT curves.

The families in the previous two examples and the family we turn to in Chapter 2
yield the only known construction methods for elliptic curves of prime order (� -
value equal to 1) and small embedding degree. There are construction methods for
all other embedding degrees, but the resulting curves have composite group order,
i. e. a � -value larger than 1.
A survey on pairing-friendly elliptic curves is given by Freeman, Scott, and Teske
[FST06]. The paper re
ects the current state-of-the-art. For every embedding degree
up to k = 50, they list the best known construction with respect to the � -value.
They also provide suggestions for curves with certain properties, for example having
large degree twists, which leads to more e�cient implementations at the cost of less

exibility in choosing curves.



Chapter 2

BN curves

In this chapter, we study pairing-friendly elliptic curvesde�ned over a prime �eld
Fp such that the group ofFp-rational points on the curve has prime ordern, and the
curve has embedding degreek = 12 with respect to n. The results in this chapter are
based on joint work with Barreto [BN06]. Others started calling curves belonging
to that family BN curves; we follow this notation here.
In Section 2.1, we show how the family is given by a polynomial parametrization
for the primes p and n. We deduce the parametrization and show how curves are
obtained from it. Also, heuristic evidence is given that a curve E with a prescribed
size of the primesp and n can be found quickly. Furthermore, we discuss the choice
of a generator forE(Fp). Section2.2 addresses properties of the proposed family of
curves. We describe the automorphisms on a BN curve, prove the existence of a twist
of degree 6, and propose a representation of extensions ofFp corresponding to the
chosen twist. Furthermore, we discuss e�cient endomorphisms as well as possibilities
to compress points on the curve and its twist. In Section2.3, we discuss pairing
computation on BN curves, give the line functions involved in Miller's algorithm
for di�erent pairings, and show how to compress pairing values in a way that is
consistent with the point compression described in Section2.2. Section2.4is devoted
to gathering the ingredients for generating all the required parameters needed to
implement pairings on BN curves. Finally, we provide examples of BN curves for
di�erent security levels in Section2.5.

2.1 Construction

The main observation that leads to the construction of BN curves is Lemma2.1,
which is the special casek = 12 of Lemma 6.1 in the paper of Galbraith, McKee,
and Valen�ca [GMV07] (see also Lemma1.109).

Lemma 2.1. Let � 12 be the12th cyclotomic polynomial. Then

� 12(6l2) = n(l)n(� l); (2.1)

47
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wheren(l) = 36l4 + 36l3 + 18l2 + 6l + 1.

Proof. See Lemma 6.1 in [GMV07] and the examples fork = 12.

Galbraith, McKee, and Valen�ca give a criterion to determine which quadratic poly-
nomials q(l) lead to the splitting of � k(q(l)). Their intention was to construct
pairing-friendly genus-2 curves. For such curves the quadratic polynomial q must
be able to take the value of a prime power when evaluated at an integer. This can
not be satis�ed for the polynomialq(l) = 6 l2.
We apply their results to elliptic curves and use the simple observation from Re-
mark 1.116that n = p+ 1 � t implies p � t � 1 (mod n) when E is an elliptic curve
de�ned over Fp, n = # E(Fp) is the number ofFp-rational points on E, and t is the
trace of the Frobenius endomorphism overFp. It follows that � k(p) � � k(t � 1)
(mod n) for any k 2 N. This leads to the parameters of a family of elliptic curves
as described in the following theorem.

Theorem 2.2. Let u 2 Z be an integer such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1; (2.2)

n = n(u) = 36u4 + 36u3 + 18u2 + 6u + 1 (2.3)

are prime numbers. Then there exists an ordinary elliptic curve E de�ned over Fp

with # E(Fp) = n. The embedding degree ofE with respect ton is k = 12, and the
curve can be given by the equation

E : y2 = x3 + b; b2 Fp: (2.4)

The trace of the Frobenius endomorphism overFp is given byt = t(u) = 6 u2 + 1.

Proof. From the parametrizations forp and n, we obtain t � 1 = p� n = 6u2. From
Lemma 2.1 we see thatn divides � 12(t � 1) and thus also � 12(p), which means that
p and n satisfy the embedding degree condition (1.17) for k = 12. Therefore, a
potential curve overFp with n rational points has embedding degree 12.
The number t satis�es jtj � 2

p
p because

t2 � 4p = � 3(6u2 + 4u + 1) 2 (2.5)

is negative. Sincet is not divisible by p, a theorem by Waterhouse [Wat69, Theorem
4.1] (see Lemma1.56) shows that there exists an ordinary elliptic curveE de�ned
over Fp such that the trace of the Frobenius endomorphism is equal tot, i. e. n =
# E(Fp).
We may construct a curveE with the above properties that has complex multipli-
cation by the ring of integersOK of the quadratic CM �eld K = Q(

p
t2 � 4p) =

Q(
p

� 3) (see Section1.3.1). Example 1.112shows thatK has class number 1 and its
Hilbert class polynomial isHK (x) = x. The j -invariant of this curve is thus j = 0.
The relations between thej -invariant and the coe�cients a; b show that a = 0 (see
Proposition 1.38). This proves the theorem.
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A curve E : y2 = x3 + b over a �eld of characteristic larger than 3 is nonsingular if
and only if b 6= 0 (Example 1.37). For a �xed prime p > 3, all curvesE : y2 = x3 + b
for b2 F�

p are twists of each other. We know from Proposition1.50that in the case
j = 0 there are six di�erent twists. In order to construct a curve as in Theorem2.2,
we only need to run through di�erent values forb, i. e. run through di�erent twists,
and check for the right group order. Assuming that we chooseb at random from F�

p,
we expect to do six checks on average to �nd the twist with the correct number of
points.

Corollary 2.3. Under the assumptions of Theorem2.2, a curve with the correct
group order can be found after on average six tries of random choices for the param-
eter b2 F�

p.

Thus once we have the primesp and n as in Theorem2.2, it is fairly easy to actually
�nd a curve with the given property. What remains to be examined, is the question
how easy it is to �nd suitable pairs of primes (p; n).

De�nition 2.4. A pair (p; n) of prime numbers is called aBN prime pair if there
exists an integeru 2 Z with p = p(u) and n = n(u), where p(u) and n(u) are given
by the polynomials in (2.2) and (2.3).

2.1.1 Distribution of BN prime pairs

A conjecture by Bateman and Horn [BH62] allows us to estimate the number of BN
prime pairs which are produced when letting the parameteru run through a given
range. We adapt the conjecture to our purposes as follows:

Conjecture 2.5. For large N 2 N, we heuristically expect the number of positive
integers u with 1 � u � N for which (2.2) and (2.3) provide a BN prime pair
(p; n) = ( p(u); n(u)) to be

Q(N ) =
C
16

Z N

2

1
(logu)2

du: (2.6)

The constant C is given as

C =
Y

q

" �
1 �

1
q

� � 2 �
1 �

w(q)
q

� #

; (2.7)

where the product is taken over all primesq, and wherew(q) denotes the number
of solutions ofp(x)n(x) � 0 (mod q).

Assuming that Conjecture2.5 is true, we are now able to estimate the probability
pI to �nd a BN prime pair when the parameter u is taken uniformly at random
from a certain interval I = [ u1; u2] � N. De�ne Q(I ) = Q(u2) � Q(u1 � 1), then
pI = Q(I )=(u2 � u1 + 1).
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u1 u2 � u1 + 1 R(I ) bQ(I )c r I � 102 bits

1 72621324 250565 277429 0:34503 � 109
448869734239 4008033 5794 6142 0:14456 160

114911668072285 9977856 9952 10501 0:09974 192
29417389567148395 13774482 10011 10567 0:07268 224

7530851732698370160 17949966 10097 10481 0:05625 256
1927898043575355590045 22521445 9961 10343 0:04423 288

493541899155296768986804 27819263 10127 10311 0:03640 320
126346726183755979948643811 34034872 10109 10394 0:02970 352

32344761903041530875525863096 40428318 10048 10349 0:02485 384
8280259047178631904144923719775 47727580 9975 10388 0:02090 416

2119746316077729767461112635400325 55123647 9927 10327 0:01801 448
542655056915898820470044848710404692 63634474 9933 10368 0:01561 480

138919694570470098040331481257823718878 71157457 10048 10176 0:01412 512

Table 2.1: The numberR(I ) of all BN prime pairs (p(u); n(u)) whereu 2 I = [ u1; u2],
the estimateQ(I ) for R(I ) from Conjecture2.5, and the ratio r I = R(I )=(u2� u1+1).
The last column gives the bit size of the primesp and n.

We have computed all BN prime pairs arising whenu lies in the intervals shown
in Table 2.1. We denote the number of actually existing pairs inI by R(I ). To
compare this number with the conjectured number of pairs, weapproximated the
constant C from Conjecture 2.5 by computing the product over the �rst primes
up to 81824487889, and obtainedC � 17:65105. The integral has been computed
numerically. The values forQ(I ) given in the table are rounded down. Instead of
pI we give the ratior I = R(I )=(u2 � u1 + 1) of the actual number of prime pairs to
the number of all possible values foru, i. e. the length ofI .
From the heuristic results of Table2.1, we may conclude that it is not too di�cult
to �nd a BN prime pair of a certain bit size. One just chooses a set of numbers
from which values for the parameteru are taken randomly, until both p(u) and n(u)
are prime. The set can be chosen to guarantee thatp and n have a desired bit size.
Also a sequential search quickly �nds BN prime pairs. This approach is taken in
Algorithm 2.1 below.

2.1.2 Choosing a generator point

Along with the curve, we need a generator of the group ofFp-rational points to carry
out cryptographic protocols. Since the group has prime order, we may take anyFp-
rational point P 6= O on the curve. To favor e�cient implementation, one might
be interested in the coe�cients of this generator point to beas simple as possible,
e. g. one of them being equal to 1. The choice of the generator should be included
into the curve construction algorithm. During construction, it is anyway required
to choose a point on the curve for checking the curve order. The following remark
discusses the choice of a point coordinate on a curve of the form E : y2 = x3 + b
without taking into account the choice of the correct twist.
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Remark 2.6. Let p 2 N be a prime.
(a) Let x0 2 Fp. Then b 2 F�

p can be chosen such thatx3
0 + b is a square inFp.

In this case, lety0 2 Fp be a square root ofx3
0 + b. Then P = ( x0; y0) is an a�ne

point on the curveE : y2 = x3 + b; in particular, it is not equal to O. As half of the
elements inF�

p are squares, there is a chance of 1=2 to obtain a squarex3
0 + b when

randomly choosingb from F�
p.

(b) Let y0 2 Fp. We may similarly chooseb 2 F�
p, such that y2

0 � b is a cube in
Fp. Let x0 be one of its cube roots. Then as above,P = ( x0; y0) is a point on
E : y2 = x3 + b. The chance of �nding a cubey2

0 � b is at least 1=3 because at least
one third of the elements ofFp are cubes, depending on whetherp � 1 (mod 3) or
not.

When choosing the generator point in advance, it must be noted that neither of the
coordinates can be equal to 0, as the following lemma shows.

Lemma 2.7. Let E : y2 = x3 + b be a BN curve de�ned overFp. Then b is neither a
square nor a cube inFp. In particular, it is not a 6th power. If P = ( x0; y0) 2 E(Fp),
then x0 6= 0 and y0 6= 0.

Proof. Assume that b is a cube. Then there exists a cube rootxb 2 Fp of b and
the point P = ( � xb; 0) is a point of order 2 inE(Fp), which is a contradiction since
n = # E(Fp) is an odd prime. Next assume thatb is a square. Then there exists a
square rootyb 2 Fp of b and the point ~P = (0 ; yb) is in E(Fp). We compute [2]~P
using the formulas in Lemma1.40to see that [2]~P = � ~P, i. e. ~P is a point of order
3, again a contradiction since 3- n. Now if P = ( x0; y0) 2 E(Fp), the above proof
also shows thatx0 6= 0 and y0 6= 0.

Computer experiments show that heuristically the condition x0y0 6= 0 is the only
restriction when choosing the coordinates for a generator point. We have the follow-
ing conjecture about the expected number of choices for the curve parameterb2 F�

p
that is needed until a suitable curve with a given generator is found.

Conjecture 2.8. Let (p; n) be a BN prime pair, and let x0 2 F�
p (y0 2 F�

p, respec-
tively). Then on average we expect 12 (18, respectively) random choices forb 2 F�

p

until the curve E : y2 = x3 + b has ordern and a generator withx-coordinate x0

(y-coordinatey0, respectively).

Algorithm 2.1 is an algorithm for constructing BN curves. It gives a curve which has
a generator withx-coordinate equal to 1. For an implementation of pairings onBN
curves, more parameters are required such as a representation for the �nite �eld ex-
tensionFp12 and points on the curveE(Fp12 ) for the second pairing argument. These
issues and the construction of parameters to exploit the properties and techniques
explained in Sections2.2 and 2.3 are addressed in Section2.4.



52 2.2. Properties

Input: The approximate bit length m of the curve order.
Output: Parametersp; n; b; y0 such that the curvey2 = x3 + b has ordern over Fp,

the point P = (1 ; y0) is a generator of the curve, andn has at leastm bits.
1: Let ~p = 36l4 + 36l3 + 24l2 + 6l + 1; ~n = ~p � 6l2 2 Z[l].
2: Compute the smallestu � 2m=4 such that dlog2 ~n(� u)e = m.
3: loop
4: Compute t  6u2 + 1,
5: computep  ~p(� u) and n  p + 1 � t.
6: if p and n are prime then
7: exit loop
8: end if
9: Compute p  ~p(u), and n  p + 1 � t.

10: if p and n are prime then
11: exit loop
12: end if
13: Increaseu  u + 1.
14: end loop
15: repeat
16: repeat
17: Chooseb 2 F�

p at random
18: until b+ 1 is a quadratic residue modp.
19: Compute y0 such that y2

0 = b+ 1 mod p,
20: and setP  (1; y0).
21: until nP = O.
22: return p; n; b; y0.

Algorithm 2.1: Constructing a BN curve

2.2 Properties

In this section, let (p; n) 2 Z2 be a BN prime pair, and letE=Fp be a BN curve, i. e.
E : y2 = x3 + b, b 2 F�

p, n = # E(Fp), and E has embedding degreek = 12 with
respect ton. Recall that the j -invariant of E is j (E) = 0. We brie
y recapitulate
all parameters obtained so far as polynomials inu (see Theorem2.2). The de�nition
of v is given implicitly in ( 2.5) by t2 � 4p = � 3v2:

p = 36u4 + 36u3 + 24u2 + 6u + 1;

n = 36u4 + 36u3 + 18u2 + 6u + 1;

t = 6u2 + 1;

v = 6u2 + 4u + 1:

Next we collect properties of the curveE in view of e�cient pairing computation,
before we describe pairing computation onE in the next section. First we consider
endomorphisms on a BN curve. The endomorphism ring End(E) of a BN curve is



2. BN curves 53

by construction isomorphic to the maximal orderOK in the quadratic CM �eld K =
Q(

p
� 3). It is OK = Z[ � 1+

p
� 3

2 ] [IR90, Proposition 13.1.1]. We have End0(E) :=
Q 
 End(E) = Q(

p
� 3). Let

� p : E ! E; (x; y) 7! (xp; yp)

be the p-power Frobenius endomorphism. Its characteristic polynomial is � p =
T2 � tT + p 2 Z[T]. Thus � p can be identi�ed with the element � = 1

2(t +
p

� 3v)
of norm p in OK . We haveK = Q(� ) and Z[� ] � O K .
The group Aut(E) of automorphisms ofE is the subset of End(E) containing the
invertible endomorphisms, i. e. the units of End(E). The group Aut(E) will be
discussed in the following section.

2.2.1 Automorphisms

In this short subsection, we describe all automorphisms of aBN curve in terms of
the parameter u. In a slightly more general setting, we �rst summarize what is
known about automorphisms of curves withj -invariant 0.

Lemma 2.9. Let E be an elliptic curve over a �nite �eld Fq of characteristic p, and
let j (E) = 0 . We �x � 6 2 Fq, a primitive 6th root of unity, and set � 3 = � 2

6 . Then
the automorphism groupAut( E) is a cyclic group of order6. It is generated by

� 6 : E ! E; (x; y) 7! (� 2
6x; � 3

6y) = ( � 3x; � y):

If q � 1 (mod 6), then all automorphisms are de�ned overFq, i. e. Aut Fq (E) =
Aut( E).

Proof. The lemma follows from Theorem III.10.1, Corollary III.10.2 in [Sil86], and
the fact that � 6 2 Fq if q � 1 (mod 6).

Now let E be a BN curve as at the beginning of this section. Since a primitive 6th
root of unity in Fp can be computed in terms of a polynomial inu similar to the
primes p and n, the automorphisms are de�ned overFp, and can be described in
terms of u as well.

Lemma 2.10. Let u 2 Z be such thatp = p(u) given by (2.2) is prime. Then the
primitive 6th roots of unity in Fp are given by

� 6 = 18u3 + 18u2 + 9u + 2 mod p; (2.8)

� 5
6 = � 18u3 � 18u2 � 9u � 1 mod p: (2.9)

Proof. We set � (l) = 18l3 + 18l2 + 9l + 2. Evaluating the 6th cyclotomic polynomial
� 6(x) = x2 � x + 1 at � (l), we see that it splits in Z[l ] as

� 6(� (l)) = 3(3 l2 + 3l + 1)(36l4 + 36l3 + 24l + 6 l + 1) :
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Therefore, ~p(l) = 36l4 + 36l3 + 24l2 + 6l + 1 is a divisor. It follows that � (l) is a
6th root of unity in Z[l ]=(~p(l)). Evaluating at u, we see that �6(� 6) � 0 (mod p),
and thus � 6 is a primitive 6th root of unity in Fp. The second primitive root can be
computed from� (l)5 = � � (l) + 1 mod ~p(l).

Remark 2.11. Note that the two preceding lemmas describe the automorphism
group for any curveE de�ned over a �eld Fq of characteristicp wherep is a prime
of the form (2.2) and the j -invariant of E is j (E) = 0. They hold especially for
the sextic twist of the BN curve E : y2 = x3 + b. We study such twists in the next
subsection.

2.2.2 Twists and point representation

The property we address in this subsection is the existence of a twist of degree 6,
which helps to represent the second pairing argument more e�ciently. This point is
usually taken from thep-eigenspace of the Frobenius endomorphism on then-torsion
subgroup. It is a point de�ned over the �eld Fp12 (see Subsection1.2.3).

Lemma 2.12. Let E=Fp be a BN curve. The curveE has a twistE 0=Fp2 of degree
d = 6 with the following properties: The order# E 0(Fp2 ) is divisible byn; the twist
can be represented by the equation

E 0 : y2 = x3 + b=�; (2.10)

where � 2 Fp2 n
�
(Fp2 )2 [ (Fp2 )3

�
; the corresponding isomorphism 2 Hom(E 0; E)

is given by
 : E 0 ! E; (x0; y0) 7! (� 1=3x0; � 1=2y0): (2.11)

Furthermore, a point Q0 2 E 0(Fp2 ) of order n is mapped via into the p-eigenspace
of the Frobenius endomorphism� p, i. e. � p( (Q0)) = [ p] (Q0).

Proof. The lemma follows from Proposition1.100and Lemma1.101. For the curve
equation and the isomorphism, see also Proposition1.50 and Remark 1.51. The
fact, that � is neither a square nor a cube follows from the minimality of the degree
d = 6.

Remark 2.13. We compute the group order of the twistE 0 explicitly: First de-
termine n2 = # E(Fp2 ). We know that p = � � with � = 1

2(t + v
p

� 3) 2 Q(
p

� 3),
wherev = 6u2 + 4u + 1 (see (2.5)). The group order n2 is

n2 = p2 + 1 � (� 2 + � 2);

which is equal to (p + 1 + t) � n. We set t2 = � 2 + � 2 = 1
2(t2 � 3v2), compute

t2
2 � 4p2 = � 3t2v2, and let v2 = tv. Application of Proposition 1.57yields that one

of the two possible group orders for the twist is

p2 + 1 �
1
2

(3v2 + t2) = ( p � 1 + t) � n:
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Theorem 9 in [HSV06] implies that only one of the two twists overFp2 of degree 6
can have order divisible byn (see also Proposition1.57). Hence the order ofE 0(Fp2 )
is (p � 1 + t)n.

We �x the following notation for the rest of this chapter. As in Subsection1.2.3we
de�ne

G1 := ker( � p � [1]) = E(Fp); G2 := E[n] \ ker(� p � [p]) � E(Fp12 )[n]: (2.12)

Pairings on BN curves are usually de�ned onG1 � G2 or G2 � G1 (see Section1.2.3).
Lemma2.12shows that we can represent the groupG2 by the Fp2 -rational points of
order n on the twist E 0. Elliptic curve operations that need to be done inG2 may
as well be done on the twist. Only for pairing computation we apply the map  to
move into G2 (see De�nition 1.102for the concept of a twisted pairing). Points on
the twist can be represented with only one sixth of the space which is required for
an arbitrary point on E(Fp12 ) (see also [HSV06, Section V.]).
We de�ne G0

2 to be the group ofFp2 -rational n-torsion points on the twist E 0,

G0
2 := E 0(Fp2 )[n]: (2.13)

A twisted pairing on a BN curve is then de�ned onG1� G0
2 or G0

2� G1. The restriction
 jG0

2
of the isomorphism to G0

2, which we also call , is a group isomorphism

 : G0
2 ! G2:

The three groupsG1, G2, and G0
2 are all cyclic groups of prime ordern. Note that

G0
2 is cyclic because the wholen-torsion is only de�ned overFp12 and not over Fp2

(see Theorem1.59).

2.2.3 Field extensions

Since the twist E 0 from the previous section is de�ned overFp2 , it appears natural
to construct the �nite �eld Fp12 as an extension ofFp2 .

Lemma 2.14. Let q be a prime power,q � 1 (mod 6), and � 2 Fq n
�
(Fq)2 [ (Fq)3

�
.

Then the polynomialsx2 � � , x3 � � , and x6 � � 2 Fq[x] are irreducible overFq.

Proof. The polynomial x2 � � is irreducible since otherwise, a square root of� would
exist. Similarly, x3 � � is irreducible. For the same reasons,x6 � � can not have a
linear factor. From q � 1 (mod 6), we know thatFq contains all 6th roots of unity.
Let � 6 2 Fq be a primitive 6th root of unity. Let ! be a root ofx6 � � lying in some
extension ofFq. The elements� i

6! , 0 � i � 5, are exactly the roots ofx6 � � , and we
may write x6 � � =

Q 5
i =0 (x � � i

6! ). Assumex6 � � has a quadratic factor overFq.
Then its constant term is the product of two of the above roots, say � i

6! and � j
6! .

Since � 6 2 Fq, it follows from � i + j
6 ! 2 2 Fq that ! 2 2 Fq. This is a contradiction,

since (! 2)3 = � implies that � is a cube inFq. A similar argument shows thatx6 � �
does not have a factor of degree 3. Altogether, this shows that the polynomial is
irreducible.



56 2.2. Properties

Let E be a BN curve, and letE 0 be its sextic twist by � 2 Fp2 as in Lemma2.12.
Let ! 2 Fp12 be a root of the irreducible polynomialx6 � � , i. e. ! 6 = � . This means
that we can constructFp4 = Fp2 (! 3), Fp6 = Fp2 (! 2), and Fp12 = Fp2 (! ). The curve
isomorphism may now be written as

 : E 0 ! E; (x0; y0) 7! (! 2x0; ! 3y0):

Remark 2.15. We see, that thex-coordinates of points in the image of (i. e. in
G2) all lie in Fp6 , and their y-coordinates all lie inFp4 .

The p2-power Frobenius automorphism of the �eldFp12 applied to ! gives ! p2
=

� � 3! for a primitive 3rd root of unity � 3, and hence we have (! 3)p2
= � ! 3 and

(! 2)p2
= � 2

3 ! 2. These identities will be useful later.
Furthermore, we �x notation for constructing the �eld Fp2 . Let � 2 Fp n(Fp)2, then
x2 � � is irreducible overFp. Let � 2 Fp2 be a root ofx2 � � , i. e. � 2 = � , � p = � � .
Then we may write Fp2 = Fp(� ).

2.2.4 E�cient endomorphisms

Gallant, Lambert, and Vanstone show in [GLV01] how endomorphisms on an elliptic
curve can be exploited to speed up elliptic-curve scalar multiplication. An e�cient
endomorphismis an endomorphism of the curve which can be computed with very
little e�ort, e. g. with just one �eld multiplication, and th us provides very fast com-
putation of certain scalar multiples of elliptic-curve points. An endomorphism'
that is non-trivial on a cyclic prime-order subgroup ofE(Fp) is a group automor-
phism on this subgroup. Thus for a pointP 2 E(Fp), there exists a suitables 2 Z
with ' (P) = [ s]P.
Recently, Galbraith and Scott applied the method of Gallant, Lambert, and Van-
stone for exponentiation in groups arising in pairing-based cryptography [GS08], e. g.
for BN curves. In particular, this method may be applied to the groupG1 = E(Fp)
and the group G0

2 on the twist E 0(Fp2 ). For details, we refer to [GS08]. In this
subsection, we will state e�cient endomorphisms on BN curves and show which
multiples can be computed easily. As usual, we give the relevant parameters as
polynomials in u.
A prominent example of an e�cient endomorphism is of course the p-power Frobe-
nius endomorphism� p. It is trivial on G1, but on its second eigenspaceG2, the
eigenvalue isp. For every point Q 2 G2, it holds that � p(Q) = [ p]Q. Let � 12 := t � 1,
and note that � 12 is a primitive 12th root of unity modulo n because it is a root of
� 12(x). Since � 12 = t � 1 � p (mod n), this means that the Frobenius provides a
quick way of computing [� i

12]Q for all i 2 f 0; 1; : : : ; 11g. The following lemma gives
parametrizations for all 12th roots of unity modulon.

Lemma 2.16. Let n be a prime given by(2.3), and let � 12 = 6u2. Then the 12th
roots of unity in Fn are given by the powers of� 12. They can be described in terms
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of the parameteru as follows:

� 12 = 6u2;

� 2
12 = � 36u3 � 18u2 � 6u � 1 mod n;

� 3
12 = � 36u3 � 24u2 � 12u � 3 mod n;

� 4
12 = � 36u3 � 18u2 � 6u � 2 mod n;

� 5
12 = � 36u3 � 30u2 � 12u � 3 mod n;

� 6
12 = � 1 mod n;

� 7
12 = � 6u2 mod n;

� 8
12 = 36u3 + 18u2 + 6u + 1 mod n;

� 9
12 = 36u3 + 24u2 + 12u + 3 mod n;

� 10
12 = 36u3 + 18u2 + 6u + 2 mod n;

� 11
12 = 36u3 + 30u2 + 12u + 3 mod n:

Proof. The powers can be computed as polynomials inu modulo the polynomial
n(u).

Lemma 2.17. Let E be a BN curve,Q = ( xQ ; yQ) 2 G2, and let � p 2 End(E) be
the p-power Frobenius endomorphism. Then for alli � 0 we have

� i
p(Q) = ( xpi

Q ; ypi

Q ) = [ � i
12]Q: (2.14)

Proof. See Lemma1.60for the eigenspaces of� p.

Another source for e�cient endomorphisms is the automorphism group Aut(E). We
have seen in Subsection2.2.1that for BN curves the automorphisms are de�ned over
Fp, thus they commute with the Frobenius� p. The restriction of each automorphism
to E(Fp) therefore gives a group automorphism ofE(Fp).

Lemma 2.18. Let E be a BN curve, and� 6 2 Aut( E) be the automorphism of
order 6 from Lemma 2.9. Then the restriction � 6jG1 is a group automorphism of
G1 = E(Fp), and it holds

� 6jG1 : G1 ! G1;

P = ( xP ; yP ) 7! (� 3xP ; � yP ) = [ � 6]P;

where � 3 is the 3rd root of unity in Fp from Lemma 2.9, and � 6 2 Z is a primitive
6th root of unity modulo n, i. e. � 6 = � 36u3 � 18u2 � 6u � 1 mod n or � 6 =
36u3 + 18u2 + 6u + 2 mod n.

Proof. Since� 6 is de�ned over Fp, it maps into E(Fp). The latter group is cyclic of
prime ordern, and � 6 is nontrivial, which means that� 6jG1 is a group automorphism
and the image of a pointP must be a multiple [� ]P of P. Now � 6 has order 6. It
follows

P = � 6
6(P) = [ � 6]P
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for all P 2 E(Fp), and so � 6 � 1 (mod n), i. e. � is a 6th root of unity modulo n.
Since� 6 has order 6, so has� . Lemma 2.16gives the parametrizations for the two
primitive 6th roots of unity in Fn .

Remark 2.19. The automorphisms commute with the multiplication-by-n map [n];
thus the restriction � 6jG2 is a group automorphism ofG2. Therefore, the previous
lemma holds for the groupG2 as well. The automorphisms act as scalar multi-
plications by 6th roots of unity. Combining this with Lemma 2.17 shows that the
automorphisms coincide onG2 with the even powers of the Frobenius endomorphism.

We now turn to e�ciently computable endomorphisms on the twist E 0 of Lemma
2.12. The automorphism group can be used on the subgroupG0

2 of points of order
n in E 0(Fp2 ) just as for the curveE itself (see Lemma2.18 and Remark2.11). In
general, given an endomorphism' 2 End(E), we obtain an endomorphism'  2
End(E 0) on the twist by applying the map

End(E) ! End(E 0); ' 7! '  :=  � 1' ; (2.15)

depicted in the following diagram:

E 0 '  
//

 
��

E 0

E
' //E

 � 1

OO

The isomorphism : E 0 ! E is de�ned in (2.11) in Lemma 2.12. Applying the
above map to the group Aut(E) gives Aut(E 0). The image of the generator� 6 is
� 0

6 2 Aut( E 0), where � 0
6(x0; y0) = ( � 3x0; � y0) uses the same cube root of unity� 3 as

� 6. We have
� 0

6 = �  
6 =  � 1� 6 : (2.16)

Thus the automorphisms do not provide any new e�cient endomorphisms on the
twist E 0. Next we will take powers of the Frobenius and apply (2.15). As on G2 (see
Remark 2.19), the even powers of� p lead to automorphisms again.

Lemma 2.20. Let E be a BN curve, and letE 0 and  be as in Lemma2.12. Let
� p 2 End(E) be thep-power Frobenius endomorphism. Denote by� p2 := � 2

p the
square of� p. Then

f (� i
p2) j 0 � i � 5g = Aut( E 0):

Proof. Since (! 3)p2
= � ! 3 and (! 2)p2

= � 3! 2 for a primitive 3rd root of unity � 3,
we obtain

�  
p2 (x0; y0) =  � 1� p2  (x0; y0) = ( ! � 2(! 2x0)p2

; ! � 3(! 3y0)p2
) = ( � 3x0; � y0);

which means that�  
p2 is a generator of the automorphism group Aut(E 0). The lemma

follows from (� i
p)

 =  � 1� i
p = (  � 1� p ) i = ( �  

p ) i .
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In contrast to its square, thep-power Frobenius itself gives a new endomorphism
� = �  

p =  � 1� p . It satis�es the 12th cyclotomic polynomial � 4 � � 2 + 1 = 0 (see
also [GS08]).

Lemma 2.21. Let E be a BN curve, and letE 0 and  be as in Lemma2.12. Let
� p 2 End(E) be thep-power Frobenius endomorphism. Let� = �  

p =  � 1� p 2
End(E 0) and let Q0 2 G0

2 be a point of ordern on the twist E 0. Then for all i � 0,
we have

� i (Q0) = [ � i
12]Q

0:

Proof. This follows directly from Lemma2.17.

2.2.5 Point compression

It is possible to compress points on an elliptic curve, e. g. to save bandwidth when
storing or transmitting such points. The usual technique isto keep only the x-
coordinate of the point and a single bit to distinguish between the at most two
possibley-coordinates. See [DL05a, Section 13.2.5, p. 288] for details. If they-
coordinate needs to be determined, a square root has to be computed.
We aim at compressingn-torsion points on the sextic twist, i. e. pointsQ0 = ( x0; y0) 2
G0

2. Instead of compressing tox0, we discardx0 and keepy0 as the compressed rep-
resentation ofQ0. To be able to decompress, we need to keep two bits to distinguish
between the at most three possible points with the giveny-coordinate. Keeping
only the y-coordinate means that we identify the three points (x0; y0), ( � 3x0; y0), and
(� 2

3x0; y0), which all share the samey-coordinate, while their x-coordinates di�er by
the primitive 3rd roots of unity � 3 and � 2

3 . We may describe such a set of points in
terms of the automorphism groupG0 := Aut( E 0) of E 0.
The groupG0 acts on the groupG0

2. We considerH 0 = h(� 0
6)

2i , the subgroup of order
3 of the automorphism groupG0 and its action onG0

2. Lemma 2.9 shows that for a
point Q0 = ( x0; y0) 6= O, the orbit H 0Q0 = H 0(x0; y0) consists exactly of all points in
G0

2 that share the samey-coordinate. The orbit containing the point O is just the
set fOg . For the same reasons as for the original curveE, there are no points with
a coordinate being 0 in the prime order groupG0

2 (see Lemma2.7). Therefore, for
a point Q0 = ( x0; y0) 6= O, the orbit

H 0Q0 = H 0(x0; y0) = f (x0; y0); (� 3x0; y0); (� 2
3x0; y0)g

has cardinality 3. We denote by OrbH 0(G0
2) the set of orbits ofH 0 on G0

2.
The following Lemma summarizes that we can represent orbitsunder the action of
H 0 by one element inFp2 , namely by they-coordinate of the points contained in the
orbit. We de�ne

G0
2;y = f y0 2 Fp2 j 9 x0 2 Fp2 such that (x0; y0) 2 G0

2g

to be the set of possibley-coordinates of points inG0
2.
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Lemma 2.22. Let E be a BN curve, and letE 0 be its twist of degree6. Then with
notation as above, the map

G0
2;y ! OrbH 0(G0

2) n ffOgg ;

y0 7! H 0(x0; y0)

is bijective.

Proof. The map is injective since di�erent y-coordinates are mapped to di�erent
orbits. It is surjective, since each orbit di�erent from fOg contains a point with
somey-coordinate fromG0

2;y .

Of course, we may also consider the action of the whole groupG0 on G0
2. For a

nonzero point, the orbit becomes

G0(x0; y0) = f (x0; y0); (� 3x0; � y0); (� 2
3x0; y0); (x0; � y0); (� 3x0; y0); (� 2

3x0; � y0)g:

Such an orbit can be represented by one bit less since we may forget about the sign
of y0and just identify all points that have y-coordinate equal toy0or � y0. We denote
by OrbG0(G0

2) the set of orbits ofG0 on G0
2. Let y0 = y0

0 + y0
1� 2 Fp2 with y0

0; y0
1 2 Fp.

De�ne ~y0 := y0 if the integer in [0; p � 1] representingy0
0 is even, and ~y0 := � y0 if it

is odd. Then if ~y0 = ~y0
0 + ~y0

1� , the least signi�cant bit of ~y0
0 is always 0 and can be

omitted. Let
G0

2;~y = f ~y0 j 9 x0 2 Fp2 ; such that (x0; y0) 2 G0
2g

be the set of all elements ~y0 for all y-coordinates of points inG0
2. It can be easily

seen, that the following lemma is true.

Lemma 2.23. Let E be a BN curve andE 0 its twist of degree6. Then the map

G0
2;~y ! OrbG0(G0

2) n ffOgg ;

~y0 7! G0(x0; y0)

is well-de�ned and bijective.

The orbit structure is carried over to G2 when mapped via , which is stated ex-
plicitly in the following remark.

Remark 2.24. It follows from (2.16) that  � 0
6 = � 6 . If we denote byG := Aut( E)

the automorphism group ofE and by H := h� 2
6i its subgroup of order 3, we get the

following identities. For Q0 2 G0
2,

 (G0Q0) = G (Q0) and  (H 0Q0) = H  (Q0);

i. e. an orbit of points in G0
2 is mapped to the corresponding orbit of points inG2,

and thus  (OrbG0(G0
2)) = Orb G(G2),  (OrbH 0(G0

2)) = Orb H (G2).
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Remark 2.25. From Remark 2.19 we see that the orbits inG2 under G and H
consist of evenp-power multiples of one point. The orbits of a pointQ 2 G2 are

GQ = f Q; [p2]Q; [p4]Q; [p6]Q; [p8]Q; [p10]Qg

and
HQ = f Q; [p4]Q; [p8]Qg;

respectively.

We have seen that we can compress points by identifying points in the orbits of the
automorphism group. We only need to keep part of they-coordinate of one of the
points and a few additional bits to distinguish between at most six possible points
in the orbit. We will see in the next section how this can be used together with the
compression of pairing values.
If a point needs to be reconstructed, i. e. decompressed, thex-coordinate correspond-
ing to a point in G1, G2, or G0

2 with a given y-coordinate is needed. We may obtain
it by simply computing a cube root ofy2 � b or y02 � b=�. We now brie
y discuss
how to e�ciently compute cube roots in �elds occurring for BN curves.
Each prime number of form (2.2), i. e. p(u) = 36u4+36u3+24u2+6u+1, is congruent
to 6u2 + 6u + 1 (mod 9) and hencep(u) � 1 (mod 9) if u � 0 (mod 3) or u � 2
(mod 3), and p(u) � 4 (mod 9) if u � 1 (mod 3).

Lemma 2.26. Let q be a prime power such thatq � 4 (mod 9), i. e. 2q + 1 � 0
(mod 9). Let a 2 F�

q be a cube. Then a cube rootr 2 F�
q of a is given byr = a(2q+1) =9.

Proof. Sincea is a cube,a(q� 1)=3 = 1. It is r 3 = a(2q+1) =3 = aa(2q� 2)=3 = a.

Computing cube roots modulop � 4 (mod 9) only takes one exponentiation. For
recovering thex-coordinate of points inE 0(Fp2 ) given only their y-coordinate, one
needs to compute a cube root inF�

p2 , and for p � 4 (mod 9) we havep2 � 7 (mod 9).

Lemma 2.27. Let q be a prime power such thatq � 7 (mod 9). Let a 2 F�
q be a

cube. Then a cube rootr 2 F�
q is given byr = a(q+2) =9.

Proof. Sincea is a cube,a(q� 1)=3 = 1. It is r 3 = a(q+2) =3 = aa(q� 1)=3 = a.

Again, the computation of a cube root only takes one exponentiation. When apply-
ing both lemmas, one must check that the result is correct, i.e. that r 3 = a, if it is
not known, whetheru is a cube.

2.3 Pairing computation

In this section, we discuss di�erent pairings on BN curves and elaborate on how they
can be computed. First of all, we recall the notation �xed in the previous sections.
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Throughout the section let (p; n) be a BN prime pair, and let E : y2 = x3 + b be
a BN curve overFp. Let E 0 : y2 = x3 + b=� be the twist of degree 6 as in Lemma
2.12, which is de�ned overFp2 , and � 2 Fp2 is neither a square nor a cube. We take
Fp2 = Fp(� ), where � is a root of the irreducible polynomialx2 � � 2 Fp[x]. The
embedding degree ofE with respect to n is k = 12, and thus pairings map into
Fp12 . This �eld is represented asFp12 = Fp2 (! ), where ! is a root of the irreducible
polynomial x6 � � 2 Fp2 [x]. The intermediate �elds Fp4 and Fp6 can then be given as
Fp6 = Fp2 (! 2) and Fp4 = Fp2 (! 3), see Section2.2.3. We de�ne &:= ! 3 and � := ! 2,
i. e. Fp6 = Fp2 (� ), Fp4 = Fp2 (&), and Fp12 = Fp4 (� ) = Fp6 (&).
We now assemble the groups that are involved in the pairing computation. The
�rst of those is the group E(Fp), which is the 1-eigenspace of thep-power Frobenius
endomorphism� p 2 End(E),

G1 = E(Fp) = ker( � p � [1]): (2.17)

The second group is thep-eigenspace of the Frobenius onE[n], which consists of
points de�ned over Fp12 ,

G2 = E[n] \ ker(� p � [p]) � E(Fp12 )[n]: (2.18)

We have seen that we can represent the points inG2 by points in the group

G0
2 = E 0(Fp2 )[n]; (2.19)

and then, if needed, map toG2 via

 : G0
2 ! G2; (x0; y0) 7! (! 2x0; ! 3y0) = ( �x 0; &y0):

This map is needed when a pairing is actually computed. Otheroperations, like for
example the elliptic curve arithmetic during Miller's algorithm for the ate pairing,
should be done inG0

2. When curve arithmetic in G2 is required in a protocol, it can
be replaced by arithmetic inG0

2. The following remark shows that computing the
map  from G0

2 to G2 is almost for free.

Remark 2.28. In the chosen setting of �nite �elds, the computation of  (Q0) =
 (x0; y0) does not require any �nite �eld arithmetic. An element � 2 Fp12 can be
written as

� = � 0 + � 1! + � 2! 2 + � 3! 3 + � 4! 4 + � 5! 5;

with coe�cients � i 2 Fp2 . It is uniquely determined by (� 0; � 1; � 2; � 3; � 4; � 5), its
coe�cient vector. The element ! 2x0 has just one coe�cient di�erent from 0, i. e.
it is given by the vector (0; 0; x0; 0; 0; 0). The second coordinate,! 3y0, is given by
(0; 0; 0; y0; 0; 0). In particular, no �eld multiplications are needed at all.

Since : G0
2 ! G2 is a group isomorphism, every point inG2 is of the form (�x 0; &y0).

Note that both coordinates lie in proper sub�elds ofFp12 (see Remark2.15). This
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makes the evaluation of line functions easier, as we are ableto do computations in
sub�elds of Fp12 .
Finally, the third group that occurs is the group � n � F�

p12 of nth roots of unity,
into which the pairing maps:

G3 = � n � F�
p12 : (2.20)

All the groups G1, G2, G0
2, and G3 are cyclic groups of ordern. If needed, one

can use point compression techniques on the groupsG1, G2, and G0
2 as proposed

in Subsection2.2.5. To speed up elliptic-curve scalar multiplication, the methods
discussed in Subsection2.2.4may be applied.
We now turn towards pairing computation. An essential part of Miller's algorithm
(see Algorithm 1.1) is the evaluation of the line functionslU;V for two points U =
(xU ; yU ) and V = ( xV ; yV ) lying in either of the groupsG1, G2, or G0

2. If U 6= � V ,
the function lU;V is given by

lU;V (x; y) = � (x � xU ) + ( yU � y);

where � is the slope of the line throughU and V, being tangent to the curve, if
U = V (see Lemma1.94).
The pairing functions that we consider in the sequel are either maps

G1 � G2 ! G3 or G2 � G1 ! G3:

Line function computation and evaluation are di�erent in both cases, sinceU; V 2 G1

in the �rst case and U; V 2 G2 in the second case. Thus point coordinates lie in
di�erent �elds. The point Q, at which the line functions are evaluated, lies in the
other group, and also has di�erent �elds of de�nition in the di�erent cases. We
address each case in one of the following two subsections.
The �nal exponentiation has to be carried out after the Miller function computation
in either case. For BN curves, the exponent is (p12 � 1)=n. It can be split up, and the
exponentiation can be carried out by some applications of the �nite �eld Frobenius
automorphism and a remaining part, done in a multi-exponentiation. For details,
we refer to the paper of Devegili, Scott, and Dahab [DSD07]. Recently, Scott et. al.
[SBC+ 08] have been able to further improve the �nal exponentiation.

2.3.1 Tate and twisted ate pairings

For the Tate and the twisted ate pairing (see Section1.2), we compute a function

e : G1 � G0
2 ! G3; (P; Q0) 7! f m;P ( (Q0))

p12 � 1
n :

Here m = n if the Tate pairing is computed andm = � 2
12 mod n if e is the twisted

ate pairing. The best choice for this setting of groups is thegeneralized twisted ate
pairing proposed by Zhao, Zhang, and Huang in [ZZH08]. Depending on the sign of
the parameteru, we can always choosem 2 f � 2

12 mod n; � 10
12 mod ng, i. e.

m 2 f� 36u3 � 18u2 � 6u � 1; 36u3 + 18u2 + 6u + 2g;
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such that the bitsize ofm is 3=4 that of n.
We now give the line functions that occur in Miller's algorithm for points in a�ne
representation. Remember that an element� of Fp12 can be represented as

� = � 0 + � 1! + � 2! 2 + � 3! 3 + � 4! 4 + � 5! 5

= � 0 + � 1! + � 2� + � 3&+ � 4!& + � 5&�:

We state the evaluated line functions in this representation.

Lemma 2.29. Let U; V 2 G1, U = ( xU ; yU ); V = ( xV ; yV ), i. e. xU ; yU ; xV ; yV 2 Fp,
and Q0 = ( xQ0; yQ0) 2 G0

2, i. e. xQ0; yQ0 2 Fp2 . Then the line function lU;V ( (Q0))
can be computed as follows.

(a) If U 6= � V , then � = ( yV � yU )=(xV � xU ). If U = V, then � = (3 x2
U )=(2yU ).

In both cases,

lU;V ( (Q0)) = ( yU � �x U ) + �x Q0� � yQ0&:

(b) If U = � V , then
lU;� U ( (Q0)) = � xU + xQ0�:

Proof. This follows easily from Lemma1.94.

Note that due to the representation ofG2 as the image ofG0
2, the computation of line

functions involves only the computation of� 2 Fp and the multiplications �x U 2 Fp

and �x Q0, where onlyxQ0 2 Fp2 .
To avoid inversions, one usually representsU; V in projective coordinates. The
formulas in this case can be easily deduced from the above andare given in [DSD07].

2.3.2 ate and optimal pairings

The ate pairing on a BN curve is computed as

e : G0
2 � G1 ! G3; (Q0; P) 7! f t � 1; (Q0)(P)

p12 � 1
n :

In contrast to pairings from the previous subsection, the curve arithmetic in Miller's
algorithm must now be done inG0

2. Line function coe�cients are computed from
the coordinates ofQ0 2 G0

2, while they are evaluated at a pointP 2 G1 de�ned over
the base �eld.

Lemma 2.30. Let U; V 2 G2 and de�ne U0 and V 0 by U =  (U0) = ( �x U0; &yU0)
and V =  (V 0) = ( �x V 0; &yV 0). If U 6= � V , the slope� of the line passing through
U and V (being tangent to the curveE if U = V) is given by

� = !� 0;

where � 0 is the slope of the line throughU0 and V 0 (being tangent to the curve if
U0 = V 0).
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Proof. Let U 6= V, then

� =
yV � yU

xV � xU
=

&(yV 0 � yU0)
� (xV 0 � xU0)

= !
yV 0 � yU0

xV 0 � xU0
= !� 0:

Now, let U = V, then

� =
3x2

U

2yU
=

� 2(3x2
U0)

&(2yU0)
= !

3x2
U0

2yU0
= !� 0:

Once more, computations with points inG2 can be replaced by corresponding com-
putations with points in G0

2. We proceed by giving the line functions.

Lemma 2.31. Let U0; V0 2 G0
2, U0 = ( xU0; yU0); V0 = ( xV 0; yV 0), i. e. xU0; yU0;

xV 0; yV 0 2 Fp2 , and P = ( xP ; yP ) 2 G1, i. e. xP ; yP 2 Fp. Then the line function
l  (U0); (V 0)(P) evaluated atP can be computed as follows:

(a) If U0 6= � V 0, let � 0 = ( yV 0� yU0)=(xV 0� xU0). If U0 = V 0, let � 0 = (3 x2
U0)=(2yU0).

In both cases,

l  (U0); (V 0)(P) = � yP + � 0xP ! + ( yU0 � � 0xU0)&:

(b) If U0 = � V 0, then
l  (U0);�  (U0)(P) = xP � xU0�:

Proof. Case (b) is trivial. For case (a), compute� (xP � x (U0)) + ( y (U0) � yP ) =
� 0! (xP � xU0� ) + ( yU0&� yP ).

Compared to Lemma2.29, more computations inFp2 must be made. We have the
computation of � 0and the multiplications � 0xP , where only� 0 2 Fp2 and � 0xU0 2 Fp2 .
These formulas have been proposed in [DSD07] already.
The shortest loop length for a pairing based on the ate pairing can be achieved by
using so called optimal pairings as introduced by Vercauteren in [Ver08]. The loop
length for the Miller function is m = 6u + 2 in this case. But note that then the

function (P; Q0) ! (f m; (Q0)(P))
p12 � 1

n is not bilinear, and that it needs to be adjusted
by some line-function factors.

2.3.3 Pairing compression

In [SB04], Scott and Barreto suggest to compress pairing values by computing a
�nite �eld trace. Implicit exponentiation of compressed values can be done as in the
XTR public key system [LV00]. Following the ideas in [LV00] and [SB04], we can
compress pairing values to 1=3 of their length by computing their Fp4 -trace. Pairing
values are then represented by oneFp4 -element, and can be implicitly exponentiated.
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Compression in such a way is consistent with point compression in G0
2. All points

with the same y-coordinate, i. e. all points that lie in the same orbit underthe
subgroupH 0 of the automorphism group Aut(E 0) (see Subsection2.2.5) are mapped
to the same value.

Proposition 2.32. Let e1 : G1 � G0
2 ! G3 and e2 : G0

2 � G1 ! G3 be bilinear
pairings. Let P 2 G1 and Q0 = ( x0; y0) 2 G0

2. Then for all points R0 2 G0
2 with

y-coordinate equal toy0, it holds:

tr Fp4 (e1(P; Q0)) = tr Fp4 (e1(P; R0)) and tr Fp4 (e2(Q0; P)) = tr Fp4 (e2(R0; P));

wheretr Fp4 : Fp12 ! Fp4 ; � 7! � + � p4
+ � p8

is the Fp4 -trace.

Proof. It follows from Lemma 2.22 that the set of all points with the same y-
coordinate y0 is exactly the orbit H 0Q0. Remark 2.24 then shows that this orbit
is bijectively mapped to the orbit H  (Q0) in G2. By Remark 2.25, we see that this
orbit is exactly f Q; [p4]Q; [p8]Qg, where Q =  (Q0). Let e0 = e1(P; Q0). Then the
pairing values of the other two points withy-coordinatey0 are ep4

0 and ep8

0 , respec-
tively. Thus the traces of all three values are equal to trFp4 (e0). The same holds for
the pairing e2(Q0; P) with groups interchanged.

Similarly, if we compress points inG0
2 to one bit less, i. e. if we identify all points

with their y-coordinates being equal up to sign, we can do the corresponding sixfold
compression of pairing values by computing theFp2 -trace.

Proposition 2.33. Let e1 : G1 � G0
2 ! G3 and e2 : G0

2 � G1 ! G3 be bilinear
pairings. Let P 2 G1 and Q0 = ( x0; y0) 2 G0

2. Then for all points R0 2 G0
2 that have

a y-coordinate equal toy0 or � y0, it holds:

tr Fp2 (e1(P; Q0)) = tr Fp2 (e1(P; R0)) and tr Fp2 (e2(Q0; P)) = tr Fp2 (e2(R0; P));

wheretr Fp2 : Fp12 ! Fp2 ; � 7! � + � p2
+ � p4

+ � p6
+ � p8

+ � p10
is the Fp2 -trace.

Proof. The proposition follows in the same way as Proposition2.32 from Lemma
2.23and Remarks2.24and 2.25.

The approach to compress pairing values by computing tracesis not suitable for
implicit multiplication of compressed values. This problem can be solved by a com-
pression technique that exploits the fact that pairing values lie in algebraic tori,
certain subgroups ofF�

p12 . We discuss this approach in Chapter3.

2.4 Construction revisited

In this section, we return to the construction of BN curves. In contrast to Section2.1,
we summarize in one place, how to get all the parameters needed for implementing
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pairings on BN curves, including generator points, �eld extensions, the primitive
roots of unity needed for the use of e�cient endomorphisms, and the automorphism
groups. We use the following polynomial parametrizations:

p = 36u4 + 36u3 + 24u2 + 6u + 1;

n = 36u4 + 36u3 + 18u2 + 6u + 1;

t = 6u2 + 1:

2.4.1 Prime pairs and primitive roots

Algorithm 2.2 is a randomized algorithm to �nd a BN prime pair. Note that the set
I in Step 1 might not contain any u leading to a BN prime pair, in which case the
loop would not terminate. We therefore assume, that the algorithm is only applied
for large enough values ofm, such that I is not empty and large enough to provide
a prime pair. Our heuristic results in Subsection2.1.1imply that this is always the
case form > 32. The notationu 2R I in Step 3 indicates that u is chosen at random
from the set I .

Input: A desired bitsizem for the group ordern.
Output: A parameter u 2 Z such that p and n are prime and havem bits, and the

corresponding BN prime pair (p; n).
1: Find the largest setI � Z, such that p and n have m bits for all u 2 I .
2: repeat
3: Selectu 2R I ,
4: computep  36u4 + 36u3 + 24u2 + 6u + 1,
5: compute t  6u2 + 1 and n  p + 1 � t.
6: until p and n are prime.
7: return u; (p; n).

Algorithm 2.2: Finding a BN prime pair

Let � 2 Fp be a non-square. To constructFp2 useFp2 = Fp(� ), where � 2 = � . From
the parameteru, we can compute the 6th roots of unity inFp as

� 6 = 18u3 + 18u2 + 9u + 2 mod p;

� 2
6 = 18u3 + 18u2 + 9u + 1 mod p;

� 3
6 = � 1 mod p;

� 4
6 = � 18u3 � 18u2 � 9u � 2 mod p;

� 5
6 = � 18u3 � 18u2 � 9u � 1 mod p;
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and the 12th roots of unity in Fn as

� 12 = 6u2;

� 2
12 = � 36u3 � 18u2 � 6u � 1 mod n;

� 3
12 = � 36u3 � 24u2 � 12u � 3 mod n;

� 4
12 = � 36u3 � 18u2 � 6u � 2 mod n;

� 5
12 = � 36u3 � 30u2 � 12u � 3 mod n;

� 6
12 = � 1 mod n;

� 7
12 = � 6u2 mod n;

� 8
12 = 36u3 + 18u2 + 6u + 1 mod n;

� 9
12 = 36u3 + 24u2 + 12u + 3 mod n;

� 10
12 = 36u3 + 18u2 + 6u + 2 mod n;

� 11
12 = 36u3 + 30u2 + 12u + 3 mod n:

Note that � 12 = t � 1. De�ne � 3 := � 2
6 , a primitive 3rd root of unity modulo p, and

de�ne � 6 := � 2
12, a primitive 6th root of unity modulo n.

2.4.2 Curve, twist, and automorphisms

On input of a BN prime pair (p; n), Algorithm 2.3 constructs a BN curve overFp

with n = # E(Fp) and a degree 6 twistE 0of E overFp2 such that n divides #E 0(Fp2 ).
It further gives generatorsP and Q0 for the groupsG1 = E(Fp) and G0

2 = E 0(Fp2 )[n].
As discussed in Subsection2.1.2, the random choice ofP in Step 4 may be replaced
by the choice with a certain givenx-coordinate ory-coordinate.
The 3rd root of unity � 3 from the previous subsection de�nes a generator� 6 of the
automorphism group Aut(E) by

� 6 : E ! E; (x; y) 7! (� 3x; � y)

and a generator� 0
6 of Aut( E 0) by

� 0
6 : E 0 ! E 0; (x0; y0) 7! (� 3x0; � y0):

Then it holds � 6(P) = [ � 6]P or � 6(P) = [ � 5
6]P. Which one is correct, can be checked

easily. Similarly, we can test whether� 0
6(Q

0) = [ � 6]Q0 or � 6(Q0) = [ � 5
6]Q

0.

2.4.3 Finite �elds and twist isomorphism

Finally, we can construct the �nite �elds Fp4 , Fp6 , and Fp12 as extensions ofFp2 using
the element � 2 Fp2 n

�
(Fp2 )2 [ (Fp2 )3

�
that de�nes the twist E 0 (see Lemma2.14

and Algorithm 2.3). As indicated in Subsection2.2.3, we can choose! 2 Fp12 with
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Input: A BN prime pair (p; n) and Fp2 = Fp(� ).
Output: A parameter b 2 Fp, such that n = # E(Fp) for E : y2 = x3 + b, a

parameter� 2 Fp2 , such that n j # E 0(Fp2 ) for E 0 : y2 = x3 + b=�, and generators
P for E(Fp) and Q0 for E 0(Fp2 )[n].

1: repeat
2: Selectb2R Fp n ((Fp)2 [ (Fp)3),
3: de�ne E : y2 = x3 + b,
4: selectP 2R E(Fp) n fOg .
5: until [n]P = O.
6: Compute h  p � 1 + t.
7: Select� 2 Fp2 n

�
(Fp2 )2 [ (Fp2 )3

�
,

8: de�ne E 0 : y02 = x03 + b=�.
9: repeat

10: SelectR0 2R E 0(Fp2 ),
11: computeQ0  [h]R0,
12: until Q0 6= O.
13: if [n]Q0 6= O then
14: Set �  � 5 and go to Step8.
15: end if
16: return b; �; P; Q0:

Algorithm 2.3: Constructing a BN curve and its twist

! 6 = � and de�ne � := ! 2 and &:= ! 3. Then the �elds can be represented as

Fp12 = Fp2 (! );

Fp6 = Fp2 (� );

Fp4 = Fp2 (&):

The isomorphism , mapping from the twist E 0 to E, is given as

 : E 0 ! E; (x0; y0) 7! (�x 0; &y0):

2.5 Examples

All of the following curves have an equationE : y2 = x3 + 3 over Fp with a group
of Fp-rational points of prime ordern and the trace of the Frobenius endomorphism
equal to t. A sample generator for any of them isP = (1 ; 2) 2 E(Fp). In all
cases, we choosep � 3 (mod 4) and p � 4 (mod 9) to simplify the computation
of square and cube roots, and the bitlengths ofp and n are equal. The �eld Fp2 is
represented asFp(i ), where i2 = � 1. The sextic twist for all examples has the form
E 0(Fp2 ) : y2 = x3 + 3=� , where 1=� = � 8 + 8i . Furthermore, we provide a primitive
6th root of unity � 6 modulo p, and a 12th root of unity � 12 modulo n can be simply
obtained ast � 1. A generator for the groupE 0(Fp2 )[n] is given asQ0 = ( xQ0; yQ0).
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160-bit groupsize

p = 1461501624496790265145448589920785493717258890819

n = 1461501624496790265145447380994971188499300027613

t = 1208925814305217958863207

u = 448873741399

� 6 = 1627965160026674480212199743920457793

xQ 0 = 349428567228908313604752388954091103921210071309i

+821829959935049481490613055449855070122493239244

yQ 0 = 871202673805247435072049417049386724746063086907i

+1239146125490754416389195992354273864776961399618

192-bit groupsize

p = 6277101719531269400517043710060892862318604713139674509723

n = 6277101719531269400517043709981664699904401744160036556389

t = 79228162414202968979637953335

u = � 114911677977917

� 6 = 6277101719531242087793785341302515031658554231004900992640

xQ 0 = 589078237886627886412000379109769546321621676110465892923i

+4140652997028575876232653427843338644184272370846988816508

yQ 0 = 3110626088763032698651814673435170332591939245116527986818i

+376143398667871384477896023247789475555633842832870122551

224-bit groupsize

p = 26959946667149205758383469736921695435015736735261155141423417423923

n = 26959946667149205758383469736921690242718878200571531029749235996909

t = 5192296858534689624111674181427015

u = � 29417389580922737

� 6 = 26959946667149205300152011214972999882214498177079747500155117548380

xQ 0 = 12326039968374828214148931530476740752817231601509159806288623840658i

+15544353828709020387416773688955456805153065789047635405204491572503

yQ 0 = 13388270255032984859289798216090024487025415080082079889294300059312i

+3178522513471092300347338705055807506872703350697542114351541449187

256-bit groupsize

p = 115792089237314936872688561244471742058375878355761205198700409522629664518163

n = 115792089237314936872688561244471742058035595988840268584488757999429535617037

t = 340282366920936614211651523200128901127

u = � 7530851732716300289

� 6 = 115792089237314936865000713086853723961501417581576165808556977265798185842700

xQ 0 = 48637431283323345108849385748911846788633049315049371751120697505649946338369i

+76223408697226418798745643093605482890139812513084077932670547153386654984703

yQ 0 = 12614782342200854109607956841026304545095356007536600385153902973429525758572i

+112103232229758856060671276297199689204345964658951607162631544293223609182175



Chapter 3

Compressed pairing computation

In this chapter we discuss a method to compute pairings in compressed form. This
method has been proposed in joint work with Barreto and Schwabe in [NBS08]. For
an elliptic curve E=Fq with embedding degreek with respect to some prime divisor
r of # E(Fq), pairing values arer th roots of unity. Thus they lie in algebraic tori,
certain subgroups ofF�

qk . Torus elements� are characterized by having relative

norm 1, i. e.NFqk =~F(� ) = 1, for certain sub�elds ~F � Fqk . These conditions allow to
represent a torus element with less coe�cients than a general element ofFqk needs.
Techniques based on algebraic tori are already used in the public-key systems LUC
proposed by Smith and Lennon [SL93], the system by Gong and Harn [GH99,
GHW01], and XTR by Lenstra and Verheul [LV00]. Rubin and Silverberg [RS03]
describe a framework for torus-based cryptography.
The compression of pairing values is addressed by Scott and Barreto [SB04]. They
use �nite �eld traces of pairing values to represent them by elements in a smaller
�eld. This approach is useful for implicit exponentiation, and they propose to do
part of the �nal exponentiation in compressed form. But implicit multiplication of
general compressed values can not be done easily. We have discussed trace-based
compression techniques for BN curves in Subsection2.3.3of Chapter 2.
Granger, Page, and Stam [GPS06] propose to use torus-based compression tech-
niques for pairing-based cryptography. They have shown howa pairing value in a
�eld extension Fq6 can be compressed to an element inFq3 plus one bit. We note
that the technique of compression that we use here has already been explained in
[GPS06] for supersingular curves in characteristic 3. Granger, Page, and Stam men-
tion that the technique works also for curves over large characteristic �elds, but they
do not give the details. We show how to use the compression in this case. As a new
contribution, we include the compression to inside the Miller loop, and show how to
work with compressed representation.
In Section 3.1, we de�ne algebraic tori and discuss basic properties. We introduce
compressed pairing computation on elliptic curves with an even embedding degree
in Section 3.2. The method is discussed in more detail for curves that have atwist
of degree 6 and embedding degree divisible by 6 in Section3.3. In this case, we give
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explicit formulas for compressed pairing computation.

3.1 Preliminaries on tori

Let Fq be a �nite �eld and Fql � Fq a �eld extension. Then thenorm of an element
� 2 Fql with respect to Fq is de�ned as the product of all conjugates of� over Fq,
namely

NFql =Fq (� ) = �� q � � � � ql � 1
= � 1+ q+ ���+ ql � 1

= � (ql � 1)=(q� 1) :

De�nition 3.1. For a positive integerl, the torus of degreel over Fq is de�ned as

Tl (Fq) =
\

Fq � ~F(F ql

ker(NFql =~F): (3.1)

If Fq � ~F ( F ql , then ~F = Fqd , whered j l; d 6= l; so the relative norm is given as

NFql =Fqd (� ) = � (ql � 1)=(qd � 1):

It follows that

Tl (Fq) = f � 2 Fql j � (ql � 1)=(qd � 1) = 1; d j l; d 6= lg:

Since the norm map is multiplicative, the setTl (Fq) is a subgroup ofF�
ql .

Lemma 3.2. The setTl (Fq) is the unique subgroup of the cyclic groupF�
ql of order

� l (q), where� l is the lth cyclotomic polynomial.

Proof. This is [RS03, Lemma 7].

From the de�nition of cyclotomic polynomials [LN97, De�nition 2.44 and Theorem
2.45], we know that forp - l

X l � 1 =
Y

djl

� d(X ) = � l (X )
Y

djl;d6= l

� d(X ):

De�ne
	 l (X ) :=

Y

djl;d6= l

� d(X ) = ( X l � 1)=� l (X ):

Lemma 3.3. Let � 2 F�
ql . Then � 	 l (q) 2 Tl (Fq).

Proof. Let � = � 	 l (q) . Then � � l (q) = � ql � 1 = 1, thus � has order dividing � l (q).
SinceF�

ql and Tl (Fq) are �nite cyclic groups, and Tl (Fq) is the unique subgroup of
order � l (q), � lies in Tl (Fq).

Lemma 3.4. For each divisord j l of l , it holds Tl (Fq) � Tl=d(Fqd ).
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Proof. Let � 2 Tl (Fq). Then NFql =Fqe (� ) = 1 for all e j l; e 6= l. In particular, the
norm is 1 for all suche with d j e, hence� 2 Tl=d(Fqd ).

Combining the above two lemmas shows that the element� raised to the power
	 l (q) is an element of each torusTl=d(Fqd ) for all divisors d j l , d 6= l.

Remark 3.5. Let E be an elliptic curve de�ned overFq and r a prime with r j
# E(Fq). Let k be the embedding degree ofE with respect to r . By Lemma 1.107,
we have thatr j � k(q). Hence, the exponent of the �nal exponentiation can be split
up as

qk � 1
r

= 	 k(q)
� k(q)

r
:

Therefore, a pairing value computed from the reduced Tate pairing or any other
pairing variant that includes the �nal exponentiation (seeSection1.2.3) lies in the
torus Tk(Fq). By the preceding lemmas, it also lies in each torusTk=d(Fqd ) for d j k,
d 6= k.

3.2 Even embedding degree

Let k be even, and letp � 5 be a prime. In this section, letq = pk=2 and thus
Fq = Fpk= 2 so that Fq2 = Fpk . Choose� 2 Fq to be a nonsquare. Then the polynomial
x2 � � 2 Fq[x] is irreducible, and we representFq2 = Fq(� ), where � is a root of
x2 � � . We exploit properties of the torusT2(Fq) in this section. We have

T2(Fq) = f � 2 Fq2 j � q+1 = 1g = f a0 + a1� 2 Fq2 j a2
0 � a2

1� = 1g:

If a1 = 0, then a0 2 f 1; � 1g. Therefore, 1 and� 1 are the only elements fromFq

that lie in T2(Fq).

Proposition 3.6. Each element1 6= � 2 T2(Fq) has a unique representation as

� =
a � �
a + �

for some elementa 2 Fq. Vice versa, every fraction of this form is an element of
T2(Fq). If � = a0 + a1� with a1 6= 0, a can be computed asa = � (1 + a0)=a1. The
map

� : T2(Fq) ! P1(Fq); � 7! (X � : Y� ) :=

8
><

>:

(� (1 + a0)=a1 : 1) if a1 6= 0;

(0 : 1) if a1 = 0; a0 = � 1;

(1 : 0) if a1 = 0; a0 = 1

is a bijection.

Proof. This follows from [RS03, Section 5.2].
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Remark 3.7. The map � from the previous proposition can be given as� (� ) =
(� (1 + a0) : a1) for � = a0 + a1� 6= � 1. The de�nition in Proposition 3.6 uses as
representative for a projective point� (� ) the corresponding a�ne point if � 6= 1, and
uses the point at in�nity (1 : 0) for � = 1. This emphasizes that we can represent a
torus element� 2 T2(Fq) by � (� ) which can be given by one element inFq and an
additional bit to distinguish the neutral element 12 T2(Fq). Hence we consider� as
a compression function.

We wish to multiply elements inT2(Fq) implicitly with their compressed values. The
next lemma shows how to compute the compressed value of the product of two torus
elements from the compressed values of the single elements.

Lemma 3.8. Let �; � 2 T2(Fq). If X � = � X � , then � (�� ) = (1 : 0) ; if Y� = 0,
then � (�� ) = � (� ); and if Y� = 0, then � (�� ) = � (� ). Otherwise,

� (�� ) = (( X � X � + � )=(X � + X � ) : 1); (3.2)

where� = � 2.

Proof. If either Y� = 0 or Y� = 0, i. e. � = 1 or � = 1, the result is the other value.
If X � = � X � , we have that (X � � � )=(X � + � ) = ( X � + � )=(X � � � ) is the inverse
of (X � � � )=(X � + � ), and their product is 1.
For all other cases, the product is

X � � �
X � + �

�
X � � �
X � + �

=
X �� � �
X �� + �

with X �� = ( X � X � + � )=(X � + X � ).

Remark 3.9. Let � 2 T2(Fq) n f 1; � 1g. Then X � 6= 0, and the compressed value
of � 2 is � (� 2) = ( X � =2 + �=(2X � ) : 1). It follows from

� � 1 =
�

X � � �
X � + �

� � 1

=
X � + �
X � � �

=
� X � � �
� X � + �

(3.3)

that � (� � 1) = ( � X � : 1). Hence inversion of compressed torus elements does not
need inversions in a �nite �eld. Instead, it only requires negation of a �nite �eld
element.
The multiplication by � 1 is implicitly given as � (� � ) = �=X � because

�
X � � �
X � + �

=
� 2 � X � �
� 2 + X � �

=
� � X � �
� + X � �

=
�=X � � �
�=X � + �

:

We de�ne a multiplication \ ?" on P1(Fq) by (X � : Y� ) ? (X � : Y� ) := � (�� ). Then
(P1(Fq); ?) is a multiplicative group, which is isomorphic to the groupT2(Fq) with
usual multiplication inherited from F�

q2 .
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Granger, Page, and Stam [GPS06] suggest to use the above described compression
on pairing values after the �nal exponentiation, and carry out any arithmetic that
has to be done with pairing values in the compressed representation. We propose
to use part of the �nal exponentiation to do the compression.Computing the torus
representation of the (q � 1)th power of an element inF�

q2 can be done in one �eld
inversion in Fq.

Lemma 3.10. Let � = a0 + a1� 2 F�
q2 . Then � q� 1 is an element of the torusT2(Fq)

and

� (� q� 1) =

(
(a0=a1 : 1) if a1 6= 0 ( � =2 Fq);

(1 : 0) if a1 = 0 ( � 2 Fq):

Proof. First let � 2 Fq, i. e. a1 = 0. Then � q� 1 = 1 and � (� q� 1) = (1 : 0). Suppose
now that � =2 Fq and hencea1 6= 0. Applying the q-power Frobenius automorphism
on Fq2 to � gives� q = � � . We raise� to the power ofq � 1 and obtain

� q� 1 = ( a0 + a1� )q� 1 =
(a0 + a1� )q

a0 + a1�
=

a0 � a1�
a0 + a1�

:

Sincea1 6= 0, we can proceed further by dividing in numerator and denominator by
a1, which gives

(a0 + a1� )q� 1 =
a0=a1 � �
a0=a1 + �

: (3.4)

Proposition 3.6 shows that � q� 1 2 T2(Fq) and that � (� q� 1) = ( a0=a1 : 1).

Let E be an elliptic curve overFp, and let k be the embedding degree ofE with
respect to a primer . The group of r th roots of unity � r is contained inF�

q2 = F�
pk .

Recall from Section1.2.1that the �nal exponentiation is the map

F�
q2 =(F�

q2 )r ! � r � F�
q2 ; � (F�

q2 )r 7! � (q2 � 1)=r :

We may write the exponent as

q2 � 1
r

= ( q � 1)
q+ 1

r
:

Suppose that we carry out the �nal exponentiation in two steps. First we compute
� q� 1, and in a second step raise the result to the power (q + 1) =r: After the �rst
step, the result lies inT2(Fq) by Lemma 3.10. Its compressed representation can
be computed with just one �eld inversion. One can do the compression to a torus
representation inside the Miller loop with this �rst step. This means that the re-
maining part of the exponentiation has to be done with the implicit torus arithmetic
described in Lemma3.8.
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De�nition 3.11. Let er be the reduced Tate pairing onE as in Section1.2.3. We
call the map

� r;T 2 : E(Fp)[r ] � E(Fpk )[r ] ! P1(Fpk= 2 );

(P; Q) 7! � (er (P; Q)) = � (f r;P (Q)(qk � 1)=r )

the T2-compressed Tate pairing.

Corollary 3.12. Let P 2 E(Fp)[r ] and Q 2 E(Fpk )[r ] with Q =2 hPi . Let f =
f r;P (Q) = f 0 + f 1� be the value of the Miller function represented as an elementof
Fpk = Fq2 over Fq. The T2-compressed Tate pairing can be computed as

� r;T 2 (P; Q) = ( f 0=f1 : 1)(pk= 2+1) =r ;

where the exponentiation is done with respect to the multiplication ? in P1(Fpk= 2 ).

Proof. This is a simple consequence of Lemma3.10and the discussion before De�-
nition 3.11. Note that f =2 Fq sinceQ =2 hPi and thus � (f q� 1) = ( f 0=f1 : 1).

3.3 Curves with a sextic twist

In this section, let p be a prime with p � 1 (mod 3), and letE be an elliptic curve
over Fp with j -invariant j (E) = 0, i. e. E : y2 = x3 + b, b 2 Fp. Let r be a prime
divisor of n = # E(Fp), and let k be the embedding degree ofE with respect to r .
We assume in this section thatk is divisible by 6, i. e.k = 6m for m 2 N. We set
q := pk=6 = pm . Then Fq = Fpm and Fq6 = Fpk .
It follows from Proposition 1.100that there exists a twist E 0 of degree 6 overFq

with r j # E 0(Fq). We can choose� 2 F�
q such that the twist with the correct order

is given by E 0 : y2 = x3 + � � 1b. Note that in this case, � is neither a square nor a
cube in Fq. An Fq6 -isomorphism is given by

 : E 0 ! E; (x0; y0) 7! (� 1=3x0; � 1=2y0): (3.5)

The �eld extensions of Fq contained in Fq6 can be represented asFq2 = Fq(� 1=2)
and Fq3 = Fq(� 1=3), respectively. We aim at computing the twisted Tate pairing as
introduced in De�nition 1.102in a compressed form, and recall its de�nition:

e0
r : G1 � G0

2 ! G3; (P; Q0) 7! er (P;  (Q0)) ;

whereG1 = E(Fp)[r ] and G0
2 := E 0(Fq)[r ]. Miller functions are products of the line

functions discussed in Lemma1.93. We evaluate all functions at a�ne points, and
thus a line function is equal to the de�ning polynomiallU;V of the corresponding
line through the points U and V. In Miller's algorithm (see Section1.2.3), the line
function is evaluated at a pointQ 2 E(Fq6 )[r ], i. e. one computeslU;V (Q).
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When computing the twisted Tate pairing, the pointsU and V are in E(Fp) and Q =
 (Q0) for a point Q0 2 E 0(Fq). Let U = ( xU ; yU ), V = ( xV ; yV ), and Q0 = ( xQ0; yQ0).
HenceQ = ( xQ ; yQ) = ( �x Q0; �y Q0), where� = � 1=2 2 Fq2 and � = � 1=3 2 Fq3 . Notice
that � q = � � sinceX 2 � � = ( X � � )(X + � ) and that Fq6 = Fq3 (� ). Similarly,
since

X 3 � � = ( X � � )(X � �� )(X � � 2� )

for a primitive 3rd root of unity � , which lies in Fp sincep � 1 (mod 3), we have
� q = �� . For U 6= � V , the line function is

lU;V (Q) = � (xQ � xU ) + ( yU � yQ);

where � is the slope of the line throughU and V, i.e. � = ( yV � yU )=(xV � xU ) if
U 6= � V and � = (3 x2

U )=(2yU ) if U = V, respectively. In the caseU = � V , the
value of the line function islU;� U (Q) = xQ � xU , which is contained inFq3 . Such
factors can be omitted in Miller's algorithm since they are mapped to 1 by the �nal
exponentiation (see discussion before Proposition1.103).

Lemma 3.13. For U 6= � V and Q =  (Q0) with Q0 2 E 0(Fq) of order r , we have

� (lU;V (Q)q3 � 1) = (( �x U � yU � �x Q0� )=yQ0 : 1) 2 P1(Fq3 );

where� is the function described in Proposition3.6 (see also Remark3.7).

Proof. We evaluate the line function atQ and obtain

lU;V (Q) = � (�x Q0 � xU ) + ( yU � �y Q0)

= ( yU � �x U + �x Q0� ) � yQ0�:

The coordinateyQ0 is not zero since the pointQ0 has orderr and r > 2.

Remark 3.14. Although (�x U � yU � �x Q0� )=yQ0 is an element ofFq3 , it could be
computed with just 4 multiplications in Fq as y� 1

Q0 � (� � xU � yU ) � (y� 1
Q0 � � � xQ0)� .

Note that � as well as the coordinates of all involved points are elements of Fq.
The inversiony� 1

Q0 can be done as a precomputation becauseQ0 is �xed in the Miller
loop. But we use a more e�cient way, merging the computation with the subsequent
multiplication.

Lemma 3.13can be used to compute the compressed values of line functions arising
in the Miller loop. For computing the T2-compressed Tate pairing, we can thus do
the �rst step of the �nal exponentiation|raising to the ( q3 � 1)th power|with the
line functions and then compute the Miller loop with respectto the multiplication
? in P1(Fq3 ). Of course, this can only be done since Miller functions arecomputed
as products of line functions.
In Miller's algorithm, we need to carry out squarings and multiplications. Squarings
are done with general elements inP1(Fq3 ). Multiplications always have a factor
coming from a line function as in Lemma3.13.
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Lemma 3.15. Let � 2 T2(Fq3 ) with � (� ) = ( X � : 1) and � = lU;V (Q)q3 � 1 as in
Lemma 3.13. De�ne � := �x U � yU � �x Q0� 2 Fq3 . Then it holds

� (�� ) =
�

X � � + �y Q0

X � yQ0 + �
: 1

�
:

Proof. This is an easy application of Lemma3.8.

There is no need to invertyQ0 to compute � (lU;V (Q)q3 � 1). Instead, we directly
compute the product representative� (�� ) as in the previous lemma.
For the assumptions in this section, the exponent of the �nalexponentiation is
(q6 � 1)=r, which we rewrite as

q6 � 1
r

= ( q3 � 1)(q+ 1)
q2 � q+ 1

r
:

It is 	 6(q) = ( q3 � 1)(q+1). Instead of only computing lU;V (Q)q3 � 1, we can compute
lU;V (Q)	 6(q) , and obtain an element inT6(Fq) by Lemma 3.3. It is

T6(Fq) = f � 2 Fq6 j � q3+1 = 1 and � q4+ q2+1 = 1g:

Note that by the transitivity of the norm, the condition NFq6 =Fq (� ) = 1 follows from

NFq6 =Fq3 (� ) = � q3+1 = 1:

This equality also implies

NFq6 =Fq2 (� ) = � q4+ q2+1 = � q2 � q+1 = 1:

It is clear that � 1 =2 T6(Fq). By exploiting the norm conditions, it can be shown that
1 is the only element inT6(Fq) that lies in a proper sub�eld of Fq6 . Furthermore,
it is clear that T6(Fq) � T2(Fq3 ) (see Lemma3.4). We next describe a compression
technique that has also been demonstrated similarly by Granger, Page, and Stam
[GPS06, Section 3.4].

Proposition 3.16. Let � 2 T6(Fq) � T2(Fq3 ). Let � (� ) = ( X � : Y� ) 2 P1(Fq3 ), and
if Y� = 1, let X � = b0 + b1� + b2� 2 with b0; b1; b2 2 Fq. De�ne

M6 := f (a0; a1) 2 A2(Fq) j a1 6= 0g [ f (1; 0)g:

The map

� 6 : T6(Fq) ! M6; � 7!

(
(b0; b1) if � 6= 1;

(1; 0) if � = 1

is a bijection.
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Proof. Let �rst � be such that Y� = 1, i. e. � = ( X � � � )=(X � + � ). We have
NFq6 =Fq2 (� ) = 1, i. e.

�
X � � �
X � + �

� q2 � q+1

= 1;

which is equivalent to (X � � � )q2 � q+1 = ( X � + � )q2 � q+1 . We use the fact that� q = � 2�
for � a primitive third root of unity which lies in Fq sinceq � 1 (mod 3). An explicit
computation of (X � � � )q2 � q+1 and simpli�cation of the equation (X � � � )q2 � q+1 =
(X � + � )q2 � q+1 yields the relation � 3b1b2� + � + 3b2

0 = 0. If b1 6= 0, this equation
can be used to recoverb2 from b0 and b1 as

b2 =
3b2

0 + �
3b1�

: (3.6)

If b1 = 0, we have � = � 3b2
0. Sincep � 1 (mod 3), � 3 is a square modulop and

thus � is a square which is not true. Therefore,b1 can not be 0. We may thus use
(1; 0) to represent 12 T6(Fq).
Summarizing, we see that sinceT6(Fq) � T2(Fq3 ), � 2 T6(Fq) n f 1g is uniquely
determined byX � , and X � is uniquely determined by (b0; b1) 2 M6, which completes
the proof.

Corollary 3.17. Let � 2 F�
q6 . Then � 	 6(q) can be uniquely represented by a pair

(a0; a1) 2 A2(Fq).

Proof. This is clear with Lemma3.3 and Proposition 3.16.

Multiplication formulas on M6 (see Proposition3.16) corresponding to the usual
multiplication in T6(Fq) can be derived from the arithmetic onT2(Fq3 ) (Lemma 3.8).

Lemma 3.18. Let �; � 2 T6(Fq) n f 1g with � 6(� ) = ( a0; a1), � 6(� ) = ( b0; b1), and
(a0; a1) 6= ( � b0; � b1). Then � 6(�� ) = ( c0; c1), where c0 and c1 are given by the
following formulas:

r0 = a2
0 + 1

3 �; r 1 = b2
0 + 1

3 �;

s0 = � (a1b1(a0b0 + � ) + a2
1r1 + b2

1r0); s1 = a1b1� (a0b1 + a1b0) + r0r1;

s2 = a2
1b

2
1� + a0a1r1 + b0b1r0; t0 = a1b1� (a0 + b0);

t1 = a1b1� (a1 + b1); t2 = b1r0 + a1r1;

u = t3
0 + t3

1� + t3
2�

2 � 3�t 0t1t2; u0 = t2
0 � t1t2�;

u1 = t2
2� � t0t1; u2 = t2

1 � t0t2;

v0 = s0u0 + s1u2� + s2u1�; v 1 = s0u1 + s1u0 + s2u2�;

c0 =
v0

u
; c1 =

v1

u
:
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Furthermore, � 6(� 2) = ( d0; d1) with d0 and d1 given as follows:

r0 = a5
0 + � (a3

0 � 2a2
0a3

1) + � 2( 1
3a0 � a3

1); r1 = a5
0 + � (2a3

0 � 2a2
0a3

1) + � 2(a0 � 2a3
1);

s0 = a0(a0r0 + a6
1�

2 + 1
27� 3) � 1

3a3
1�

3; s1 = a1(a0r1 + a6
1�

2 + 4
27� 3);

s = 2( a0r0 + a6
1�

2 + 1
27� 3); d0 =

s0

s
; d1 =

s1

s
:

Proof. The formulas can be derived from Lemma3.8. We show how to verify them
in Appendix A.1.

We split up the �nal exponentiation into two parts again. The exponent of the �rst
part is 	 6(q) and that of the remaining second part is (q2 � q+ 1) =r. After the �rst
part, the result lies in T6(Fq).

De�nition 3.19. Let er be the reduced Tate pairing onE. The map

� r;T 6 : E(Fp)[r ] � E(Fpk )[r ] ! M6;

(P; Q) 7! � 6(er (P; Q)) = � 6(f r;P (Q)(qk � 1)=r )

is called theT6-compressed Tate pairing.

Corollary 3.20. Let P 2 E(Fp)[r ] and Q 2 E(Fpk )[r ] with Q =2 hPi . Let (f 1; f 2) =
� 6(f r;P (Q)	 6 (pm )). The T6-compressed Tate pairing can be computed as

� r;T 6 (P; Q) = ( f 1; f 2)(p2m � pm +1) =r ;

where the exponentiation is done with respect to the multiplication in M6 given by
the formulas in Lemma3.18.

As for the T2-compressed pairing, we can exponentiate the line functions to the
�rst part of the �nal exponentiation, and perform the Miller loop completely in
compressed representation. The compressed representation of line function values
can be computed directly from the coordinates of the points involved.

Proposition 3.21. Let � 2 Fp be a primitive third root of unity such that� q = �� .
Let � = lU;V (Q)	 6(q) with U 6= � V and Q =  (Q0). If � 6= 1, then � 6(� ) = ( c0; c1) 2
A2(Fq) with

c0 =
�

� � 2

1 � �
y� 1

Q0

�
(yU � �x U ); c1 =

�
�

1 � �
y� 1

Q0

�
�x Q0: (3.7)

Proof. Let � = lU;V (Q)q3 � 1. By assumption, we have� q+1 = lU;V (Q)	 6(q) 6= 1. Let
� (� ) = ( X � : 1), i. e. � = lU;V (Q)q3 � 1 = X � � �

X � + � . It is

� = � q+1 =
�

X � � �
X � + �

� q+1

:
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We determineX � from

� =
�

X � � �
X � + �

� q

�
X � � �
X � + �

=
X q

� + �
X q

� � �
�

X � � �
X � + �

=
� X q

� � �
� X q

� + �
�

X � � �
X � + �

:

Since� 6= 1, it is X q
� 6= X � . By applying (3.2), we get X � = ( � X q+1

� + � )=(� X q
� +

X � ). Lemma 3.13shows thatX � = ( �x U � yU � �x Q0� )=yQ0. We thus obtain

� X q
� =

yU � �x U + �x Q0� �
yQ0

:

Multiplying with X � yields

� X q+1
� = �

1
y2

Q0

�
(yU � �x U )2 + (1 + � )�x Q0(yU � �x U )� + � 2x2

Q0� � 2
�

:

For the denominator ofX � , we obtain

� X q
� + X � =

�x Q0(� � 1)�
yQ0

and determineX � as

X � =
(1 + � )�x Q0(yU � �x U )� + � 2x2

Q0� �� + (( yU � �x U )2 � �y 2
Q0)� 2

� (1 � � )xQ0yQ0�

=
1 + �
1 � �

�
yU � �x U

yQ0
+

�
1 � �

�
�x Q0

yQ0
� +

(yU � �x U )2 � �y 2
Q0

� (1 � � )xQ0yQ0�
� 2:

Recall that � 3 = � . Taking ci the coe�cient at � i in the above expression we have
the property c2 = (3 c2

0 + � )=(3c1� ), and thus c2 can be computed fromc0 and c1.

Remark 3.22. The input Q is not changed in the course of Miller's algorithm.
Hence, y� 1

Q0 can be precomputed before the loop. Note also that� � 2=(1 � � )y� 1
Q0

and �=(1 � � )y� 1
Q0 can be determined in a precomputation and that we do not need

inversions to compute the values of the exponentiated line functions inside the Miller
loop.

Multiplication in A2(Fq) corresponding to the multiplication in T6(Fq) needs inver-
sions as can be seen from the formulas in Lemma3.18. One can replace inversion of
an elementa in Fpm by an inversion inFp and at most blg mc + 1 multiplications in
Fpm by

1
a

=
ap+ p2+ ���+ pm � 1

NFpm =Fp (a)
:

The term in the numerator can be computed by addition-chain methods. For details
see Section 11.3.4 in [Doc05b].
But it is possible to completely avoid inversions in Miller's algorithm by storing the
denominator in a separate coordinate, or in other words, by moving to projective
representation. We embedA2(Fq) into P2(Fq) as usual with the map' � 1

3 : A2(Fq) !
P2(Fq); (c0; c1) 7! (c0 : c1 : 1) (for notation see Subsection1.1.1).
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De�nition 3.23. We de�ne the compression function

~� 6 : T6(Fq) ! P2(Fq); � 7! ' � 1
3 (� (� )) :

The compressed line functions computed in Proposition3.21can be given as elements
of P2(Fq).

Lemma 3.24. Let assumptions be as in Proposition3.21. Let �; � 2 Fp be the
numerator and denominator of the slope� , i. e. � = yV � yU ; � = xV � xU if U 6= � V
and � = 3x2

U ; � = 2yU if U = V, respectively. Then~� 6(lU;V (Q)	 6(q)) = ( C0 : C1 : C),
where

C0 =
�

� � 2

1 � �

�
(�y U � �x U ); C1 =

�
�

1 � �

�
�x Q0; C = �y Q0: (3.8)

Proof. The representation follows by multiplying with all denominators.

When m > 1, we are able to compress further. The denominatorC which has to be
stored in a third coordinate can be replaced by a denominatorwhich is an element
in Fp, namely the norm NFpm =Fp (C) of the previous denominator inFq. We only
need to multiply the other two coordinates byCp+ p2+ ���+ pm � 1

.
The methods described make it possible to completely avoid inversions during pairing
computation. Taking into account that inversion of torus elements can be done
by negating the representative, we also do not need �nite �eld inversions for the
�nal exponentiation. Normally, an inversion is needed to e�ciently implement the
exponentiation by using the Frobenius automorphism.
We give an example of the squaring and multiplication formulas in P2(Fq) that
correspond to squaring and multiplication inT6(Fq) for embedding degreek = 12.

Example 3.25. For embedding degree 12, we haveq = p2. Let Fp2 = Fp(i ) and
i2 = � z for some elementz 2 Fp. Let (A0 : A1 : A) be an element in compressed
form, i.e. A0; A1 2 Fp2 and A 2 Fp. We can compute the square (C0 : C1 : C) as
follows:

R0 = A5
0 + � (A3

0A
2 � 2A2

0A3
1) + � 2( 1

3A0A4 � A3
1A2);

R1 = A5
0 + 2� (A3

0A
2 � A2

0A3
1) + � 2(A0A4 � 2A3

1A
2);

S0 = A0(A0R0 + A6
1� 2 + 1

27A6� 3) � 1
3A3

1A
4� 3;

S1 = A1(A0R1 + A6
1� 2 + 4

27A6� 3);

S = 2A(A0R0 + A6
1� 2 + 1

27A6� 3):

Write S = s0 + is1 with s0; s1 2 Fp. Then the square is given by

C0 = S0(s0 � is1); C1 = S1(s0 � is1); C = s2
0 + zs2

1:
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To multiply two compressed elements (A0 : A1 : A) and (B0 : B1 : B ) we can use
the following formulas:

R0 = A2
0 + 1

3A2�; R 1 = B 2
0 + 1

3B 2�;

S0 = � (A1B1(A0B0 + �AB ) + A2
1R1 + B 2

1R0);

S1 = A1B1� (A0B1 + A1B0) + R0R1; S2 = A2
1B 2

1� + A0A1R1 + B0B1R0;

T0 = A1B1� (A0B + B0A); T1 = A1B1� (A1B + B1A); T2 = B1BR0 + A1AR1;

T = T3
0 + T3

1 � + T3
2 � 2 � 3�T 0T1T2;

U0 = T2
0 � T1T2�; U 1 = T2

2 � � T0T1; U2 = T2
1 � T0T2;

V0 = S0U0 + S1U2� + S2U1�; V1 = S0U1 + S1U0 + S2U2�:

Write T = t0 + it 1, where t0; t1 2 Fp. Then the product (C0 : C1 : C) of the two
elements is given by

C0 = V0(t0 � it 1); C1 = V1(t0 � it 1); C = t2
0 + zt2

1:

These formulas are homogenized versions of the formulas given in Lemma3.18where
the denominators are kept in an additional variable. Correctness of the formulas in
this lemma can be checked with the help of AppendixA.1. The only di�erence is
that in the end, we compute theFp-norm of the denominator to keep it as small as
possible. We thus have to multiply the numerators with the denominator's conjugate
in Fp2 .
For an implementation of a pairing algorithm in compressed form without inversions,
one can use (3.8) to compute the evaluated compressed line functions, and then
use the above formulas for squaring and multiplication in Miller's algorithm. The
remaining part of the exponent for the �nal exponentiation is (p4 � p2 + 1) =n. The
�nal pairing value can be computed by use of the Frobenius automorphism and a
square-and-multiply algorithm with the above squaring andmultiplication formulas
(see Devegili, Scott, and Dahab [DSD07]). A three-operand pseudo code for these
formulas is given in AppendixA.

3.4 Implementation

In order to evaluate the performance of the compressed pairing computation, we
implemented several pairing algorithms in C. For all these implementations1 we
used the BN curveE : y2 = x3 + 24 over Fp with parameters described in Table3.1.
This curve has also been used for the performance evaluationof pairing algorithms
by Devegili, Scott, and Dahab in [DSD07]. To ease comparison with [DOSD06] and
[DSD07], we implemented pairing algorithms withFp12 constructed as a quadratic
extension on top of a cubic extension which is again built on top of a quadratic
extension, as described in [DSD07] and by Devegili, Scott, �O h�Eigeartaigh, and

1The code of the implementation can be found athttp://www.cryptojedi.org/crypto/
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p 82434016654300679721217353503190038836571781811386228921167322412819029493183
n 82434016654300679721217353503190038836284668564296686430114510052556401373769
bitsize 256
t 287113247089542491052812360262628119415
k 12
� c (t � 1)8 mod n

Table 3.1: Parameters of the curve used in our implementation

Dahab in [DOSD06]. For ate, generalized Eta, and Tate pairings we thus achieve
similar timings as [DSD07]. We did not use windowing methods since the group
order of the chosen curve is sparse. The �nal exponentiationfor the non-compressed
pairings uses the decomposition of the exponent (p12 � 1)=n into the factors (p6 � 1),
(p2 + 1), and (p4 � p2 + 1) =n.
In the Miller loop we entirely avoided �eld inversions by computing the elliptic curve
operations in Jacobian coordinates (see [DL05a, Section 13.2.1.c]) and by using
the compressed representation and storing denominators separately as described
in Example 3.25. For multiplication and squaring of torus elements, we usedthe
algorithms stated in AppendixA.2. Timing results are given in Table3.2.

Core 2 Quad Q6600
Tate 32835888
Compressed Tate 53160480
Generalized Eta 26795205
Compressed generalized Eta 42471414
ate 22861386
Optimal ate 16231797

Table 3.2: Performance measurements for di�erent pairing variants on an Intel Core
2 Quad CPU Q6600 running at 2394 MHz using only one core. Numbers give the
median of 1000 measurements for a complete pairing computation including Miller
loop and �nal exponentiation in CPU cycles.



Chapter 4

Pairings on Edwards curves

In this chapter, we consider pairings on a twisted Edwards curve

Ea;d : Z 2(aX 2 + Y 2) = Z 4 + dX 2Y 2

over a �nite �eld Fq, where a; d are nonzero and distinct elements ofFq. If a =
1, i. e. if we have a plain Edwards curve, we denoteE1;d simply by Ed. As in
Subsection1.1.7 of Chapter 1, we denote byO = (0 : 1 : 1) the neutral element
in Ea;d(Fq) and by O0 = (0 : � 1 : 1) its re
ection across thex-axis, which is a
point of order 2. The point T = (1 =

p
a : 0 : 1) has order 4. Then [2]T = O0 and

�T = [3]T = ( � 1=
p

a : 0 : 1). Let the two singular points at in�nity be denoted by

 1 = (1 : 0 : 0) and 
 2 = (0 : 1 : 0). Let f Ea;d = Z 2(aX 2 + Y 2) � Z 4 � dX 2Y 2 be
the polynomial de�ning the curve Ea;d.
For pairing computation on Weierstra� curves, we need line functions that are eval-
uated in Miller's algorithm (see Subsection1.2.3). In the case of twisted Edwards
curves, the analogue procedure leads to functions arising from lines and conics.
This chapter contains results from joint work with Ar�ene, Lange, and Ritzenthaler.
Section 4.1 states properties of lines and conics passing through points on twisted
Edwards curves. In Section4.2, we give a geometric interpretation of the group law
on twisted Edwards curves. We show how pairings can be computed using functions
coming from the lines and conics described in Section4.1. Explicit formulas for the
doubling and addition steps in Miller's algorithm are derived in Section4.3. The
formulas are signi�cantly faster than any reported so far for Edwards curves. Let the
curve be de�ned overFp, and let k be its embedding degree. Then an addition step
needs 1M +( k +14)m +1ma, a doubling step costs 1M +1S+( k +6) m +5s+2ma,
where one multiplication inFpk is denoted by 1M and one squaring in the same �eld
by 1S. Multiplication and squaring in the smaller �eld Fp are denoted by 1m and
1s, respectively. Furthermore, we use 1ma for a multiplication with the constant
a. The above costs are for both points in projective Edwards coordinates. Using
mixed addition, i. e. the second point in a�ne coordinates, an addition step costs
only 1M + ( k + 12)m + 1ma.

85
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4.1 Lines and conics

Let F be an arbitrary �eld of characteristic di�erent from 2 and F an algebraic
closure ofF. The points O; O0; T ; 
 1; 
 2 are all points in the projective planeP2(F).
We begin with projective lines inP2(F). A general line is of the form

L : cX X + cY Y + cZ Z = 0; (4.1)

where (cX : cY : cZ ) 2 P2(F) (see Example1.7). A line is uniquely determined by
two di�erent points. We �rst consider lines that pass through one of the points at
in�nity and an a�ne point P. Note that the line through 
 1 and 
 2 is the line at
in�nity L1 : Z = 0.

Lemma 4.1. Let P = ( X 0 : Y0 : Z0) 2 P2(F) be an a�ne point, i. e. Z0 6= 0, and
let L1;P be the projective line passing throughP and 
 1. Then L1;P is a horizontal
line of the form

L1;P : Z0Y � Y0Z = 0:

Let L2;P be the line throughP and 
 2. Then L2;P is a vertical line

L2;P : Z0X � X 0Z = 0:

Proof. We use the general equation of a line (4.1). From 
 1 2 L1;P , we see that
cX = 0, and from P 2 L1;P , it follows that cZ Z0 = � cY Y0. AssumecY = 0, then
cZ = 0, which yields a contradiction. Therefore, we may writeL1;P in the desired
form. The equation forL2;P follows analogously.

In the following, we describe a special conic which passes through both points at
in�nity, 
 1 and 
 2, the point O0, and two arbitrary a�ne points P1 and P2 on Ea;d.
A general conic can be written as

C : cX 2 X 2 + cY 2 Y 2 + cZ 2Z 2 + cXY XY + cXZ XZ + cY Z Y Z = 0; (4.2)

where (cX 2 : cY 2 : cZ 2 : cXY : cXZ : cY Z ) 2 P5(F) (see Example1.7). Let f C =
cX 2 X 2 + cY 2 Y 2 + cZ 2Z 2 + cXY XY + cXZ XZ + cY Z Y Z be the polynomial ofC. First
we only assume that the points at in�nity and O0 are onC.

Lemma 4.2. If a conic C passes through the points
 1; 
 2, and O0, then it has an
equation of the form

C : cZ 2 (Z 2 + Y Z) + cXY XY + cXZ XZ = 0; (4.3)

where(cZ 2 : cXY : cXZ ) 2 P2(F).

Proof. We evaluate f C at the three points 
 1; 
 2, and O0. The fact that 
 1 lies
on the conic impliescX 2 = 0. Similarly, cY 2 = 0 since 
 2 lies on C. Further, the
condition O0 2 C shows thatcY Z = cZ 2 .
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We have a closer look at conicsC as described in the above lemma. The following
lemma shows that if there is an a�ne singular point onC, the conic is the product
of a vertical and a horizontal line.

Lemma 4.3. Let C be a conic passing through
 1; 
 2, and O0, i. e. C is given by
(4.3). Let P = ( X 1 : Y1 : Z1) be a singular point onC. Then C splits as the product
of two lines that intersect inP, and one of the following cases occurs:

(a) The conic is given byC : X (Z1Y � Y1Z) = 0 and X 1 = 0, i. e. P lies on the
line X = 0. In particular, we havecZ 2 = 0, cXY = Z1, and cXZ = � Y1.

(b) The conic is given byC : (Z1X � X 1Z)(Y + Z) = 0 and Y1 = � Z1, i. e. P lies
on the lineY + Z = 0. In particular, we havecZ 2 = � X 1 and cXY = Z1 = cXZ .

(c) The conic is given byC : (Y1X � X 1(Y + Z))Z = 0 and Z1 = 0, i. e. P lies on
the line Z = 0 at in�nity. In particular, we have cZ 2 = � X 1, cXY = 0, and
cXZ = Y1.

Proof. An irreducible conic is always nonsingular (see [Ful69, Theorem 2, p. 117]).
Thus we know that f C splits into two linear factors as

f C = ( a1X + b1Y + c1Z)(a2X + b2Y + c2Z):

From B�ezout's Theorem (Theorem1.21), we know that two lines have exactly one
intersection point or are identical. Because there is no line passing through 
1; 
 2,
and O0, there must be exactly one intersection point of the linesa1X + b1Y + c1Z = 0
and a2X + b2Y + c2Z = 0, which then must be equal toP since all other points are
nonsingular.
We expand the product and obtainf C = a1a2X 2+ b1b2Y 2+ c1c2Z 2+( a1b2+ a2b1)XY +
(a1c2 + a2c1)XZ + ( b1c2 + b2c1)Y Z. Then (4.3) implies that a1 or a2 is equal to 0.
Without loss of generality, we assumea2 = 0. Then f C becomesb1b2Y 2 + c1c2Z 2 +
a1b2XY + a1c2XZ + ( b1c2 + b2c1)Y Z.
Since the Y 2-term must vanish, either b1 or b2 is 0. If b1 = 0, we have f C =
c1c2Z 2 + a1b2XY + a1c2XZ + c1b2Y Z and c1c2 = c1b2. If c1 = 0, then a1 must be
di�erent from 0 and we arrive at case (a). Forc1 6= 0, it follows c2 = b2 6= 0 and
case (b) is valid.
Finally, if b2 = 0, then c2 6= 0, and the conic isC : c1Z 2 + a1XZ + b1Y Z. It follows
that b1 = c1, which yields case (c).

We are now able to describe the conic that passes through 
1; 
 2, and O0 as well
as through two a�ne points P1 and P2. If the latter points are equal, we consider
intersection multiplicities of C with Ea;d, which usually means thatC and Ea;d have
the same tangent atP1 = P2.

Proposition 4.4. Let Ea;d be a twisted Edwards curve overF, and let P1 = ( X 1 :
Y1 : Z1) and P2 = ( X 2 : Y2 : Z2) be two a�ne, not necessarily distinct points on
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Ea;d. Let C be the conic passing through
 1, 
 2, O0, P1, and P2, i. e. C is given by
an equation of the form(4.3). If some of the above points are equal, we count them
as one point with multiplicity and considerC and Ea;d to intersect with at least that
multiplicity at the corresponding point. Then the coe�cients in (4.3) are given as
follows:

(a) If P1 6= P2, P1 6= O0, and P2 6= O0,

cZ 2 = X 1X 2(Y1Z2 � Y2Z1);

cXY = Z1Z2(X 1Z2 � X 2Z1 + X 1Y2 � X 2Y1);

cXZ = X 2Y2Z 2
1 � X 1Y1Z 2

2 + Y1Y2(X 2Z1 � X 1Z2):

(b) If P1 6= P2 = O0,
cZ 2 = � X 1; cXY = Z1; cXZ = Z1:

(c) If P1 = P2,

cZ 2 = X 1Z1(Y1 � Z1);

cXY = Z 3
1 � dX 2

1Y1;

cXZ = Z1(aX 2
1 � Y1Z1):

Proof. We start by proving the caseP1 6= P2 and P1; P2 62 fO; O0g, which, together
with the assumption of P1; P2 being a�ne, means that X 1; X 2; Z1, and Z2 are all
di�erent from 0. Since P1; P2 2 C, we obtain the two equations

cZ 2Z1(Z1 + Y1) + cXY X 1Y1 + cXZ X 1Z1 = 0;

cZ 2Z2(Z2 + Y2) + cXY X 2Y2 + cXZ X 2Z2 = 0:

We may solve both forcXZ = � cXY Yi =Zi � cZ 2 (Z i =X i + Yi =X i ), i 2 f 1; 2g, equate
them, and multiply with denominators to get

cZ 2Z1Z2(Z2X 1 � Z1X 2 + Y2X 1 � Y1X 2) = cXY X 1X 2(Y1Z2 � Y2Z1):

Thus we may choosecZ 2 = X 1X 2(Y1Z2 � Y2Z1) and cXY = Z1Z2(Z2X 1 � Z1X 2 +
Y2X 1 � Y1X 2), then compute cXZ = X 2Y2Z 2

1 � X 1Y1Z 2
2 + Y1Y2(X 2Z1 � X 1Z2), and

we obtain the formulas in (a). We still need to prove that the same formulas hold
if P1 = O or P2 = O. Without loss of generality, we assumeP2 = O = (0 : 1 : 1).
Evaluating f C at O shows that cZ 2 = 0. Since X 1 6= 0, the fact that P1 2 C then
yields cXY Y1 + cXZ Z1 = 0. Thus we may choosecXY = Z1 and cXZ = � Y1. The
formulas in (a) for P2 = O give cZ 2 = 0, cXY = 2X 1Z1, and cXZ = � 2X 1Y1. Again
X 1 6= 0 implies that this describes the same conic and we see that the formulas are
the same in that case. It can be checked by explicit calculations that the coe�cients
can not all be equal to 0 at the same time. Assuming so implies that P1 = P2, which
we excluded in (a). This completes the proof of part (a).
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We �rst prove (c) for P1 = P2 62 fO; O0g, i. e. we have thatX 1 6= 0. By assumption,
Z1 6= 0. The conic C needs to intersect the curveEa;d with multiplicity 2 at P1.
SinceP1 is an a�ne point, we may consider the dehomogenizations

(f C )� = f C (x; y; 1) = cXY xy + cXZ x + cZ 2 (y + 1)

of f C and
(f Ea;d )� = f Ea;d (x; y; 1) = ax2 + y2 � 1 � dx2y2

of f Ea;d as well as the a�ne notation for P1 = ( x1; y1), where x1 = X 1=Z1 and
y1 = Y1=Z1. SinceP1 does not lie on any of the lines in Lemma4.3, it is a nonsingular
point on C. Note that case (b) in Lemma4.3does not occur becauseY1 = � Z1 only
holds for P1 = O0, which we excluded. Thus the intersection multiplicity is larger
than 1 if C and Ea;d have equal tangents inP1 (see Lemma1.20(c)). The tangent
lines to C and Ea;d in P1 are

TC;P1 : (cXY y1 + cXZ )(x � x1) + ( cXY x1 + cZ 2 )(y � y1) = 0 ;

TEa;d ;P1 : 2x1(a � dy2
1)(x � x1) + 2 y1(1 � dx2

1)(y � y1) = 0

(see De�nition 1.16). They are equal if (cXY x1 + cZ 2 )2x1(a � dy2
1) = ( cXY y1 +

cXZ )2y1(1 � dx2
1). Using P1 2 C, we expresscXZ by cXZ = � cXY y1 � cZ 2 (y1 +1) =x1.

Note that x1 6= 0. We combine the last two equations, multiply byx1, reorder, apply
the Edwards curve equation, and arrive at

(1 + y1)(1 � dx2
1y1)cZ 2 = � x1(1 � y2

1)cXY :

SinceP1 6= O0, we havey1 6= � 1 and we can simplify to (1� dx2
1y1)cZ 2 = � x1(1 �

y1)cXY . From this, we see that we can choosecZ 2 = � x1(1� y1) and cXY = 1 � dx2
1y1.

We computecXZ = ax2
1 � y1 with help of the curve equation. We homogenize the

formulas by setting x1 = X 1=Z1 and y1 = Y1=Z1, multiply by Z 3
1 , and obtain the

formulas claimed in part (c). As for (a), we now prove that thesame formulas hold
if P1 = O. To achieve the intersection multiplicity at least 2 atO, we may use the
singular conicC being the product of the lineY = Z tangent to Ea;d in O and the
line X = 0 passing through the point O0. Thus f C = X (Z � Y) = XZ � XY ,
so cZ2 = 0, cXY = � 1, and cXZ = 1. The same values arise when evaluating the
formulas under (c) atP1 = O. Furthermore, the same formulas hold ifP1 = O0 since
intersection multiplicity 3 at O0 is achieved by settingf C = X (Y + Z) = XY + XZ .
Again, not all three coe�cients can be 0, because this implies a = d. This is a
contradiction and therefore, we have proved (c).
Next we deal with the caseP1 6= P2 = O0. The conic C and the curve Ea;d must
intersect in O0 with multiplicity 2. We may use a singular conic that is the product
of the line Y + Z = 0, which is tangent to Ea;d in O0, and the vertical lineZ1X � X 1Z
through P1. Thus f C = ( Z1X � X 1Z)(Y + Z) = � X 1Z(Z + Y) + Z1XY + Z1XZ
shows that cZ 2 = � X 1, cXY = Z1 = cXZ . Therefore, (b) is correct and the proof is
complete.
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Example 4.5. As an example, we consider the Edwards curveE � 30 : Z 2(X 2+ Y 2) =
Z 4 � 30X 2Y 2 over the �eld of real numbersR. Of course, all pictures in our examples
show the a�ne part of the curves. In Figure 4.1(a), the conic C is shown in the
caseP1; P2 6= O0. The point P1 hasx-coordinatex1 = � 0:6 andP2 hasx-coordinate
x2 = 0:1. Figure 4.1(b) shows the conicC for the caseP1 6= P2 = O0. The point P1

is the same as in4.1(a).
The caseP1 = P2 is shown in Figure4.2(a) for P1 6= O0 and in Figure 4.2(b) for
P1 = O0. In the latter case,O0 is a triple intersection point of C and E � 30.

Example 4.6. In Example 4.5, the parameter d assumes a negative value. For
positive values ofd, the curve has a di�erent shape. We considerd = 2, i. e. the curve
E2 : Z 2(X 2 + Y 2) = Z 4 + 2X 2Y 2. We show the respective cases in Figures4.3 and
4.4. In Figures 4.3(a), 4.3(b), and 4.4(a), the point P1 hasx-coordinatex1 = � 1:1.
In Figure 4.3(a), the point P2 hasx-coordinatex2 = 1:2.

Example 4.7. This example covers the case 0< d < 1. Figure 4.5 shows the conic
C on E1=2 : Z 2(X 2 + Y 2) = Z 4 + 1

2X 2Y 2 through P1 with x-coordinate x1 = � 1:5
and P2 with x-coordinatex2 = 0:7 in Figure 4.5(a). Figure 4.5(b) shows the conic
that has a common tangent withE1=2 in P1 with x-coordinatex1 = � 2:2.

Remark 4.8. Note that a complete group law can be given for addition on a twisted
Edwards curveEa;d if a is a square andd is not (see Subsection1.1.7in Chapter 1).
In this case, the same addition formulas apply to any pair of input points, but still
computation of the conicC requires case distinctions.
This can be explained as follows: First, we choose the pointO0 to always lie on the
conic. It is thus clear that if one of the pointsP1 or P2 is chosen to beO0, we need
to take that into account by means of the intersection multiplicity.
Second, we have the distinction between the casesP1 6= P2 and P1 = P2. In the �rst
case, the conic is given by 5 di�erent points (not lying on thesame line) which may
be considered as 5 points in general position in the projective plane, and �nding
C is independent of the curveEa;d. Thus the conic coe�cients only depend on the
coe�cients of P1 and P2. For P1 = P2, there are less than 5 di�erent points and
additional conditions due to intersection multiplicities, e. g. the conic is tangent to
the curve. Therefore, the curve coe�cientsa and d appear in the formulas.

4.2 Geometric interpretation of the group law

It has been noted in Ar�ene's master's thesis [Ar�e08] that the conic C described in
Proposition 4.4gives a nice geometric interpretation of the group law on an Edwards
curve, similar to the chord-and-tangent method of ellipticcurves in Weierstra� form.
We therefore give the corresponding functions for the conicand the lines from Lemma
4.1 in the respective cases that occur in point addition.



4. Pairings on Edwards curves 91

b

b

b

b

P1

P2

C

E � 30

O

O0

(a) P1 6= P2, P1; P2 6= O0
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(b) P1 6= P2 = O0

Figure 4.1: The conicC for P1 6= P2 on E � 30 : x2 + y2 = 1 � 30x2y2 over R.
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(b) P1 = P2 = O0

Figure 4.2: The conicC for P1 = P2 on E � 30 : x2 + y2 = 1 � 30x2y2 over R.
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(b) P1 6= P2 = O0

Figure 4.3: The conicC for P1 6= P2 on E2 : x2 + y2 = 1 + 2 x2y2 over R.
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Figure 4.4: The conicC for P1 = P2 on E2 : x2 + y2 = 1 + 2 x2y2 over R.
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(a) P1 6= P2, P1; P2 6= O0
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(b) P1 = P2 6= O0

Figure 4.5: The conicC on E1=2 : x2 + y2 = 1 + 1
2x2y2 over R.

Let P1 and P2 be two a�ne F-rational points on a twisted Edwards curveEa;d, and
let P3 := ( X 3 : Y3 : Z3) = P1 + P2 be their sum. Let

l1;P3 = Z3Y � Y3Z; l 2;O = X

be the polynomials of the horizontal lineL1;P3 and the vertical lineL2;O , respectively
(see Lemma4.1). Let

f C = cZ 2 (Z 2 + Y Z) + cXY XY + cXZ XZ

be the polynomial of the conicC from Proposition 4.4. De�ne homogeneous func-
tions

l1 =
l1;P3

Z
=

Z3Y � Y3Z
Z

; l2 =
l2;O

Z
=

X
Z

;

and

� C =
f C

Z 2
=

cZ 2 (Z 2 + Y Z) + cXY XY + cXZ XZ
Z 2

:

The following lemma shows that the twisted Edwards group lawindeed has a geomet-
ric interpretation involving the above functions. It givesus an important ingredient
to compute Miller functions (see Lemma1.96).

Lemma 4.9. Let F be a �eld with char(F) 6= 2. Let a; d 2 Fnf 0g, a 6= d, and let Ea;d

be a twisted Edwards curve overF. Let P1; P2 2 Ea;d(F), and de�ne P3 := P1 + P2.
Then we have

div
�

� C

l1l2

�
= ( P1) + ( P2) � (P3) � (O):
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Proof. First, consider the function � C on Ea;d. By B�ezout's Theorem (see Theo-
rem 1.21), the intersection of C and Ea;d should have eight points counting multi-
plicities. We note that the two points at in�nity 
 1 and 
 2 are singular points of mul-
tiplicity 2 (Lemma 1.66). The polynomial f C has zeros atP1, P2, and O0 and zeros
at 
 1 and 
 2, which are counted with multiplicity 2. In total, this sums up to seven
points, which means that there is an eighth pointQ in the intersection. The positive
part of the divisor div(� C ) of � C is thus (P1) + ( P2) + ( O0) + ( Q) + 2(
 1) + 2(
 2).
The Z 2-term in the denominator leads to� C having double poles at 
1 and 
 2 and
the negative part of div(� C ) being � 4(
 1) � 4(
 2). Thus the divisor of � C is

div( � C ) = ( P1) + ( P2) + ( O0) + ( Q) � 2(
 1) � 2(
 2):

Let lQ = l1;Q

Z be the function given by the horizontal lineL1;Q through Q, and let l2
be the function of the vertical line throughO. Then

div( lQ) = ( Q) + ( � Q) � 2(
 2);

div( l2) = ( O) + ( O0) � 2(
 1):

By combining the above divisors we get

div
�

� C

lQ l2

�
= ( P1) + ( P2) � (� Q) � (O):

We now see that we have an equivalence of divisors

((P1) � (O)) + (( P2) � (O)) � (� Q) � (O);

showing that � Q is indeed equal to the sumP1 + P2 = P3 (see Theorem1.91). Thus
the line lQ is equal to l1, and the lemma follows.

Remark 4.10. From the proof of the previous lemma, we see thatP1+ P2 is obtained
as the re
ection across they-axis of the eighth intersection point ofEa;d and the
conic C passing through 
1; 
 2; O0; P1, and P2.

Example 4.11. We return to the curve and points from Example4.5. We denote
by P3 = P1 + P2 or P3 = [2]P1 the sum ofP1 and P2 or the double ofP1, respectively.
Figures 4.6 and 4.7 show the speci�c cases as in Example4.5.

Example 4.12. This example shows the geometric interpretation of the Edwards
group law with the curve and points from Example4.6 in Figures 4.8 and 4.9. The
sum ofP1 and P2 and the double ofP1 are again denoted byP3.

Example 4.13. This example shows the group law on the curveE1=2 with the points
from Example 4.7. Addition of two di�erent points is depicted in Figure 4.10(a),
and doubling of a point is visualized in Figure4.10(b).
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(b) P1 6= P2 = O0, P3 = P1 + P2

Figure 4.6: Geometric interpretation of the Edwards group law for P1 6= P2 on
E � 30 : x2 + y2 = 1 � 30x2y2 over R.
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Figure 4.7: Geometric interpretation of the Edwards group law for P1 = P2 on
E � 30 : x2 + y2 = 1 � 30x2y2 over R.



96 4.2. Geometric interpretation of the group law

b

b

b

b

bb

P1

P2

C

E2O

O0

P3� P3 L1;P3
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(b) P1 6= P2 = O0, P3 = P1 + P2

Figure 4.8: Geometric interpretation of the Edwards group law for P1 6= P2 on
E2 : x2 + y2 = 1 + 2 x2y2 over R.
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(b) P1 = P2 = O0, P3 = 2 O0 = O

Figure 4.9: Geometric interpretation of the Edwards group law for P1 = P2 on
E2 : x2 + y2 = 1 + 2 x2y2 over R.
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(a) P1 6= P2, P1; P2 6= O0, P3 = P1 + P2
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(b) P1 = P2 6= O0, P3 = 2 P1

Figure 4.10: Geometric interpretation of the group law onE1=2 : x2 + y2 = 1 + 1
2x2y2

over R.

We now turn to Miller's formula (see Lemma1.96). Recall that for i 2 Z and
P 2 Ea;d, a Miller function is a function f i;P 2 F(Ea;d) with divisor

div( f i;P ) = i (P) � ([i ]P) � (i � 1)(O):

We have the following equality of divisors relating the Miller function f i + j;P with
f i;P and f j;P for i; j 2 Z:

div( f i + j;P ) = div( f i;P f j;P ) + ([ i ]P) + ([ j ]P) � ([i + j ]P) � (O) (4.4)

(see Lemma1.95 and Lemma 1.96). The previous equality leads to an analog of
Miller's formula for twisted Edwards curves.

Lemma 4.14. Let F be a �eld with char(F) 6= 2. Let a; d 2 F n f 0g, a 6= d, and
let Ea;d be a twisted Edwards curve overF. Let P 2 Ea;d. Let � C and l1; l2 be the
functions corresponding to the conicC and the linesL1 and L2 occurring in the
addition [i ]P + [ j ]P = [ i + j ]P for i; j 2 Z. Then the following formula holds:

f i + j;P = f i;P f j;P
� C

l1l2
: (4.5)

Proof. The lemma follows easily from (4.4) and Lemma4.9by setting P1 = [ i ]P and
P2 = [ j ]P.

This formula may now be used in Miller's algorithm (as in Section 1.2.3) to compute
pairings on twisted Edwards curves.
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4.3 Explicit formulas for Miller functions

In this section we show how to use the geometric interpretation of the group law
derived in Section4.2 to compute pairings. Let Ea;d be a twisted Edwards curve
de�ned over a prime �eld Fp. Let k be the embedding degree ofEa;d with respect
to a large prime divisor of #Ea;d(Fp). We assume thatk is even. For pairings
based on the Tate pairing, we assume that the second input point Q is chosen as
the image of a point on a quadratic twist as described in Section 1.2.3. Note that
on twisted Edwards curves Ea;d, twists a�ect the x-coordinate. Let Fpk have basis
f 1; � g over Fpk= 2 with � 2 = � 2 Fpk= 2 and let Q0 = ( x0; y0) 2 Ea�;d� (Fpk= 2 ) be an
Fpk= 2 -rational point on the curve twisted with � . We can useQ = ( x0�; y 0) as the
image ofQ0 under the twisting isomorphism. This ensures that the second argument
of the pairing is on Ea;d(Fpk ) and is not de�ned over a smaller �eld.
According to Lemma4.14we de�ne gR;P := � C

l1 l2
with the functions occurring in the

addition of R and P. So the update in the Miller loop computesgR;P , evaluates it at
Q = ( x0�; y 0), and updatesf as f  f � gR;P (Q) (addition) or as f  f 2 � gR;R (Q)
(doubling). Given the shape of� C and the point Q = ( x0�; y 0), we see that we need
to compute

� C

l1l2
(x0�; y 0) =

cZ 2 (1 + y0) + cXY x0�y 0 + cXZ x0�
(Z3y0 � Y3)x0�

=
cZ 2

(1+ y0 )
x0 � � + cXY y0 + cXZ

Z3y0 � Y3
;

where (X 3 : Y3 : Z3) are the coordinates of the pointR + P or R + R.
Put � = (1+ y0 )

x0 � . Note that � 2 Fpk= 2 and that it is �xed for the whole computation,
so it can be precomputed. The denominatorZ3y0 � Y3 is de�ned over Fpk= 2 ; since
it enters the function multiplicatively, the �nal exponent iation removes all contri-
butions from it. We can thus avoid its computation completely, and only have to
evaluate

cZ 2 �� + cXY y0 + cXZ :

The coe�cients cZ 2 ; cXY , and cXZ are de�ned overFp. Given these coe�cients, the
evaluation at Q can be computed inkm (the multiplications by � and y0 each need
k
2m).
In the next sections, we give explicit formulas to e�ciently compute cZ 2 ; cXY , and
cXZ for addition and doubling. For applications in cryptography we restrict our
considerations to points in a group of prime order. Ideally,the number of points
on the curve factors as #Ea;d(Fp) = 4 n for a prime n, and the base pointP has
order n. This implies in particular that none of the additions or doublings involves

 1; 
 2, or O0. The neutral elementO is a multiple of P, namely nP , but none of
the operations in the Miller loop will have it as its input. This means that without
loss of generality we can assume that none of the coordinatesof the input points is
0. In fact, for this assumption we only need thatP has odd order, so that the points
of order 2 or 4 are not multiples of it.
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4.3.1 Addition

Hisil et al. present new addition formulas for twisted Edwards curves in [HWCD08].
To save 1m they extend the representation by a further coordinateT1 = X 1Y1=Z1

for points P = ( X 1 : Y1 : Z1) with Z1 6= 0. In the following section, we show how to
compute this value as part of the doubling step. As suggestedin [HWCD08], it is
only computed for the last doubling in a sequence of doublings and is not computed
after an addition. Note that no addition is ever followed by another addition in the
scalar multiplication. Furthermore, we assume that the base point P has odd order,
so in particular, Z1; Z2 6= 0. The sum P3 = ( X 3 : Y3 : Z3) of two di�erent points
P1 = ( X 1 : Y1 : Z1 : T1) and P2 = ( X 2 : Y2 : Z2 : T2) in extended representation is
given by

X 3 = ( X 1Y2 � Y1X 2)(T1Z2 + Z1T2);

Y3 = ( aX1X 2 + Y1Y2)(T1Z2 � Z1T2);

Z3 = ( aX1X 2 + Y1Y2)(X 1Y2 � Y1X 2):

Proposition 4.4 (a) in Section 4.1 states the coe�cients of the conic section for
addition. We useT1; T2 to shorten the formulas.

cZ 2 = X 1X 2(Y1Z2 � Y2Z1) = Z1Z2(T1X 2 � X 1T2);

cXY = Z1Z2(X 1Z2 � Z1X 2 + X 1Y2 � Y1X 2);

cXZ = X 2Y2Z 2
1 � X 1Y1Z 2

2 + Y1Y2(X 2Z1 � X 1Z2)

= Z1Z2(Z1T2 � T1Z2 + Y1T2 � T1Y2):

Note that all coe�cients are divisible by Z1Z2 6= 0, and so we scale the coe�cients.
The explicit formulas for computingP3 = P1 + P2 and (cZ 2 ; cXY ; cXZ ) are given as
follows:

A = X 1 � X 2; B = Y1 � Y2; C = Z1 � T2; D = T1 � Z2; E = D + C;

F = ( X 1 � Y1) � (X 2 + Y2) + B � A; G = B + aA; H = D � C; I = T1 � T2;

cZ 2 = ( T1 � X 1) � (T2 + X 2) � I + A; cXY = X 1 � Z2 � X 2 � Z1 + F ;

cXZ = ( Y1 � T1) � (Y2 + T2) � B + I � H ; X 3 = E � F ; Y3 = G � H ; Z3 = F � G:

With these formulas,P3 and (cZ 2 ; cXY ; cXZ ) can be computed in 13m +1ma. If T3 is
desired as part of the output, it can be computed in 1m asT3 = E � H . The point P2

is not changed during pairing computation, and can be given in a�ne coordinates,
i. e. Z2 = 1. Applying mixed addition, the above costs reduce to 11m + 1ma. Note
that there is no extra speed up from choosinga = � 1 as in [HWCD08] since all
subexpressions are used also in the computation of the coe�cients cZ 2 ; cXY ; cXZ . A
mixed addition step in Miller's algorithm for the Tate pairing thus costs 1M + ( k +
11)m + 1ma.



100 4.3. Explicit formulas for Miller functions

4.3.2 Doubling

Proposition 4.4 (c) in Section 4.1 states the coe�cients of the conic section in the
case of doubling. To speed up the computation, we multiply each coe�cient by
2Y1=Z1 (remember that f C is unique up to scaling). Note also thatY1; Z1 6= 0
because all points have odd order. The multiplication byY1=Z1 reduces the overall
degree of the equations since we can use the curve equation tosimplify the formula
for cXY ; the factor 2 is useful in obtaining ans� m trade-o� in the explicit formulas
below. We obtain:

cZ 2 = X 1(2Y 2
1 � 2Y1Z1);

cXY = 2( Y1Z 3
1 � dX 2

1Y 2
1 )=Z1 = 2( Y1Z 3

1 � Z 2
1 (aX 2

1 + Y 2
1 ) + Z 4

1 )=Z1

= Z1(2(Z 2
1 � aX 2

1 � Y 2
1 ) + 2 Y1Z1);

cXZ = Y1(2aX 2
1 � 2Y1Z1):

Of course, we also need to computeP3 = [2]P1. We use the explicit formulas from
[BBJ+ 08] for the doubling, and reuse subexpressions in computing the coe�cients
of the conic.

A = X 2
1 ; B = Y 2

1 ; C = Z 2
1 ; D = ( X 1 + Y1)2; E = ( Y1 + Z1)2;

F = D � (A + B); G = E � (B + C); H = aA; I = H + B;

J = C � I ; K = J + C; cXZ = Y1 � (2H � G); cXY = Z1 � (2J + G);

cZ 2 = F � (Y1 � Z1); X 3 = F � K ; Y3 = I � (B � H ); Z3 = I � K:

These formulas computeP3 = ( X 3 : Y3 : Z3) and (cZ 2 ; cXY ; cXZ ) in 6m + 5s + 1ma.
If the doubling is followed by an addition, the additional coordinate T3 = X 3Y3=Z3

needs to be computed. This is done by additionally computingT3 = F � (B � H ) in
1m.
If the input is given in extended form asP1 = ( X 1 : Y1 : Z1 : T1), we can useT1 in
the computation of the conic as

cZ 2 = X 1(2Y 2
1 � 2Y1Z1) = 2 Z1Y1(T1 � X 1);

cXY = Z1(2(Z 2
1 � aX 2

1 � Y 2
1 ) + 2 Y1Z1);

cXZ = Y1(2aX 2
1 � 2Y1Z1) = 2 Z1(aX1T1 � Y 2

1 );

and then scale the coe�cients by 1=Z1. The computation of P3 = ( X 3 : Y3 : Z3 : T3)
and (cZ 2 ; cXY ; cXZ ) is then done in 6m + 5s + 2ma as

A = X 2
1 ; B = Y 2

1 ; C = Z 2
1 ; D = ( X 1 + Y1)2; E = ( Y1 + Z1)2;

F = D � (A + B); G = E � (B + C); H = aA; I = H + B; J = C � I ;

K = J + C; cZ 2 = 2Y1 � (T1 � X 1); cXY = 2J + G; cXZ = 2( aX1 � T1 � B );

X 3 = F � K ; Y3 = I � (B � H ); Z3 = I � K ; T3 = F � (B � H ):

For computing the Tate pairing this means that a doubling step costs 1M +1S+( k+
6)m +5s+1ma in twisted Edwards coordinates and 1M +1S+( k +6) m +5s+2ma

in extended coordinates.
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4.3.3 Miller loop

Miller's algorithm loops over the bits in the representation of n. We follow Hisil et
al. [HWCD08] and denote the system of projective Edwards coordinates (X 1 : Y1 :
Z1) by E and the extended system (X 1 : Y1 : Z1 : T1) by Ee.
If the whole computation is carried out inEe each addition step in the Tate pairing
needs 1M +( k+14)m +1ma if both points are projective and 1M +( k+12)m +1ma

if the addition is mixed. A doubling step costs 1M + 1S + ( k + 6) m + 5s + 2ma.
We can save 1ma per doubling by using the following idea which is already mentioned
by Cohen et. al. [CMO98]. If we are faced withs consecutive doublings between
additions, we execute the �rsts � 1 doublings as 2E ! E , do the last doubling as
2E ! E e and then perform the addition asEe+ Ee ! E . We account for the extram
needed in 2E ! E e when stating the cost for addition. This way each addition step
needs 1M +( k+14)m +1ma if both points are projective and 1M +( k+12)m +1ma

if the addition is mixed. A doubling costs 1M + 1S + ( k + 6) m + 5s + 1ma.

4.3.4 Comparison

We compare our results with formulas in the literature, in particular, with the
pairing formulas for Edwards curves due to Ionica and Joux [IJ08] and the formulas
for Weierstra� curves by Chatterjee, Sarkar, and Barua [CSB05].
In [HMS09], Hankerson, Menezes, and Scott study pairing computationon BN
curves [BN06]. All BN curves have the formy2 = x3 + b and are thus more special
than curves with a4 = � 3. In their presentation they combine the pairing computa-
tion with the extension-�eld arithmetic and thus the operation for the pure pairing
computation is not stated explicitly but the formulas matchthose in [CN05].
Das and Sarkar [DS08] were the �rst to publish pairing formulas for Edwards curves.
We do not include them in our overview in Table4.1 since their study is speci�c to
supersingular curves withk = 2.
Ionica and Joux [IJ08] proposed the thus far fastest pairing formulas for Edwards
curves. Note that they actually compute the 4th power of the Tate pairing. This
has almost no negative e�ect for usage in protocols. So we include their result as
pairings on Edwards curves.
We denote Edwards coordinates byE and Jacobian coordinates byJ . The row \this
work" in the table below reports the results of the previous section using 2E ! E
for the main doublings, 2E ! E e for the �nal doubling, and Ee + Ee ! E for the
addition. Using only Ee for all operations requires 1ma more per doubling.
Each mADD or ADD entry has an additional 1M + km in the operation count; each
DBL entry has an additional 1M + km + 1S. Since this does not depend on the
chosen representation, we do not report it in this overview.The symbolsma4 and
md denote multiplication by the constantsa4 and d, respectively.
This overview shows that our new formulas solidly beat any formulas published for
pairing computation on Edwards curves. We point out that on Edwards curves or
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DBL mADD ADD

J , [IJ08], [CSB05] 1m + 11s + 1m a4 9m + 3s |
J ; a4 = � 3, [CSB05] 7m + 4s 9m + 3s |
J ; a4 = 0, [CN05], [CSB05] 6m + 5s 9m + 3s |
E, [IJ08] 8m + 4s + 1m d 14m + 4s + 1m d |
E, this work 6m + 5s + 1m a 12m + 1m a 14m + 1m a

Table 4.1: Overview of operation counts for doubling and addition steps

twisted Edwards curves with very smalla, the multiplication costs ma vanish.
The comparison with Jacobian coordinates depends on them � s ratio and the size
of the parameters. Since botha4 and a can be chosen to be small, multiplications
by them are negligible, i.e. we assume 1ma4 = 1ma = 0. The number of operations
on the Edwards curve is no more than on the Weierstrass curve.For doubling,
our formulas are as e�cient as the most e�cient ones (for BN curves) and cover
more general curves. For addition, we need the same number ofoperations, but
the formulas have no squarings. So they are slower if squarings are cheaper than
multiplications. Overall, the new formulas are competitive for doubling, if not better,
and slightly worse for mixed addition.
Finally, the penalty for computing full additions instead of mixed additions is sig-
ni�cantly worse for Jacobian coordinates where an addition(without computation
of the line function) costs 12m + 4s which is more than the full computation in
Edwards coordinates. Therefore, Edwards curves are the clear winner if for some
reason the input point is not in a�ne coordinates.



Chapter 5

Constructing curves of genus 2
with p-rank 1

In this chapter, we discuss the complex multiplication method for hyperelliptic
curves of genus 2 andp-rank 1. For this purpose, we introduce general facts about
abelian varieties and complex multiplication (CM) in Section 5.1. Section5.2 and
Section5.4 provide results of joint work with Hitt O'Connor, McGuire, and Streng
[HMNS08]. We present an algorithm for constructing hyperelliptic curves of genus
2 with p-rank 1 that are de�ned over Fp2 . The algorithm allows the construction
of curves with a prime number ofFp2 -rational points on its Jacobian variety of
a cryptographic relevant size. We give examples of curves constructed with the
proposed algorithm. In Section5.3 we discuss existing construction algorithms for
genus-2 curves with prescribed embedding degree. Finally,in Section5.4we propose
an algorithm to construct p-rank-1 curves of genus 2 with a prescribed embedding
degree.

5.1 Abelian varieties with complex multiplication

Let F be a perfect �eld, and letF be an algebraic closure ofF.

De�nition 5.1. An abelian variety over F is an absolutely irreducible projective
algebraic group de�ned overF.

The reader is referred to [FL05a] for a brief introduction to abelian varieties in
view of their application in cryptography. Mumford [Mum74] and Lang [Lan83]
give an elaborate introduction, and Shimura [Shi97] treats the theory of complex
multiplication on abelian varieties. In Chapter1, we have already seen examples of
abelian varieties, namely Jacobian varieties of hyperelliptic curves. In particular, an
elliptic curve is an abelian variety.
Let A be an abelian variety overF. For any �eld extension F � ~F � F, the set of
~F-rational points on A is denoted byA(~F), where A = A(F).

103
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De�nition 5.2. An abelian variety A over F is calledsimple overF if for all abelian
varieties B � A de�ned over F either B = 0 or B = A . It is called absolutely simple
if it is simple over F.

Let A and B be two abelian varieties overF. A morphism A ! B is called a
homomorphismif it is a group homomorphism. A homomorphism' is an isogenyif
it is surjective and the kernel of' is �nite. The abelian varieties A and B are called
isogenousif there exists an isogeny between them.
Any abelian variety A is isogenous to a product of powers of simple abelian varieties
(see [Mum74, Corollary 1, p. 174] and [FL05a, Section 4.3.4], i. e. there exist a
number l 2 N, simple abelian varietiesA i , 1 � i � l , each two of which are not
isogenous to each other, andni 2 N0 such that A is isogenous toA n1

1 � � � � � A n l
l .

The A i and the ni are uniquely determined.
An endomorphismof A is a homomorphismA ! A of A to itself. We denote the
set of all endomorphisms ofA de�ned over F by EndF(A ). The set EndF(A ) with
addition given by the group law onA and composition as multiplicative structure
is a ring, the endomorphism ring ofA . The subring of endomorphisms de�ned over
~F for F � ~F � F is denoted by End~F(A ). We de�ne the endomorphism algebra ofA
over ~F by End0

~F(A ) := Q 
 End~F(A ). If A is simple over~F, End~F(A ) has no zero
divisors and End0

~F(A ) is a division algebra [FL05a, Proposition 4.70].
Let A be isogenous toA n1

1 � � � � � A n l
l as above, and de�neD i := End 0

F(A i ). Then

End0
F(A ) �= Mn1 (D1) � � � � � Mn l (D l );

where Mn i (D i ) is the matrix ring of (ni � ni )-matrices overD i . The structure of
End0

F(A ) for a simple abelian varietyA is classi�ed in [Mum74, Section 21]. As
already seen for elliptic curves and Jacobians of hyperelliptic curves, the multi-
plication-by-m map [m] de�ned as usual is an endomorphism onA for any m 2 Z.
Let g := dim( A ) be the dimension ofA as a projective variety. For the de�nition of
the dimension of a variety, see [FL05a, De�nition 4.17], [Ful69, Chapter 6, Section
5], and [Har77, Section II.3]. Every endomorphism' of A has a characteristic
polynomial f '; A 2 Z[T], monic, of degree 2g such that f '; A (' ) = 0. The constant
term of f '; A is called thenorm of ' , and the negative of the coe�cient of T2g� 1 is
called the trace of ' [Mum74, Theorem 4 in Section 18].
For the remainder of this section, we �xF to be a �nite �eld Fq with q elements of
characteristic p. Let A be an abelian variety de�ned overFq. The set of p-torsion
points on A is the kernel of the map [p], denoted byA [p]. It is an Fp-vector space.

De�nition 5.3. The dimensionrp(A ) := dim Fp (A [p]) of A [p] as anFp-vector space
is called thep-rank of A .

It holds
0 � rp(A ) � g
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(see [Mum74, Proposition on p. 64]). If rp(A ) = g, then A is called ordinary .
The abelian variety A is called supersingular if it is isogenous to a product of su-
persingular elliptic curves. In this case,rp(A ) = 0. If g � 2, the converse is
also true, i. e. an abelian variety of dimension 1 or 2 is supersingular if and only if
rp(A ) = 0 [ FL05a, Remark 4.75]. Thep-rank of A is invariant under isogenies, and
it is rp(A � B ) = rp(A ) + rp(B). Therefore, if A is isogenous toA n1

1 � � � � � A n l
l ,

then rp(A ) =
P

i ni rp(A i ).
The q-power Frobenius automorphism onFq extends to an endomorphism� q on A ,
the Frobenius endomorphism onA . We denote the characteristic polynomial of� q

by f A := f � q ;A . A polynomial f is called aq-Weil polynomial if f = f A for some
abelian variety A over Fq.

Theorem 5.4. Let A and B be abelian varieties overFq, and let f A and f B be the
characteristic polynomials of their Frobenius endomorphisms. Then the following
statements are equivalent:

(a) A and B are isogenous overFq.

(b) f A = f B.

(c) # A (~F) = # B(~F) for all �nite extensions ~F � Fq.

Proof. This is Theorem 1(c) in [Tat66].

Let � A be a root of the characteristic polynomialf A of the Frobenius endomorphism.
De�ne the number �eld K = Q(� A ). In the sequel, we identify� q with the algebraic
integer � A . Weil proved the Riemann hypothesis for abelian varieties,which states
that every root of f A has absolute value

p
q. Or in other words: the image of� A

under every embedding ofK into C has absolute value
p

q. An algebraic integer
that satis�es this property is called aq-Weil number. Two q-Weil numbers � 1 and
� 2 are conjugate if there exists a �eld isomorphismQ(� 1) ! Q(� 2) that maps � 1

to � 2. Honda and Tate proved the following relation betweenq-Weil numbers and
isogeny classes of abelian varieties.

Theorem 5.5. The map A 7! � A induces a bijection between isogeny classes of
simple abelian varieties overFq and conjugacy classes ofq-Weil numbers.

Proof. This is the main theorem in [Hon68] or Th�eor�eme 1(i) in [ Tat71].

A q-Weil number thus determines a simple abelian variety that is unique up to
isogeny. The following theorem relates theq-Weil number � A to the endomorphism
algebra ofA .

Theorem 5.6. Let A be a simple abelian variety overFq of dimension g. Let
f A be the characteristic polynomial of the Frobenius endomorphism � A on A . Let
K = Q(� A ). Then the following statements hold:
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(a) E := End 0
Fq

(A ) is a division algebra with centerK .

(b) 2g = [ E : K ]1=2[K : Q].

(c) Let e := [ E : K ]1=2. Then f A (T) = mA (T)e for some irreducible polynomial
mA (T) 2 Q[T].

Proof. See [Tat71, Th�eor�eme 1 (ii) (2) and Remarques 2)].

Theorem 2 in [Tat66] states that E is commutative if and only if E = K if and only
if f A has no multiple roots, i. e. it is irreducible. In this case, [E : Q] = [ K : Q] = 2g.

Remark 5.7. There is a connection between the number ofFq-rational points on
A and the q-Weil number � A : The set ofFq-rational points is equal to the kernel of
[1] � � q, hence #A(Fq) = # ker([1] � � q). The cardinality of the kernel is equal to
deg([1]� � q) = f A (1) [Mum74, Theorem 4, p. 180]. We thus have

# A(Fq) = f A (1):

Let E = K = Q(� A ). If f A (T) =
Q 2g

i =1 (T � � i ) is the factorization of f A in C[x]
with � 1 := � A , then f A (1) =

Q
i (1 � � i ) = NK= Q(1 � � A ), the K=Q-norm of 1� � A .

Therefore, in this case
# A(Fq) = NK= Q(1 � � A )

(see also Theorem1.77).

Hence we can compute the number ofFq-rational points on A from a corresponding
q-Weil number. By �xing a number �eld K of degree 2g, we can choose aq-Weil
number � 2 K such that the norm NK= Q(1 � � ) ful�lls a given property. In certain
cases, it is possible to construct a simple abelian varietyA over Fq of dimensiong
with E = K and # A(Fq) = NK= Q(1 � � ) by using the complex multiplication (CM)
method. This method is brie
y explained in Subsection5.2.2 below. We conclude
this section by giving some basic de�nitions.

De�nition 5.8. A �eld K is called aCM �eld if it is a totally imaginary quadratic
extension of a totally real algebraic number �eld. LetO be an order ofK . An
abelian variety A has complex multiplication (CM) by O if EndF(A ) �= O; it has
CM by K if it has CM by an order O of K .

Example 5.9. An elliptic curve E over a �nite �eld Fq is an abelian variety. IfE is
ordinary, it has CM by a quadratic imaginary number �eld [Sil86, Theorem V.3.1(b)].
An elliptic curve de�ned over C has complex multiplication if its endomorphism ring
is strictly larger than Z (see [Sil86, Remark II.4.3] and Section1.3.1).

De�nition 5.10. Let K be a CM �eld of degree 2g. Let � := f ' 1; : : : ; ' gg be
a set of distinct embeddings ofK into C such that no two of the ' i are complex
conjugate to each other. Then the pair (K; �) is called a CM type. A CM type
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is called primitive if there is no proper sub�eld K 0 � K such that for the set of
restrictions � 0 := f ' 1jK 0; : : : ; ' gjK 0g, the pair (K 0; � 0) is a CM type. The re
ex �eld
of (K; �) is de�ned as

bK := Q

 (
gX

i =1

' i (� ) j � 2 K

)!

;

i. e. bK is the number �eld generated by all elements
P g

i =1 ' i (� ) for � 2 K . If the
context is clear, we omit � and say that bK is the re
ex �eld of K .

Example 5.11. (a) If a CM type ( K; �) is primitive and K is normal overQ, then
bK = K [Shi97, Example 8.4(1)].
(b) Let K be a non-normal quartic CM �eld. Then the normal closureL of K has
degree 2 overK , and its Galois group overQ is the dihedral groupD8 of order 8
[Shi97, Example 8.4(2)(C)]. In that case, the re
ex �eld is non-normal of degree 4,
contained in L, and not conjugate toK .

5.2 A CM construction for genus-2 curves with
p-rank 1

The abelian varieties that we consider in this section are Jacobian varieties of hy-
perelliptic curves of genus 2. Note that the Jacobian variety has dimension equal to
the genus of the curve [Har77, Remark IV.4.10.9]. Hence when the genus is 2, we
also call the abelian variety anabelian surface. We recall from Theorem1.77 and
Example 1.78that the characteristic polynomial of the Frobenius endomorphism on
the Jacobian variety of a hyperelliptic curveC=Fq of genus 2 has the form

f JC = T4 + a1T3 + a2T2 + a1qT + q2

for integers a1; a2. If nk := # C(Fqk ), k 2 f 1; 2g, then n1 = q + 1 + a1 and n2 =
q2 +1+2 a2 � a2

1. In the following subsection, we discuss curves that have a Jacobian
with p-rank 1.

5.2.1 Genus-2 curves with p-rank 1

In De�nition 1.74, we have de�ned thep-rank of a hyperelliptic curve as thep-
rank of its Jacobian variety. This coincides with De�nition 5.3, and we may use
both de�nitions synonymously. The following theorem summarizes the results of
R•uck [R•uc90] and Maisner and Nart [MN02], and gives conditions ona1; a2 for a
hyperelliptic genus-2 curveC to have p-rank 1.

Theorem 5.12. Let q = pn for a prime p and a positive integern. Let f =
T4+ a1T3+ a2T2+ qa1T + q2 2 Z[T], and let � = a2

1 � 4a2 +8q, � = ( a2 +2q)2 � 4qa2
1.

Then f is the characteristic polynomial of a simple Jacobian variety of a hyperelliptic
curve of genus2 with p-rank 1 de�ned over Fq if and only if
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(a) ja1j < 4
p

q;

(b) 2ja1j
p

q � 2q < a2 < a 2
1=4 + 2q,

(c) � is not a square inZ,

(d) � p(a1) = 0 ,

(e) � p(a2) � n=2,

(f ) � is not a square in thep-adic integers,

where� p denotes thep-adic valuation.

Proof. Assume that the conditions (a) - (f) hold. The �rst three conditions are
equivalent to f being an irreducibleq-Weil polynomial (see [MN02, Lemma 2.1,
Lemma 2.4] and [R•uc90, Lemma 3.1]). Let � be a root of f . By Theorem 5.5
there exists a simple abelian surfaceA de�ned over Fq such that � corresponds
to its Frobenius endomorphism. It follows from [MN02, Theorem 2.15] thatA is
absolutely simple. Theorem 4.3 of [MN02] then implies that A is isogenous to the
Jacobian of a hyperelliptic curve of genus 2 with characteristic polynomial f . By
[MN02, Theorem 2.9], the curveC hasp-rank 1.
Conversely, letf be the characteristic polynomial of a simple Jacobian of a hyperel-
liptic curve of genus 2 withp-rank 1. Then f has the required shape. Note that since
JC is simple, by Theorem5.6, we havef (T) = m(T)e for some monic irreducible
polynomial m 2 Z[T]. The number e must divide the p-rank of JC [Gon98, Prop.
3.2]. Thus for a simple abelian variety withp-rank 1 the characteristic polynomial
of the Frobenius endomorphism is always irreducible. This implies the �rst three
conditions by [MN02, Lemma 2.4]. The last three conditions follow from [MN02,
Theorem 2.9] becauseJC hasp-rank 1.

The previous theorem states conditions forf JC which are equivalent to the curveC
having p-rank 1. They connect theq-Weil number � JC and the p-rank of C.
Next we consider the endomorphism algebra to see whether theJacobian of a curve
over Fq with p-rank 1 can have complex multiplication. For an elliptic curve E=Fq,
Theorem 1.54 shows that, there are two cases for End0(E) := End 0

Fq
(E), which

coincide with the two cases for thep-rank of E. Either the curve is ordinary with
p-rank 1, where End0(E) is a CM �eld of degree 2, or the curve is supersingular
with p-rank 0, where End0(E) is a quaternion algebra.
The following lemma shows that the endomorphism algebra End0

Fq
(JC ) for a curve

C with p-rank 1 is a quartic CM �eld if JC is simple. In contrast to the genus-1
case, not only ordinary curves can have a CM �eld as their endomorphism algebra.

Lemma 5.13. Let JC be the Jacobian of a hyperelliptic genus-2 curve C de�ned
over Fq. Assume thatJC is simple. If C hasp-rank 1, then JC is absolutely simple
and End0

Fq
(JC ) = End 0

Fq
(JC ) is a CM �eld of degree 4.
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Proof. Maisner and Nart [MN02, Corollary 2.17] show that a simple abelian surface
of p-rank 1 is absolutely simple.
By Theorem 5.6, the characteristic polynomial of Frobenius isf JC = me

JC
for some

irreducible monic polynomial mJC 2 Z[T]. We have seen in the proof of Theo-
rem 5.12that e = 1. Furthermore, Theorem 5.6 implies that End0

Fq
(JC ) is a �eld of

degree 4. It is a CM �eld, since�
p

q are no roots off JC .
It remains to show End0

Fq
(JC ) = End 0

Fq
(JC ). Let ' 2 End0

Fq
(JC ). There exists a

�nite �eld extension ~F � Fq such that ' 2 End0
~F(JC ). SinceJC is absolutely simple,

it is simple over~F, and it hasp-rank 1. With the same arguments as above, it follows
from Theorem5.6 that End0

~F(JC ) is a �eld of degree 4 containing End0Fq
(JC ). Thus

they are equal and' 2 End0
Fq

(JC ).

This lemma indicates that JC has CM by the quartic CM �eld K = End 0
Fq

(JC ) if
JC is simple. Note that if C hasp-rank 1 andJC is not simple, thenJC is isogenous
to the product of an ordinary elliptic curve and a supersingular elliptic curve. We
do not consider this case in the following but restrict to curves ofp-rank 1 with a
simple Jacobian variety, which then is absolutely simple byLemma 5.13.

5.2.2 The CM method for genus 2

In Subsection1.3.1, we have seen how the CM method can be used to construct
elliptic curves with CM over a �nite �eld as the reduction of curves overC with CM
by the same �eld K . In principle, this method, although in a more complicated way,
can also be applied to construct hyperelliptic curves of genus 2. In this subsection,
we brie
y discuss the CM method for genus 2. A more detailed description can be
found in [FL05b] and [FL05c].
We aim at obtaining a genus-2 curve over a �nite �eldFq of characteristic p with
a given number ofFq-rational points on the Jacobian. This means the curve corre-
sponds to aq-Weil number � that lies in an order O in a given quartic CM �eld K
(see Section5.1). We restrict to the case that this order is the maximal orderOK .
First we need to �nd abelian surfaces overC that are suitable candidates for being
reduced.
Any abelian variety of dimensiong over C corresponds to a lattice inCg. For g 2 N,
a lattice in Cg is a Z-module of full rank, i. e. it contains anR-basis ofCg. Let A
be an abelian variety of dimensiong over C. Then A is isomorphic toCg=� for a
lattice � � Cg [FL05c, Section 5.1.3]. The groupCg=� is called a complex torus. A
torus is attached to an abelian variety if and only if there exists a Hermitian form
H on Cd, and for E = Im( H ), the restriction of E to � � � maps into Z [FL05c,
Theorem 5.16].
We de�ne the dual lattice �̂ of a lattice � by

�̂ := f x 2 Cg j E(x; y) 2 Z for all y 2 � g:

An abelian variety A is calledprincipally polarized if �̂ = �.
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Remark 5.14. The Jacobian variety of a projective irreducible nonsingular curve
over C is a principally polarized abelian variety [FL05c, Proposition 5.24].

Vice versa, any principally polarized abelian surfaceA overC is the Jacobian variety
of a genus-2 curve [FL05c, Section 5.1.6.a]. The candidates we are looking for
are thus principally polarized abelian surfacesA over C with endomorphism ring
isomorphic to OK for a given quartic CM �eld K .
We obtain such abelian surfaces from ideals inOK (compare the CM method for
elliptic curves in Subsection1.3.1). Let K be a quartic CM �eld, and let (K; �) =
(K; f ' 1; ' 2g) be a CM type. For an ideala � O K the set �( a) := f (' 1(� ); ' 2(� )) t j
� 2 ag is a lattice in C2, and the torusC2=�( a) is an abelian surface which has CM
by OK , and vice versa, every abelian surface with this property can be obtained in
this way up to isomorphism [FL05c, Theorem 5.58 and discussion after that]. The
abelian surfaces with principal polarization are obtainedby only using special ideals
and assuming that the totally real quadratic sub�eldK 0 of K has class number 1.
For details, see [FL05c, Section 5.1.6.d].
The isomorphism class of an elliptic curve is given by itsj -invariant. In the genus-1
CM method, one analytically computes the Hilbert class polynomial the roots of
which are the j -invariants of all isomorphism classes of elliptic curves over C with
CM by the maximal order in a given quadratic CM �eld (see Subsection 1.3.1).
The isomorphism class of any hyperelliptic curveC of genus 2 is uniquely deter-
mined by three invariants (j 1; j 2; j 3) = ( j 1(C); j 2(C); j 3(C)), called the (absolute)
Igusa invariants [Igu60]. From a triple of Igusa invariants, a corresponding curve
can be constructed for example with Mestre's algorithm (see[Mes91], [Spa94], and
[Wen01]).

De�nition 5.15. Let s be the number of isomorphism classes of principally polar-
ized abelian surfaces overC with CM by OK . Let j (i )

` be the `th Igusa invariant of
a curve in the i th isomorphism class for 1� i � s. The three polynomials

H ` (x) =
sY

i =1

(x � j (i )
` ); ` 2 f 1; 2; 3g

are called theIgusa class polynomialsof OK .

The Igusa class polynomials have rational coe�cients, i. e.H ` 2 Q[x] for ` 2 f 1; 2; 3g
[FL05c, Theorem 5.64 (iii)]. The class polynomials overC can be computed from
the list of principally polarized abelian surfaces overC. This method is known
as the complex analytic approach. It is �rst described by Spallek [Spa94]. Van
Wamelen [vW99] computes the abelian surfaces as lattices inC2 and evaluates Igusa
invariants via Siegel modular forms. Recently, a complete runtime analysis of the
complex analytic method was given by Streng [Str08]. There are also other methods:
Eisentr•ager and Lauter [EL04] present an algorithm for constructing genus-2 curves
over �nite �elds that di�ers from the classical approach. Their method computes
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the class polynomials using a Chinese Remainder Theorem method. Gaudry et. al.
[GHK+ 05, GHK+ 06] use ap-adic or 2-adic lifting method. The computation of class
polynomials overC is a precomputation and not considered part of the algorithm
[FL05b, Section 18.2.2]. Class polynomials for many CM �elds can beobtained from
Kohel's database1.
Next we need to reduce the abelian surfaces overC to obtain abelian surfaces over
�nite �elds. This reduction can be done by reducing the Igusainvariants and the
class polynomials, respectively. The Igusa invariants arealgebraic numbers that lie
in a class �eld over the re
ex �eld bK of K [FL05c, Theorem 5.64 (i)].
Suppose we are given a primep, a CM �eld K , and a principally polarized abelian
variety A de�ned over C which has CM by OK . Assume that A is de�ned over
a number �eld L � C. Let p be a prime in OL over p, and assume thatp does
not divide the denominator of any of the coe�cients of the class polynomialsH i .
Then we can reduce theH i modulo p and obtain class polynomials overFp. This
corresponds to reducing the Igusa invariants modulop [FL05b, Section 18.2.5.b].
The reduced invariants are roots of the reduced class polynomials and thus lie in
an extensionFq � Fp. We denote the abelian surface corresponding to the reduced
invariants by A .
It is shown in [Shi97, Proposition 12 in 11.1] that the endomorphism ring EndL (A )
can be embedded into EndFq (A ). Therefore, if we choose aq-Weil number � 2 O K ,
we have� 2 EndFq (A ) and thus End0

Fq
(A ) contains K .

The splitting behavior of p in K determines thep-rank of the reduction A=Fq of A
modulo p. If A = E is an elliptic curve, a criterion of Deuring [Deu41] states that
E is supersingular ifp is either rami�ed or inert in K , and E is ordinary if p splits
completely in K . If A has dimension 2, then there are more cases to consider.
For dimension 2, Goren distinguishes these cases in [Gor97] assumingp is unrami�ed
in K . If an ordinary curve shall be constructed, thenp needs to split completely
in K . Gaudry, Houtmann, Kohel, Ritzenthaler, and Weng in [GHK+ 05] extend
Goren's results to the rami�ed case. They show that wheneverK is cyclic, then the
reduction of A is either ordinary or supersingular, but ifK is non-normal, then it is
possible forA to have p-rank 1. If K is normal, non-cyclic, thenA is not absolutely
simple. As simplep-rank-1 varieties are absolutely simple, we restrict to thecase
that K is non-normal. The part of the results of [Gor97] and [GHK+ 05] that applies
to p-rank 1 is as follows:

Lemma 5.16. Let K be a quartic CM �eld, and letC be a curve of genus2 over a
number �eld L � K with endomorphism ringOK . Let p be a prime number, and let
p be a prime ofOL lying over p. The reduction C of C modulop is a genus-2 curve
with p-rank 1 if and only if (p) decomposes inOK as (p) = p1p2p3 or (p) = p1p2p2

3.
In this case,JC is absolutely simple.

Proof. This is [GHK+ 05, Theorem 3.5 (3)].

1http://echidna.maths.usyd.edu.au/echidna/dbs/index. html
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Thus when looking for curves ofp-rank 1, we require that (p) splits as p1p2p3 or
p1p2p2

3.
Summarizing, the genus-2 CM method is as follows: Suppose asinput we are given
a quartic CM �eld K , a prime p, and a q-Weil number � , i. e. � �� = q, whereq is a
power ofp. Obtain the Igusa class polynomialsH1, H2, H3 for K from a database
or in a precomputation with the above mentioned methods. As for the genus-1 CM
method, the discriminant of K needs to be small enough such that theH i can be
computed.
Reduce the Igusa class polynomials modulop and compute all possible triples
(j 1; j 2; j 3) 2 F3

q from the roots of H1 mod p, H2 mod p, and H3 mod p. If s is the
degree of the class polynomials, we obtain at mosts3 triples (j 1; j 2; j 3) 2 F3

q. But
not all of them are triples of invariants. If Mestre's algorithm is used, it must be
applied to all triples. If a useful triple is chosen, the curve obtained from it may
still be a twist of the curve that yields the correct group order. The correct triples
and twists, if they exist, can be selected by probabilistic checking of the order of
JC , which is NK= Q(1 � � ) for the correct curveC (see Section5.1). Gaudry et. al.
[GHK+ 05] propose to replaceH2(x) and H3(x) by two other polynomials in such
a way that they directly only yield the correct n triples (j 1; j 2; j 3). For details, see
[GHK+ 05, Section 4].

5.2.3 Algorithms

In this subsection, we present two algorithms to construct hyperelliptic curves of
genus 2 withp-rank 1. Algorithms 5.1 and 5.2 construct a curveC de�ned over Fp2

such that # JC (Fp2 ) is a prime of a given bitsize. The algorithms require as input a
quartic CM �eld K and a desired bitsize for the group order.
Both algorithms apply the prime decomposition (p) = p1p2p3. The following remark
shows that the other case is not useful for constructing curves for cryptography since
the choices forp are very limited:

Remark 5.17. Let p be a prime that decomposes inOK as (p) = p1p2p2
3. Then p

has rami�cation index 2 at p3, thus p is a rami�ed prime. Therefore,p divides the
discriminant of the CM �eld K . When we �x K in advance, this means thatp is an
element of a small �nite set of primes.

The two algorithms di�er as follows: Algorithm 5.1 chooses a primep of suitable
size until the splitting behavior in OK , the ring of integers in K , is (p) = p1p2p3

(see Lemma5.16). From the prime decomposition ofp, the correspondingp2-Weil
number � is de�ned as � = � � � 1p, if p1 = ( � ) is a principal ideal generated by� .
Algorithm 5.2 instead selects candidate elements for� 2 O K of prime norm p �rst.
The p2-Weil number is computed from that as� = � 2� with � = p� � 1� � 1. In both
algorithms, it can then be checked whether the group orderNK= Q(1 � � ) is prime.
Finally the curve C is constructed by the CM method (see Subsection5.2.2).
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Input: A non-Galois CM �eld K of degree 4 and a positive integern.
Output: A prime p of n bits, a prime r , and a curveC of genus 2 overFp2 with

p-rank 1 such that r = # JC (Fp2 ).
1: Take a random primep of n bits.
2: If pOK factors asp1p2p3, wherep3 has degree 2, continue.

Otherwise, go to Step1.
3: If p1 is principal and generated by� , let � = � � � 1p. Otherwise, go to Step1.
4: If N (1 � u� ) is prime for some root of unityu 2 K , then replace� by u� and

set r = N (1 � � ). Otherwise, go to Step1.
5: Compute a curveC corresponding toK , p, and � using the CM method.
6: return p; r; C.

Algorithm 5.1: Generatep-rank-1 curves of genus 2 overFp2 (I)

Input: A non-Galois CM �eld K of degree 4 with real quadratic sub�eldK 0 and a
positive integern.

Output: A prime p of n bits, a prime r , and a curveC of genus 2 overFp2 with
p-rank 1 such that r = # JC (Fp2 ).

1: Take a random element� of OK n OK 0 the norm of which hasn bits.
2: If p = N (� ) is prime in Z, continue. Otherwise, go to Step1.
3: If � = p� � 1� � 1 is prime in OK 0 and remains prime inOK , then let � = � 2� .

Otherwise, go to Step1.
4: If N (1 � u� ) is prime for some root of unityu 2 K , then replace� by u� and

set r = N (1 � � ). Otherwise, go to Step1.
5: Compute a curveC corresponding toK , p, and � using the CM method.
6: return p; r; C.

Algorithm 5.2: Generatep-rank-1 curves of genus 2 overFp2 (II)

Proposition 5.18. For both Algorithms 5.1 and 5.2, the following holds: If the
algorithm terminates, the output is correct, i. e. the constructed curveC of genus2
has p-rank 1, is de�ned over Fp2 , and has the stated prime number ofFp2 -rational
points.

Proof. In both algorithms, we have� � = p2, so � is a p2-Weil number. Let � =
p� � 1� � 1. Then p factors in K as a product of three primes� �� , so the output has
p-rank 1 by Lemma5.16. By Section 5.1, the curve is de�ned overFp2 , and has a
prime number N (1 � � ) of Fp2 -rational points on its Jacobian.

Examples of curves such that their Jacobian group orders over Fp2 have crypto-
graphic relevant bitsizes are given in the next subsection.The curves were con-
structed using Algorithm 5.1.
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5.2.4 Examples

The following examples each describe ap-rank-1 curve C de�ned over a quadratic
�eld Fp2 such that the Jacobian varietyJC (Fp2 ) has prime order. The CM �eld is
K = Q(! ) in each case, where! is a root of X 4 + 34X 2 + 217 2 Q[X ]. We give the
prime p, the coe�cients a1 and a2 of the characteristic polynomial of the Frobenius
endomorphism and the coe�cientsci 2 Fp2 of the curve equation

C : y2 = c6x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0:

The group order of the Jacobian can be computed as #JC (Fp2 ) = p4 + 1 + a1(p2 +
1) + a2: The �eld Fq = Fp2 is given asFp(� ), where � has the minimal polynomial
f � = X 2 + 3 2 Fp[X ] in each case, i. e.� =

p
� 3. Section headings describe the size

of the group JC (Fp2 ) in bits. The three example bit sizes are suitable for the 80-,
96- and 128-bit security levels.

160-bit groupsize

p = 924575392409

a1 = � 3396725192754

a2 = 4585861472127472591045899

c6 = 377266258806� � + 915729517707

c5 = 494539789092� � + 415576796385

c4 = 904019288751� � + 345679289510

c3 = 309144556572� � + 430866212243

c2 = 58888332305� � + 588111907455

c1 = 115624782924� � + 580418244294

c0 = 156203470202� � + 110258906818

192-bit groupsize

p = 236691298903769

a1 = 9692493559086

a2 = 53053369677708708650361238059

c6 = 52558588104658� � + 99902692259559

c5 = 52389593530844� � + 158973424741312

c4 = 218737207208837� � + 181252769658898

c3 = 172428310717706� � + 8801118005418

c2 = 123239683911263� � + 7283283410239

c1 = 153772853838243� � + 205198867568386

c0 = 215981952231090� � + 34417850754628
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256-bit groupsize

p = 15511800964685067143

a1 = � 2183138494024250742

a2 = � 390171452893965844512858417075864299559

c6 = 4150612463019545210� � + 12947607883594839049

c5 = 1151467134418557330� � + 14300579473277935991

c4 = 1530498141898130345� � + 14555772239394475007

c3 = 1718208704069543708� � + 3224111154139828576

c2 = 13826236770513916637� � + 8502326661843998285

c1 = 1128433341144760472� � + 6897664900087390978

c0 = 456182377334184445� � + 12945866133209209503

5.3 Prescribed embedding degree in genus 2

In genus 2 similar to genus 1 we may take supersingular Jacobians for pairing-
based cryptosystems, because as in genus 1 there also existsan upper bound on the
embedding degree. Galbraith [Gal02] shows that this upper bound is 12 in genus
2. For achieving better security levels, one needs to �nd Jacobians for which it is
larger. Again, we need to look for non-supersingular curves.

Example 5.19. Freeman, Stevenhagen, and Streng [FSS08] propose an algorithm
to construct ordinary simple abelian varieties which have aprescribed embedding
degree. By applying the CM method, the algorithm can be used to construct hy-
perelliptic curves of genus 2 or 3 with small embedding degree.
Let K be a quartic CM �eld, k 2 N the desired embedding degree, andr a prime,
the supposed prime divisor of the group order. Aq-Weil number � ful�lling the
conditions

NK= Q(1 � � ) � 0 (mod r );

� k(� � ) � 0 (mod r ):

can be found as the type norm of an element in the ringO bK of integers of the re
ex
�eld bK of K . This element is constructed using the prime decompositionof r in
O bK . From Lemma 1.108and Remark5.7, it follows that r divides the group order
and k is the embedding degree of the constructed curve.

Example 5.20. Freeman [Fre08] shows that it is possible to do the algorithm of
Freeman, Stevenhagen, and Streng [FSS08] with the prime r parametrized by a
polynomial r (x) 2 Z[x]. This results in parametrizations� (x) 2 K [x] such that
q(x) = � (x)�� (x) represents primes. Once such a parametrization is found, one looks
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for an integer x0 which leads to � = � (x0) and q = q(x0) ful�lling the conditions
from the previous example. The CM method can be used to actually �nd examples.
It turns out that, as in the elliptic curve case,� -values tend to be smaller than those
obtained by the unparametrized method. Freeman gives examples with � -value
around 6.

Example 5.21. Kawazoe and Takahashi [KT08] restrict to hyperelliptic curves of
genus 2 with an equationy2 = x5 + ax. The advantage of using such a curve is
that for certain primes p the group order of the Jacobian overFp can directly be
determined by a formula which depends onp and a. This means that one can
directly choose parameters such that the conditions for a small embedding degree
are satis�ed.
As an example for primesp � 1; 3 (mod 8) of the formp = c2 + 2d2 wherec; d 2 Z
and c � 1 (mod 4), Kawazoe and Takahashi take explicit formulas for the character-
istic polynomial f JC (T) determined by Furukawa, Kawazoe, and Takahashi [FKT04]
corresponding to a curve of the given form. The formulas can be found by computing
Jacobsthal sums over characters ofFp which is possible for the curves of this form.
Since these formulas depend onc; d, and a only, one may solve the system

f JC (1) � 0 (mod r );

� k(p) � 0 (mod r );

p = c2 + 2d2; with c � 1 (mod 4)

for a prime r chosen in advance. This gives curve parameters directly without
going through the e�ort of the CM method. Solutions to the above system are �rst
computed modulor and then lifted to the integers until a suitable primep is found.
Therefore,c and d are roughly of the size ofr which leads top being roughly of the
size ofr 2. This shows that such Jacobians have a� -value of about 4.

5.4 Prescribed embedding degree for p-rank 1

Algorithm 5.3 can be used to construct hyperelliptic curves of genus 2 withp-rank
1 and a prescribed embedding degree. It is modeled after the method by Freeman,
Stevenhagen, and Streng [FSS08].

Proposition 5.22. If Algorithm 5.3 terminates, then the constructed curve has
p-rank 1 and embedding degreek with respect to the primer .

Proof. The number � is de�ned in Step5 by � = � 2� , wherep factors into primes of
OK as� �� , just as in Algorithm 5.2. In particular, the facts that the output has p-
rank 1 and a Jacobian of orderN (1� � ) are proved as in the proof of Proposition5.18.
We follow [FSS08] to proof that the embedding degree of the constructed curveis
k. Recall that r splits completely inK , i. e. in OK it decomposes as (r ) = rrqq. We
use the notation of the algorithm, whereqq = s. Furthermore, p decomposes inOK
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Input: A non-Galois CM �eld K of degree 4 with real quadratic sub�eldK 0, a
positive integerk, and a primer � 1 (mod 2k) which splits completely in K .

Output: A prime p and a curve C of genus 2 overFp2 that has p-rank 1 and
embedding degreek with respect to r .

1: Let r be a prime ofK dividing r and let s = r r � 1r � 1.
2: Choose a random elementx of F�

r and a primitive 2kth root of unity � .
3: Compute � 2 O K n OK 0 such that

� mod r = x; � mod r = x�; � mod s = x � 1

using the Chinese Remainder Theorem.
4: If p = N (� ) is prime in Z and di�erent from r , continue.

Otherwise, go to Step2.
5: If � = p� � 1� � 1 is prime in OK 0 and remains prime inOK , let � = � 2� .

Otherwise, go to Step2.
6: Compute a curveC corresponding toK , p, and � using the CM method.
7: return p; C.

Algorithm 5.3: Generate p-rank-1 curves of genus 2 overFp2 with prescribed
embedding degree

as (p) = � �� , where� is a prime in OK and in OK 0 and � � is a prime in OK 0 . The
�eld K 0 is normal of degree 2 overQ, and thus it has a non-trivial automorphism
� . Since� � and � are not in Q, it follows � (� � ) = � .
We �nd � mod r = ( � mod r)2(� (� � ) mod r). In Fr , the right hand side is equal to
(� mod r)2(� mod s)2 = 1, so r j N (1 � � ). On the other hand,

p2 mod r = ( � mod r)2(� mod r)2(� (� � ) mod r)2

= ( � mod r)2(� mod r)2(� � mod s)2:

As s = s, we have (� mod s) = ( � mod s) = ( � mod s), so p2 mod r = ( � mod
r)2(� mod r)2(� mod s)4 = � 2 is a primitive kth root of unity. By Lemma 1.108and
Remark 5.7, the facts that p2 is a primitive kth root of unity modulo r and that
r j N (1 � � ) imply that JC has embedding degreek with respect to r .

Freeman, Stevenhagen, and Streng [FSS08] give a heuristic analysis of their method.
They show in [FSS08, Theorem 3.4] that one expects the primeq to yield a � -value
of about 8 for genus 2, which means that log(q) = 4 log( r ). The same reasoning
holds for our algorithm. The prime p computed as the norm of the element� in
Step4 is therefore expected to give log(p) = 4 log( r ). Since the constructedp-rank-1
curve is de�ned overFp2 , its � -value is � = 2 log(p2)=log(r ) � 16.
Since the curves are de�ned overFp2 , and since pairing values arer th roots of unity,
the embedding �eld could be smaller than indicated by the embedding degreek when
working with odd k (as pointed out by Hitt [Hit07]). This in
uences the security
of pairing-based protocols. But loss of security can easilybe avoided by choosing
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curves with an even embedding degreek or by explicitly checking if the r th roots of
unity are already de�ned over a smaller extension ofFp.
For cryptographic applications, one requires that the prime r has at least 160 bits,
since r is the order of the subgroup used in protocols. Thenp already has 640
bits. This makes �eld and curve arithmetic very slow, compared to elliptic curve
implementations of the same security level, where it is possible to haver of the same
size asp.
Thus the curves produced by algorithm5.3 currently have no relevance for practical
applications in cryptography. Still, we may conclude that in principle pairing-based
cryptography seems possible forp-rank 1.



Appendix A

Compressed torus arithmetic

A.1 Veri�cation of formulas

We verify the formulas given in Lemma3.18: Let �; � 2 T6(Fq) n f 1g with � 6(� ) =
(a0; a1), � 6(� ) = ( b0; b1), and (a0; a1) 6= ( � b0; � b1). We �rst give the Magma [BCP97]
code of the formulas in the lemma:

R<a0,b0,a1,b1,xi> := PolynomialRing(Rationals(),5);

r0 := a0^2 + 1/3*xi;
r1 := b0^2 + 1/3*xi;
s0 := xi*(a1*b1*(a0*b0 + xi) + a1^2*r1 + b1^2*r0);
s1 := a1*b1*xi*(a0*b1 + a1*b0) + r0*r1;
s2 := a1^2*b1^2*xi + a0*a1*r1 + b0*b1*r0;
t0 := a1*b1*xi*(a0 + b0);
t1 := a1*b1*xi*(a1 + b1);
t2 := b1*r0 + a1*r1;
u := t0^3 + t1^3*xi + t2^3*xi^2 - 3*xi*t0*t1*t2;
u0 := t0^2 - t1*t2*xi;
u1 := t2^2*xi - t0*t1;
u2 := t1^2 - t0*t2;
v0 := s0*u0 + s1*u2*xi + s2*u1*xi;
v1 := s0*u1 + s1*u0 + s2*u2*xi;

The compressed representative is then given as (v0=u; v1=u). The formulas can be
deduced as follows: Recall that

X � = a0 + a1� + a2� 2 with a2 = (3 a2
0 + � )=(3a1� );

X � = b0 + b1� + b2� 2 with b2 = (3 b2
0 + � )=(3b1� ):

Then �� is represented by� 6(�� ) = ( c0; c1). It holds X �� = c0 + c1� + c2� 2 and
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�� = ( X �� � � )=(X �� + � ). By Lemma 3.8 it is

X �� =
X � X � + �
X � + X �

:

We multiply in numerator and denominator with a1b1� . The fraction X �� can then
be computed as (d0+ d1� + d2� 2)=(e0+ e1� + e2� 2). The following code can be used to
determine the coe�cients ofd0+ d1� + d2� 2 := a1b1� (X � X � + � ) and e0+ e1� + e2� 2 :=
a1b1� (X � + X � ):

d0 := a0*b0*a1*b1*xi + b0^2*a1^2*xi + 1/3*a1^2*xi^2
+ a0^2*b1^2*xi + 1/3*b1^2*xi^2 + a1*b1*xi^2;

d1 := a0*a1*b1^2*xi + a1^2*b0*b1*xi + a0^2*b0^2
+ 1/3*a0^2*xi + 1/3*b0^2*xi + (1/3*xi)^2;

d2 := a1^2*b1^2*xi + a0*a1*b0^2 + 1/3*a0*a1*xi
+ a0^2*b0*b1 + 1/3*b0*b1*xi;

e0 := (a0 + b0)*a1*b1*xi;
e1 := (a1 + b1)*a1*b1*xi;
e2 := b1*(a0^2 + 1/3*xi) + a1*(b0^2 + 1/3*xi);

We compute 1=(e0 + e1� + e2� 2) as

(e0 + e1� � + e2� 2� 2)(e0 + e1� 2� + e2� � 2)
NFq3 =Fq (e0 + e1� + e2� 2)

:

where � 2 Fq is the primitive 3rd root of unity with � q = �� . The numerator
f 0 + f 1� + f 2� 2 := ( e0 + e1� � + e2� 2� 2)(e0 + e1� 2� + e2� � 2) and the denominator
g := NFq3 =Fq (e0 + e1� + e2� 2) can be computed as follows:

f0 := e0^2 - e1*e2*xi;
f1 := e2^2*xi - e0*e1;
f2 := e1^2 - e0*e2;

g := (e0^3 + e1^3*xi + e2^3*xi^2 - 3*xi*e0*e1*e2);

Finally we calculate the product (h0+ h1� + h2� 2) := ( f 0+ f 1� + f 2� 2)(d0+ d1� + d2� 2):

h0 := d0*f0 + d1*f2*xi + d2*f1*xi;
h1 := d0*f1 + d1*f0 + d2*f2*xi;
h2 := d0*f2 + d1*f1 + d2*f0;

The result is then given asX �� = ( h0 + h1� + h2� 2)=g, represented by (h0=g; h1=g),
and it can be checked thath0 = v0, h1 = v1, and g = u, and thus the formulas for
multiplication given in Lemma 3.18are correct.
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The formulas for squaring can be checked similarly: We �rst give the Magma code
of the squaring formulas.

R<a0,a1,xi> := PolynomialRing(Rationals(),3);

r0 := a0^5 + xi*(a0^3 - 2*a0^2*a1^3) + xi^2*(1/3*a0 - a1^3);
r1 := a0^5 + xi*(2*a0^3 - 2*a0^2*a1^3) + xi^2*(a0 - 2*a1^3);
s0 := a0*(a0*r0 + a1^6*xi^2 + 1/27*xi^3) - 1/3*a1^3*xi^3;
s1 := a1*(a0*r1 + a1^6*xi^2 + 4/27*xi^3);
s := 2*(a0*r0 + a1^6*xi^2 + 1/27*xi^3);

Then the square is represented as (s0=s; s1=s). To obtain these formulas we conduct
the following steps: Compute

X � 2 =
X 2

� + �
2X �

by (d0 + d1� + d2� 2)=(e0 + e1� + e2� 2), where d0 + d1� + d2� 2 := a2
1� (X 2

� + � ) and
e0 + e1� + e2� 2 := 2a2

1�X � .

d0 := 3*a0^2*a1^2*xi + 5/3*a1^2*xi^2;
d1 := 2*a0*a1^3*xi + a0^4 + 2/3*a0^2*xi + (1/3*xi)^2;
d2 := a1^4*xi + 2*a0^3*a1 + 2/3*a0*a1*xi;

e0 := 2*a0*a1^2*xi;
e1 := 2*a1^3*xi;
e2 := 2*a0^2*a1 + 2/3*a1*xi;

We invert e0 + e1� + e2� 2 and multiply the inverse with d0 + d1� + d2� 2 exactly as
for multiplication.

f0 := e0^2 - e1*e2*xi;
f1 := e2^2*xi - e0*e1;
f2 := e1^2 - e0*e2;

g := (e0^3 + e1^3*xi + e2^3*xi^2 - 3*xi*e0*e1*e2);

h0 := d0*f0 + d1*f2*xi + d2*f1*xi;
h1 := d0*f1 + d1*f0 + d2*f2*xi;
h2 := d0*f2 + d1*f1 + d2*f0;

It can be checked thatg = 4s� 2a3
1, h0 = 4s0� 2a3

1, and h1 = 4s1� 2a3
1. Therefore,

h0=g = s0=s and h1=g = s1=s, which shows that the formulas for squaring are also
correct.
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A.2 Pseudo code

The two algorithms given here show three-operand pseudo code for multiplication
and squaring of elements ofT6(Fp2 ) in compressed representation. They realize the
formulas in Example3.25.

Input: (A0 : A1 : A) 2 P2(Fp2 ); A 2 Fp

Output: (C0 : C1 : C) representing the square of (A0 : A1 : A)

1: r1  A2
0,

2: r2  A0r1,
3: S0  r1r2,
4: t0  A2,
5: r4  r2t0,
6: r5  A2

1,
7: r5  A1r5,
8: r3  r1r5,
9: r4  r4 � r3,

10: r0  r4� ,
11: r0  2r0,
12: S1  S0 + r0,
13: r4  r4 � r3,
14: r4  r4� ,
15: S0  S0 + r4,
16: t1  t2

0,
17: r4  t1A0,

18: r0  1
3r4,

19: r1  r5t0,
20: r0  r0 � r1,
21: r1  2r1,
22: r4  r4 � r1,
23: r0  � 2r0,
24: r4  � 2r4,
25: S0  S0 + r0,
26: S0  S0A0,
27: S1  S1 + r4,
28: S1  S1A0,
29: r2  r 2

5,
30: r2  r2� 2,
31: r4  t1t0,
32: r4  1

27� 3r4,
33: r1  r2 + r4,
34: S0  S0 + r1,

35: S  S0A,
36: S0  S0A0,
37: S  2S,
38: r4  4r4,
39: r1  r2 + r4,
40: S1  S1 + r1,
41: S1  S1A1,
42: r1  r5t1,
43: r1  1

3 � 3r1,
44: S0  S0 � r1,
45: Write S = s0 + is1,
46: r1  (s0 � is1),
47: C0  S0r1,
48: C1  S1r1,
49: C  Sr1 = s2

0 + cs2
1,

50: return (C0 : C1 : C)

Algorithm A.1: Compressed squaring inT6(Fp2 ) for k = 12.
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Input: (A0 : A1 : A); (B0 : B1 : B ) 2 Fp2 � Fp2 n f 0g � Fp

Output: (C0 : C1 : C) = ( A0 : A1 : A) � (B0 : B1 : B )

1: R0  A2
0,

2: t1  A2,
3: r3  1

3 �t 1,
4: R0  R0 + r3,
5: R1  B 2

0,
6: t1  B 2,
7: r3  1

3 �t 1,
8: R1  R1 + r3

9: r3  A1B1,
10: r4  A0B0,
11: t1  AB ,
12: r5  t1� ,
13: r4  r4 + r5,
14: S0  r3r4,
15: S2  r 2

3

16: S2  S2� ,
17: r4  A0B1,
18: r5  A1B0,
19: r4  r4 + r5,
20: r6  r3� ,
21: S1  r6r4,
22: r4  R0R1

23: S1  S1 + r4,
24: r4  A1R1,
25: r5  r4A0,
26: S2  S2 + r5,
27: T2  r4A,
28: r4  r4A1,

29: S0  S0 + r4,
30: r4  B1R0,
31: r5  r4B,
32: T2  T2 + r5,
33: r5  r4B0,
34: S2  S2 + r5,
35: r4  r4B1,
36: S0  S0 + r4,
37: S0  S0� ,
38: T0  A0B,
39: r4  B0A,
40: T0  T0 + r4,
41: T0  r6T0,
42: T1  A1B,
43: r4  B1A,
44: T1  T1 + r4,
45: T1  T1r6

46: r0  T2
0 ,

47: r1  T2
1 ,

48: r2  T2
2 ,

49: T  r0T0,
50: r3  r1T1,
51: r3  r3� ,
52: T  T + r3

53: r3  r2T2,
54: r3  r3� 2,
55: T  T + r3,
56: r3  T1T2,

57: r3  r3� ,
58: U0  r0 � r3,
59: r3  r3T0

60: r3  3r3,
61: T  T � r3 ,
62: r3  T0T1,
63: U1  r2� ,
64: U1  U1 � r3 ,
65: r3  T0T2,
66: U2  r1 � r3,
67: V0  S0U0,
68: r0  S1U2,
69: r1  S2U1,
70: r0  r0 + r1,
71: r0  r0� ,
72: V0  V0 + r0,
73: V1  S0U1,
74: r0  S1U0,
75: V1  V1 + r0,
76: r0  S2U2,
77: r0  r0� ,
78: V1  V1r0,
79: Write T = t0 + it 1,
80: r1  (t0 � it 1),
81: C0  V0r1,
82: C1  V1r1,
83: C  Sr1 = t2

0 + ct21,
84: return (C0 : C1 : C)

Algorithm A.2: Compressed multiplication inT6(Fp2 ) for k = 12.
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Summary

Constructive and Computational Aspects

of Cryptographic Pairings

The security of many public-key cryptosystems relies on theexistence of groups
in which the discrete logarithm problem (DLP) is infeasible. Subgroups of the
Jacobian varieties of elliptic and hyperelliptic curves over �nite �elds are widely used
to realize such cryptosystems. On these groups, it is possible to de�ne pairings.
A cryptographic pairing is a bilinear, non-degenerate map that can be computed
e�ciently. It maps a pair of points in the Jacobian variety in to the multiplicative
group of a �nite �eld.
Pairings were �rst used in cryptography to attack the DLP on asupersingular elliptic
curve by reducing it to the DLP in a �nite �eld that is easier to solve. Later
on, they led to a variety of constructive applications. Whenaiming at practical
implementation of pairings, there are two main problems arising: The �rst is to �nd
pairing-friendly curves which allow an e�cient pairing computation. The second is
to make computations more e�cient and suitable for di�erent applications. This
dissertation addresses aspects of both problems and advances the state of the art in
the associated research areas.
An important condition for a pairing-friendly curve is to have an embedding degree
that is small enough. Curves with this property are rare and need to be constructed.
We give a method to construct pairing-friendly elliptic curves with embedding degree
12. The proposed curves have many nice properties favoring very e�cient imple-
mentation, such as a prime order group of rational points over the ground �eld and
a twist of degree 6.
The Jacobian group order of a pairing-friendly curve must have a large prime divisor
which satis�es the embedding degree condition. It is therefore necessary to �rst
�x the group order and then construct the curve. As an essential tool for the
construction, one uses the complex multiplication (CM) method. We show how to
use the CM method to construct curves of genus 2 withp-rank 1.
If pairings need to be implemented on devices with restricted memory, it may be
interesting to compute pairings in compressed form. Using the fact that pairing
values are elements of algebraic tori, they can be represented in a more e�cient way,
requiring less storage space than general �eld elements. Weshow how to do pairing
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computation in a compressed form. On curves with a twist of degree 6 the proposed
variant of Miller's algorithm can be done without any �eld inversions.
Recently, it has been shown, that in many cases the elliptic curve group law can
be implemented most e�ciently using Edwards curves. It was an open problem to
�nd advantageous formulas for pairing computation on Edwards curves. We state
a geometric interpretation of the group law on twisted Edwards curves, give the
corresponding functions, and show how to use them to computepairings on Edwards
curves. We present explicit formulas for the doubling and addition steps in Miller's
algorithm that are more e�cient than all previously proposed formulas for pairings
on Edwards curves and are competitive with formulas for pairing computation on
Weierstra� curves.
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