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Let p > 3 be a prime and let Fp be the finite field with p elements. For elements a, d ∈
Fp \ {0} with a 6= d, let EE,a,d be the twisted Edwards curve over Fp defined by

EE,a,d : ax2 + y2 = 1 + dx2y2.

For elements A ∈ Fp \ {−2, 2} and B ∈ Fp \ {0}, let EM,A,B be the Montgomery curve over
Fp defined by

EM,A,B : Bv2 = u3 +Au2 + u.

Proposition 1. Let p ≡ 1 (mod 4). Fix a square root of −1, i.e. let s ∈ Fp such that s2+1 =
0. Let A = 4d+ 2. Then, the map

φ : EE,−1,d → EM,A,1, (x, y) 7→ (u, v) =

(
−y

2

x2
,
−ys(x2 − y2 + 2)

x3

)
is a 4-isogeny defined over Fp with dual isogeny

φ̂ : EM,A,1 → EE,−1,d, (u, v) 7→ (x, y) =

(
4sv(u− 1)(u+ 1)

u4 − 2u2 + 4v2 + 1
,

(u2 + 2v − 1)(u2 − 2v − 1)

−u4 + 2uv2 + 2Au+ 4u2 + 1

)
.

Proof. A direct calculation using the curve equation of EE,−1,d shows that (u, v) = φ(x, y)
satisfies the curve equation v2 = u3 + Au2 + u. Similarly, using the curve equation of EM,A,1

shows that (x, y) = φ̂(u, v) satisfies the equation −x2 + y2 = 1 + dx2y2. Thus, both φ and φ̂
are rational maps between the curves [1, Def. 5.5.1].

To show that these rational maps are both morphisms, it remains to show that φ (resp.
φ̂) is regular at all points in EE,−1,d(F̄p) (resp. EM,A,1(F̄p)) [1, Def. 5.5.12]. Following [1, Def.
5.5.1], rewrite φ as

EE,−1,d → P2 , (x, y)→ (U : V : W ) =
(
−xy2 : − sy(x2 − y2 + 2): x3

)
,

from which it is easy to verify that there are no points in EE,−1,d(F̄p) that map to (0: 0 : 0)

under φ, so φ is a morphism. Similarly, we rewrite φ̂ as

EM,A,1 → P2, (u, v)→ (X : Y : Z),

X = (4sv(u− 1)(u+ 1)(−u4 + 2uv2 + 2Au+ 4u2 + 1),

Y = (u2 + 2v − 1)(u2 − 2v − 1)(u4 − 2u2 + 4v2 + 1),

Z = (u4 − 2u2 + 4v2 + 1)(−u4 + 2uv2 + 2Au+ 4u2 + 1)),

from which one can verify that there are no points in EM,A,1 that map to (0: 0 : 0) under φ̂,

so φ̂ is a morphism as well.
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Following [1, Def. 9.6.1], φ maps the neutral element OEE,−1,d
= (0, 1) to the point at

infinity OEM,A,1
= (0: 1 : 0), so φ is an isogeny. For φ̂, we homogenize EM,A,1 under u = U/W 2

and v = V/W 3, so that OEM,A,1
= (λ2 : λ3 : 0) for λ ∈ Fp \ {0} and φ̂ : (U : V : W ) 7→

(X : Y : Z), where

X = ((4sV W (−W 4 + U2))(2AUW 6 +W 8 + 4U2W 4 − U4 + 2UV 2),

Y = (−W 4 + U2 + 2VW )(−W 4 + U2 − 2VW )(W 8 − 2U2W 4 + U4 + 4V 2W 2),

Z = (W 8 − 2U2W 4 + U4 + 4V 2W 2)(2AUW 6 +W 8 + 4U2W 4 − U4 + 2UV 2)),

takes (λ2 : λ3 : 0) to (0 : 1 : 1). Thus, φ̂(OEM,A,1
) = OEE,−1,d

, so φ̂ is an isogeny.

It remains to show that φ is a 4-isogeny and that φ̂ is its dual. To describe the full kernel
of φ, we follow [1, p. 173] and use the non-singular projective variety V−1,d : {−X2 + Y 2 −
Z2 − dT 2, ZT −XY }, as well as the corresponding homogenized version of φ, which is given
as

(T : X : Y : Z) 7→ (−XY 2 : − sY (X2 − Y 2 + 2Z2) : X3).

The full kernel of φ is the set of points {(0 : 0 : 1 : 1), (0 : 0 : −1 : 1), (1 : 0 :
√
d : 0), (1 :

0 : −
√
d : 0)}, all points of order dividing 4, which shows that φ is a 4-isogeny. It is a simple

exercise to verify that φ̂ ◦ φ = [4] on EE,−1,d, so φ̂ is indeed the dual isogeny [1, Thm. 9.6.21
and Def. 9.6.23]. ut

Proposition 2. Let p ≡ 3 (mod 4). Let A = −(4d− 2). Then, the map

φ : EE,1,d → EM,A,1, (x, y) 7→ (u, v) =

(
y2

x2
,
−y(x2 + y2 − 2)

x3

)
is a 4-isogeny defined over Fp with dual isogeny

φ̂ : EM,A,1 → EE,1,d, (u, v) 7→ (x, y) =

(
−4(1− u2)v

u4 − 2u2 + 4v2 + 1
,

(u2 + 2v − 1)(u2 − 2v − 1)

2Au3 + u4 + 2Au+ 6u2 + 1

)
.

Proof. The proof proceeds in a similar way as the proof of Proposition 1. Again, it can
be verified by direct calculations that (u, v) = φ(x, y) satisfies the curve equation v2 =
u3 +Au2 +u and that (x, y) = φ̂(u, v) satisfies x2 +y2 = 1 +dx2y2, using the respective curve
equations of EE,1,d and EM,A,1. This shows that φ and φ̂ are rational maps [1, Def. 5.5.1].

To show that φ is regular everywhere, we rewrite it as

EE,1,d → P2 , (x, y)→ (U : V : W ) =
(
xy2 : − y(x2 + y2 − 2) : x3

)
,

from which it is straightforward to deduce that there are no points in EE,1,d(F̄p) that map to

(0: 0 : 0) under φ. Similarly, to show that φ̂ is regular everywhere we rewrite it as

EM,A,1 → P2, (u, v)→ (X : Y : Z),

X = −(4(−u2 + 1))v(2Au3 + u4 + 2Au+ 6u2 + 1),

Y = (u2 + 2v − 1)(u2 − 2v − 1)(u4 − 2u2 + 4v2 + 1),

Z = (2Au3 + u4 + 2Au+ 6u2 + 1)(u4 − 2u2 + 4v2 + 1),

from which it is again straightforward to deduce that no points in EM,A,1(F̄p) map to (0: 0 : 0)

under φ̂. Thus, φ and φ̂ are both regular everywhere, so they are both morphisms [1, Def.
5.5.12].
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Following [1, Def. 9.6.1], φ maps the neutral element OEE,1,d
= (0, 1) to the point at infinity

OEM,A,1
= (0: 1 : 0), so φ is an isogeny. For φ̂, we again homogenize EM,A,1 under u = U/W 2

and v = V/W 3, so that OEM,A,1
= (λ2 : λ3 : 0) for λ ∈ Fp \ {0} and φ̂ : (U : V : W ) 7→

(X : Y : Z), where

X = 4W (−W 2 + U)(W 2 + U)V (2AUW 6 +W 8 + 2AU3W 2 + 6U2W 4 + U4),

Y = (−W 4 + U2 + 2VW )(−W 4 + U2 − 2VW )(W 8 − 2U2W 4 + U4 + 4V 2W 2),

Z = (2AUW 6 +W 8 + 2AU3W 2 + 6U2W 4 + U4)(W 8 − 2U2W 4 + U4 + 4V 2W 2),

takes (λ2 : λ3 : 0) to (0 : 1 : 1). Thus, φ̂(OEM,A,1
) = OEE,1,d

, so φ̂ is an isogeny.

It remains to show that φ is a 4-isogeny and that φ̂ is its dual. As in the proof of
Proposition 1, we again follow [1, p. 173] and use the non-singular projective variety V1,d :
{X2 + Y 2 − Z2 − dT 2, ZT − XY }, as well as the corresponding homogenized version of φ,
which is given as

(T : X : Y : Z) 7→ (XY 2 : − Y (X2 + Y 2 − 2Z2) : X3).

The kernel of φ is {(0 : 0 : 1 : 1), (0 : 0 : −1 : 1), (1 : 0 :
√
d : 0), (1 : 0 : −

√
d : 0)}, all points

of order dividing 4, which shows that φ is a 4-isogeny. Again, one can verify that φ̂ ◦ φ = [4]
on EE,1,d, so φ̂ is indeed the dual isogeny [1, Thm. 9.6.21 and Def. 9.6.23]. ut
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