Isogenies between (twisted) Edwards and Montgomery curves

Craig Costello and Michael Naehrig
Microsoft Research

Let $p>3$ be a prime and let \mathbb{F}_{p} be the finite field with p elements. For elements $a, d \in$ $\mathbb{F}_{p} \backslash\{0\}$ with $a \neq d$, let $\mathrm{E}_{\mathrm{E}, a, d}$ be the twisted Edwards curve over \mathbb{F}_{p} defined by

$$
\mathrm{E}_{\mathrm{E}, a, d}: a x^{2}+y^{2}=1+d x^{2} y^{2} .
$$

For elements $A \in \mathbb{F}_{p} \backslash\{-2,2\}$ and $B \in \mathbb{F}_{p} \backslash\{0\}$, let $\mathrm{E}_{\mathrm{M}, A, B}$ be the Montgomery curve over \mathbb{F}_{p} defined by

$$
\mathrm{E}_{\mathrm{M}, A, B}: B v^{2}=u^{3}+A u^{2}+u .
$$

Proposition 1. Let $p \equiv 1(\bmod 4)$. Fix a square root of -1 , i.e. let $s \in \mathbb{F}_{p}$ such that $s^{2}+1=$ 0 . Let $A=4 d+2$. Then, the map

$$
\phi: \mathrm{E}_{\mathrm{E},-1, d} \rightarrow \mathrm{E}_{\mathrm{M}, A, 1},(x, y) \mapsto(u, v)=\left(-\frac{y^{2}}{x^{2}}, \frac{-y s\left(x^{2}-y^{2}+2\right)}{x^{3}}\right)
$$

is a 4-isogeny defined over \mathbb{F}_{p} with dual isogeny
$\hat{\phi}: \mathrm{E}_{\mathrm{M}, A, 1} \rightarrow \mathrm{E}_{\mathrm{E},-1, d},(u, v) \mapsto(x, y)=\left(\frac{4 s v(u-1)(u+1)}{u^{4}-2 u^{2}+4 v^{2}+1}, \frac{\left(u^{2}+2 v-1\right)\left(u^{2}-2 v-1\right)}{-u^{4}+2 u v^{2}+2 A u+4 u^{2}+1}\right)$.
Proof. A direct calculation using the curve equation of $\mathrm{E}_{\mathrm{E},-1, d}$ shows that $(u, v)=\phi(x, y)$ satisfies the curve equation $v^{2}=u^{3}+A u^{2}+u$. Similarly, using the curve equation of $\mathrm{E}_{\mathrm{M}, A, 1}$ shows that $(x, y)=\hat{\phi}(u, v)$ satisfies the equation $-x^{2}+y^{2}=1+d x^{2} y^{2}$. Thus, both ϕ and $\hat{\phi}$ are rational maps between the curves [1, Def. 5.5.1].

To show that these rational maps are both morphisms, it remains to show that ϕ (resp. $\hat{\phi})$ is regular at all points in $\mathrm{E}_{\mathrm{E},-1, d}\left(\overline{\mathbb{F}}_{p}\right)$ (resp. $\left.\mathrm{E}_{\mathrm{M}, A, 1}\left(\overline{\mathbb{F}}_{p}\right)\right)$ [1, Def. 5.5.12]. Following [1, Def. 5.5.1], rewrite ϕ as

$$
\mathrm{E}_{\mathrm{E},-1, d} \rightarrow \mathbb{P}^{2},(x, y) \rightarrow(U: V: W)=\left(-x y^{2}:-s y\left(x^{2}-y^{2}+2\right): x^{3}\right),
$$

from which it is easy to verify that there are no points in $\mathrm{E}_{\mathrm{E},-1, d}\left(\overline{\mathbb{F}}_{p}\right)$ that map to (0:0:0) under ϕ, so ϕ is a morphism. Similarly, we rewrite ϕ as

$$
\begin{aligned}
\mathrm{E}_{\mathrm{M}, A, 1} & \rightarrow \mathbb{P}^{2}, \quad(u, v) \rightarrow(X: Y: Z), \\
X & =\left(4 \operatorname{sv}(u-1)(u+1)\left(-u^{4}+2 u v^{2}+2 A u+4 u^{2}+1\right),\right. \\
Y & =\left(u^{2}+2 v-1\right)\left(u^{2}-2 v-1\right)\left(u^{4}-2 u^{2}+4 v^{2}+1\right), \\
Z & \left.=\left(u^{4}-2 u^{2}+4 v^{2}+1\right)\left(-u^{4}+2 u v^{2}+2 A u+4 u^{2}+1\right)\right),
\end{aligned}
$$

from which one can verify that there are no points in $\mathrm{E}_{\mathrm{M}, A, 1}$ that map to ($0: 0: 0$) under $\hat{\phi}$, so $\hat{\phi}$ is a morphism as well.

[^0]Following [1, Def. 9.6.1], ϕ maps the neutral element $\mathcal{O}_{\mathrm{E}_{\mathrm{E},-1, d}}=(0,1)$ to the point at infinity $\mathcal{O}_{\mathrm{E}_{\mathrm{M}, A, 1}}=(0: 1: 0)$, so ϕ is an isogeny. For $\hat{\phi}$, we homogenize $\mathrm{E}_{\mathrm{M}, A, 1}$ under $u=U / W^{2}$ and $v=V / W^{3}$, so that $\mathcal{O}_{\mathrm{E}_{\mathrm{M}, A, 1}}=\left(\lambda^{2}: \lambda^{3}: 0\right)$ for $\lambda \in \mathbb{F}_{p} \backslash\{0\}$ and $\hat{\phi}:(U: V: W) \mapsto$ $(X: Y: Z)$, where

$$
\begin{aligned}
& X=\left(\left(4 s V W\left(-W^{4}+U^{2}\right)\right)\left(2 A U W^{6}+W^{8}+4 U^{2} W^{4}-U^{4}+2 U V^{2}\right),\right. \\
& Y=\left(-W^{4}+U^{2}+2 V W\right)\left(-W^{4}+U^{2}-2 V W\right)\left(W^{8}-2 U^{2} W^{4}+U^{4}+4 V^{2} W^{2}\right), \\
& \left.Z=\left(W^{8}-2 U^{2} W^{4}+U^{4}+4 V^{2} W^{2}\right)\left(2 A U W^{6}+W^{8}+4 U^{2} W^{4}-U^{4}+2 U V^{2}\right)\right),
\end{aligned}
$$

takes $\left(\lambda^{2}: \lambda^{3}: 0\right)$ to $(0: 1: 1)$. Thus, $\hat{\phi}\left(\mathcal{O}_{\mathrm{E}_{\mathrm{M}, A, 1}}\right)=\mathcal{O}_{\mathrm{E}_{\mathrm{E},-1, d}}$, so $\hat{\phi}$ is an isogeny.
It remains to show that ϕ is a 4 -isogeny and that $\hat{\phi}$ is its dual. To describe the full kernel of ϕ, we follow [1, p. 173] and use the non-singular projective variety $V_{-1, d}:\left\{-X^{2}+Y^{2}-\right.$ $\left.Z^{2}-d T^{2}, Z T-X Y\right\}$, as well as the corresponding homogenized version of ϕ, which is given as

$$
(T: X: Y: Z) \mapsto\left(-X Y^{2}:-s Y\left(X^{2}-Y^{2}+2 Z^{2}\right): X^{3}\right)
$$

The full kernel of ϕ is the set of points $\{(0: 0: 1: 1),(0: 0:-1: 1),(1: 0: \sqrt{d}: 0),(1:$ $0:-\sqrt{d}: 0)\}$, all points of order dividing 4 , which shows that ϕ is a 4 -isogeny. It is a simple exercise to verify that $\hat{\phi} \circ \phi=[4]$ on $\mathrm{E}_{\mathrm{E},-1, d}$, so $\hat{\phi}$ is indeed the dual isogeny [1, Thm. 9.6.21 and Def. 9.6.23].

Proposition 2. Let $p \equiv 3(\bmod 4)$. Let $A=-(4 d-2)$. Then, the map

$$
\phi: \mathrm{E}_{\mathrm{E}, 1, d} \rightarrow \mathrm{E}_{\mathrm{M}, A, 1},(x, y) \mapsto(u, v)=\left(\frac{y^{2}}{x^{2}}, \frac{-y\left(x^{2}+y^{2}-2\right)}{x^{3}}\right)
$$

is a 4-isogeny defined over \mathbb{F}_{p} with dual isogeny

$$
\hat{\phi}: \mathrm{E}_{\mathrm{M}, A, 1} \rightarrow \mathrm{E}_{\mathrm{E}, 1, d},(u, v) \mapsto(x, y)=\left(\frac{-4\left(1-u^{2}\right) v}{u^{4}-2 u^{2}+4 v^{2}+1}, \frac{\left(u^{2}+2 v-1\right)\left(u^{2}-2 v-1\right)}{2 A u^{3}+u^{4}+2 A u+6 u^{2}+1}\right) .
$$

Proof. The proof proceeds in a similar way as the proof of Proposition 1. Again, it can be verified by direct calculations that $(u, v)=\phi(x, y)$ satisfies the curve equation $v^{2}=$ $u^{3}+A u^{2}+u$ and that $(x, y)=\hat{\phi}(u, v)$ satisfies $x^{2}+y^{2}=1+d x^{2} y^{2}$, using the respective curve equations of $\mathrm{E}_{\mathrm{E}, 1, d}$ and $\mathrm{E}_{\mathrm{M}, A, 1}$. This shows that ϕ and $\hat{\phi}$ are rational maps [1, Def. 5.5.1].

To show that ϕ is regular everywhere, we rewrite it as

$$
\mathrm{E}_{\mathrm{E}, 1, d} \rightarrow \mathbb{P}^{2},(x, y) \rightarrow(U: V: W)=\left(x y^{2}:-y\left(x^{2}+y^{2}-2\right): x^{3}\right),
$$

from which it is straightforward to deduce that there are no points in $\mathrm{E}_{\mathrm{E}, 1, d}\left(\overline{\mathbb{F}}_{p}\right)$ that map to $(0: 0: 0)$ under ϕ. Similarly, to show that $\hat{\phi}$ is regular everywhere we rewrite it as

$$
\begin{aligned}
\mathrm{E}_{\mathrm{M}, A, 1} & \rightarrow \mathbb{P}^{2}, \quad(u, v) \rightarrow(X: Y: Z), \\
X & =-\left(4\left(-u^{2}+1\right)\right) v\left(2 A u^{3}+u^{4}+2 A u+6 u^{2}+1\right), \\
Y & =\left(u^{2}+2 v-1\right)\left(u^{2}-2 v-1\right)\left(u^{4}-2 u^{2}+4 v^{2}+1\right), \\
Z & =\left(2 A u^{3}+u^{4}+2 A u+6 u^{2}+1\right)\left(u^{4}-2 u^{2}+4 v^{2}+1\right),
\end{aligned}
$$

from which it is again straightforward to deduce that no points in $\mathrm{E}_{\mathrm{M}, A, 1}\left(\overline{\mathbb{F}}_{p}\right)$ map to ($0: 0: 0$) under $\hat{\phi}$. Thus, ϕ and $\hat{\phi}$ are both regular everywhere, so they are both morphisms [1, Def. 5.5.12].

Following [1, Def. 9.6.1], ϕ maps the neutral element $\mathcal{O}_{\mathrm{E}_{\mathrm{E}, 1, d}}=(0,1)$ to the point at infinity $\mathcal{O}_{\mathrm{E}_{\mathrm{M}, A, 1}}=(0: 1: 0)$, so ϕ is an isogeny. For $\hat{\phi}$, we again homogenize $\mathrm{E}_{\mathrm{M}, A, 1}$ under $u=U / W^{2}$ and $v=V / W^{3}$, so that $\mathcal{O}_{\mathrm{E}_{\mathrm{M}, A, 1}}=\left(\lambda^{2}: \lambda^{3}: 0\right)$ for $\lambda \in \mathbb{F}_{p} \backslash\{0\}$ and $\hat{\phi}:(U: V: W) \mapsto$ ($X: Y: Z$), where

$$
\begin{aligned}
& X=4 W\left(-W^{2}+U\right)\left(W^{2}+U\right) V\left(2 A U W^{6}+W^{8}+2 A U^{3} W^{2}+6 U^{2} W^{4}+U^{4}\right), \\
& Y=\left(-W^{4}+U^{2}+2 V W\right)\left(-W^{4}+U^{2}-2 V W\right)\left(W^{8}-2 U^{2} W^{4}+U^{4}+4 V^{2} W^{2}\right), \\
& Z=\left(2 A U W^{6}+W^{8}+2 A U^{3} W^{2}+6 U^{2} W^{4}+U^{4}\right)\left(W^{8}-2 U^{2} W^{4}+U^{4}+4 V^{2} W^{2}\right),
\end{aligned}
$$

takes $\left(\lambda^{2}: \lambda^{3}: 0\right)$ to $(0: 1: 1)$. Thus, $\hat{\phi}\left(\mathcal{O}_{\mathrm{E}_{\mathrm{M}, A, 1}}\right)=\mathcal{O}_{\mathrm{E}_{\mathrm{E}, 1, d}}$, so $\hat{\phi}$ is an isogeny.
It remains to show that ϕ is a 4 -isogeny and that $\hat{\phi}$ is its dual. As in the proof of Proposition 1, we again follow [1, p. 173] and use the non-singular projective variety $V_{1, d}$: $\left\{X^{2}+Y^{2}-Z^{2}-d T^{2}, Z T-X Y\right\}$, as well as the corresponding homogenized version of ϕ, which is given as

$$
(T: X: Y: Z) \mapsto\left(X Y^{2}:-Y\left(X^{2}+Y^{2}-2 Z^{2}\right): X^{3}\right)
$$

The kernel of ϕ is $\{(0: 0: 1: 1),(0: 0:-1: 1),(1: 0: \sqrt{d}: 0),(1: 0:-\sqrt{d}: 0)\}$, all points of order dividing 4 , which shows that ϕ is a 4 -isogeny. Again, one can verify that $\hat{\phi} \circ \phi=[4]$ on $\mathrm{E}_{\mathrm{E}, 1, d}$, so $\hat{\phi}$ is indeed the dual isogeny [1, Thm. 9.6.21 and Def. 9.6.23].

References

1. Steven D Galbraith. Mathematics of public key cryptography. Cambridge University Press, 2012.

[^0]: 12 March 2015

