NaCl on 8-bit AVR microcontrollers

Michael Hutter and Peter Schwabe

TU Graz (Austria) and Radboud University Nijmegen (The
Netherlands)

June 24, 2013

Africacrypt 2013, Cairo, Egypt



almost 2 years ago in Nara, Japan

¢
ke
-




The plan

» Bring Ed25519 elliptic-curve signatures to 8-bit AVR microcontroller



The plan

» Bring Ed25519 elliptic-curve signatures to 8-bit AVR microcontroller
» Write paper, submit to Africacrypt 2012



The plan

» Bring Ed25519 elliptic-curve signatures to 8-bit AVR microcontroller
» Write paper, submit to Africacrypt 2012
» Hopefully get accepted, go to Morocco



The plan

» Bring Ed25519 elliptic-curve signatures to 8-bit AVR microcontroller
» Write paper, submit to Africacrypt 2012
» Hopefully get accepted, go to Morocco

. what happened?

> Update the plan: Get the whole Networking and Cryptography
Library (NaCl) onto AVR

» Write paper about it, submit to Africacrypt 2013

> Get accepted, go to Egypt



8-bit AVR microcontrollers

> Widely used in embedded systems, e.g., sensor nodes
» 3 product lines: ATxmega, ATmega, and ATtiny (no HW multiplier)

» Focus here: ATmega, example configurations:

» ATmega2560: 16 MHz, 256 KB flash, 8 KB RAM
» ATmegal28: 16 MHz, 128 KB flash, 4 KB RAM
» ATmega328: 20 MHz, 32 KB flash, 2KB RAM



8-bit AVR microcontrollers

v

Widely used in embedded systems, e.g., sensor nodes

v

3 product lines: ATxmega, ATmega, and ATtiny (no HW multiplier)
Focus here: ATmega, example configurations:

» ATmega2560: 16 MHz, 256 KB flash, 8 KB RAM
» ATmegal28: 16 MHz, 128 KB flash, 4 KB RAM
» ATmega328: 20 MHz, 32 KB flash, 2KB RAM

RISC architecture (> 90 available instructions)
32 general purpose registers

» R1:R0O holds 16-bit multiplication result
> R16-R31 accessible by a limited set of instructions
» R26-R31 (X, Y, and Z) used for 16-bit addressing

v

v

v



8-bit AVR microcontrollers

v

Widely used in embedded systems, e.g., sensor nodes

v

3 product lines: ATxmega, ATmega, and ATtiny (no HW multiplier)

v

Focus here: ATmega, example configurations:

» ATmega2560: 16 MHz, 256 KB flash, 8 KB RAM
» ATmegal28: 16 MHz, 128 KB flash, 4 KB RAM
» ATmega328: 20 MHz, 32 KB flash, 2KB RAM

RISC architecture (> 90 available instructions)

32 general purpose registers

» R1:R0O holds 16-bit multiplication result
> R16-R31 accessible by a limited set of instructions
» R26-R31 (X, Y, and Z) used for 16-bit addressing

We performed benchmarks on the ATmega2560

v

v

v



NaCl: A new cryptographic library

v

Networking and Cryptography library (NaCl, pronounced “salt”)

v

Designed by Daniel J. Bernstein, Tanja Lange, Peter Schwabe

v

Acknowledgment: Contributions by
> Matthew Dempsky (Mochi Media)
> Niels Duif (TU Eindhoven)
> Emilia Kasper (KU Leuven, now Google)
> Adam Langley (Google)
> Bo-Yin Yang (Academia Sinica)

v

Public domain, no patents

Used, for example, in OpenDNS, DNSCrypt, QuickTun VPN, and
Ethos OS

v



NaCl features

» Easy-to-use API:
> One function call to crypto_box to generate public-key
authenticated ciphertext
> One function call to crypto_sign to sign a message
> No error handling required, no memory allocation required



NaCl features

» Easy-to-use API:
> One function call to crypto_box to generate public-key
authenticated ciphertext
> One function call to crypto_sign to sign a message
> No error handling required, no memory allocation required

» Only > 128-bit-secure cryptographic primitives



NaCl features

» Easy-to-use API:
> One function call to crypto_box to generate public-key
authenticated ciphertext
> One function call to crypto_sign to sign a message
> No error handling required, no memory allocation required

» Only > 128-bit-secure cryptographic primitives
» Timing-attack protection:

> No load/store addresses that depend on secret data (no cache
timing!)
» No branch conditions that depend on secret data



NaCl features

v

Easy-to-use API:
> One function call to crypto_box to generate public-key
authenticated ciphertext
> One function call to crypto_sign to sign a message
> No error handling required, no memory allocation required

v

Only > 128-bit-secure cryptographic primitives

v

Timing-attack protection:
> No load/store addresses that depend on secret data (no cache
timing!)
» No branch conditions that depend on secret data

v

Very high speed



NaCl features

v

Easy-to-use API:
> One function call to crypto_box to generate public-key
authenticated ciphertext
> One function call to crypto_sign to sign a message
> No error handling required, no memory allocation required

v

Only > 128-bit-secure cryptographic primitives

v

Timing-attack protection:
> No load/store addresses that depend on secret data (no cache
timing!)
» No branch conditions that depend on secret data

v

Very high speed ... on large desktop/server processors



NaCl on ATmegas

» Target: Provide reasonable size-speed tradeoffs



NaCl on ATmegas

» Target: Provide reasonable size-speed tradeoffs

» Optimize algorithms across primitives to reuse more code



NaCl on ATmegas

» Target: Provide reasonable size-speed tradeoffs
» Optimize algorithms across primitives to reuse more code

» Memory access is uncached: secret load addresses are not a problem!



NaCl on ATmegas

Target: Provide reasonable size-speed tradeoffs

>

» Optimize algorithms across primitives to reuse more code

» Memory access is uncached: secret load addresses are not a problem!
» No branch prediction, but still: avoid secret branch conditions

» Different cost for branch instructions on different AVRs
» Much easier to check than constant-time branches



NaCl on ATmegas

Target: Provide reasonable size-speed tradeoffs

>

» Optimize algorithms across primitives to reuse more code

» Memory access is uncached: secret load addresses are not a problem!
» No branch prediction, but still: avoid secret branch conditions

» Different cost for branch instructions on different AVRs
» Much easier to check than constant-time branches

v

So far: No secure randomness generation (compute keys outside)



NaCl on ATmegas

Target: Provide reasonable size-speed tradeoffs

>

» Optimize algorithms across primitives to reuse more code

» Memory access is uncached: secret load addresses are not a problem!
» No branch prediction, but still: avoid secret branch conditions

» Different cost for branch instructions on different AVRs
» Much easier to check than constant-time branches

v

So far: No secure randomness generation (compute keys outside)

v

Adresses have only 16 bits, so restrict message length to 216 — 1
(avoid expensive arithmetic on 64-bit integers)



Under the hood of NaCl

Under the hood of crypto_box

» Curve25519 elliptic-curve Diffie-Hellman

> Subsequent secret-key authenticated encryption
» Stream cipher: Salsa20

» Authenticator: Poly1305

» Note: allows repudiation

Under the hood of crypto_sign

» Ed25519 elliptic-curve signatures
» Support for fast batch verification



Salsa20

v

Stream cipher proposed in 2005 (within the eSTREAM project)
Consists of 20 rounds and a 64-byte state (4 x 4 32-bit state)
We implemented two API entry points in C

v

v

> crypto_stream: generates a pseudorandom stream
> crypto_stream_xor: XORs the stream with a message and outputs
the ciphertext

v

Core functionality (crypto_core) implemented in assembly
(initialization and round calculations)

» 80 quarterround function calls on either a row or a column



Salsa20 optimization

Parameter passing using registers (no costly stack usage)

Content of the state is modified in-place (no variables, copies, etc.)
Shifts by 7 and 9 are cheap logical shifts (LSR and LSL)

Shifts by 13 and 18 have been realized using MUL

176 cycles for one quarterround function call

vV v.v. vy

10



Poly1305

v

Designed by Bernstein in 2005

Secret-key one-time authenticator based on arithmetic in IF,, with
p= 2130 -5
Key k and (padded) 16-byte ciphertext blocks c1,...,cx are in F,,

v

v

v

Main work: initialize authentication tag h with 0, then compute:
for i from 1 to k do
h+h +c;
h<h-k
end for

v

Per 16 bytes: 1 multiplication, 1 addition in Fy130_5

v

Some (fast) finalization to produce 16-byte authentication tag

11



Poly1305 optimization

» 17 x 17-byte multiplication

» Split 136-bit multiplication into 8 x 8, 9 x 9, and 9 x 8-byte
multiplications
> Partial products are processed according to schoolbook multiplication
> Performance: 1,882 cycles and 2,944 bytes of code (unrolled)
» Reduction mod 2'30 — 5

> We applied fast reduction by exploiting the congruence 2!3° =5
> Can be done by cheap shifts and additions on AVRs

> Re-use of bigint_add which is also used for scalar arithmetic in
Ed25519

12



Curve25519 and Ed25519

Curve25519
» Elliptic-curve Diffie-Hellman protocol proposed by Bernstein in 2006

» Uses Montgomery curve over the field Fo2s5_19

> Main operation: 253-step Montgomery ladder using
(X : Z)-coordinates

Ed25519

» Elliptic-curve signatures proposed by Bernstein, Duif, Lange,
Schwabe, and Yang in 2011

Based on Schnorr signatures with some modifications

Use twisted Edwards curve birationally equivalent to Curve25519
Signing: fixed-base-point scalar multiplication

Verification: point decompression 4+ double-scalar multiplication
Uses SHA-512 as hash function (plan: update to SHA-3)

vV v v v Y

13



25519 optimization

» Implemented Karatsuba's technique

» 256-bit multiplication is split into two 16 x 16 and one 17 x 17
multiplication

> Allows us to re-use code of Poly1305

» For Ed25519, we stored pre-computed multiples of the base point in
flash memory and used a window size of 4 (high speed) and 2 (low
area)

» SHA-512: 64-bit transformations have been implemented in
assembly

14



AVR NaCl results

High-speed configuration

>

Secret-key authenticated encryption: = 500 cycles/byte (268 bytes
of RAM)

Variable-basepoint scalar multiplication: 22,791,580 cycles (677
bytes of RAM)

crypto_sign: 23,216,241 cycles (1,642 bytes of RAM)

> crypto_sign open: 32,634,713 cycles (1,315 bytes of RAM)

27,962 bytes of ROM for NaCl

15



AVR NaCl results

Small-size configuration

>

Secret-key authenticated encryption: = 520 cycles/byte (273 bytes
of RAM)

Variable-basepoint scalar multiplication: 27,926, 288 cycles (917
bytes of RAM)

crypto_sign: 34,303,972 cycles (1,289 bytes of RAM)

> crypto_sign open: 40,083,281 cycles (1,346 bytes of RAM)

17,373 bytes of ROM for NaCl

16



Summary

vV v . v VY

First implementation of NaCl on AVRs
New speed records for Salsa20 on AVRs
First Poly1305, Curve25519, and Ed25519 results on AVRs

Fully compatible framework to other (already existing) NaCl
implementations for, e.g., servers, laptops, mobile phones,... ...

> 128-bit security level

> Full protection against timing attacks

17



Future work (things we don’t have, yet)

vV v v Y

Core algorithms are implemented, not the whole API, yet (in
particular no crypto_box, yet)

No flexible build system, yet
Need more tradoffs, in particular for even smaller size
Further optimizations in assembly

Investigate protection against physical side-channel attacks

18



More NaCl online

» NaCl website: http://nacl.cr.yp.to
» This paper: http://cryptojedi.org/papers/#avrnacl
» Software: http://cryptojedi.org/crypto/#avrnacl

19


http://nacl.cr.yp.to
http://cryptojedi.org/papers/#avrnacl
http://cryptojedi.org/crypto/#avrnacl

