
NaCl on 8-bit AVR microcontrollers

Michael Hutter and Peter Schwabe

TU Graz (Austria) and Radboud University Nijmegen (The
Netherlands)

June 24, 2013

Africacrypt 2013, Cairo, Egypt

. . . almost 2 years ago in Nara, Japan

2

The plan

I Bring Ed25519 elliptic-curve signatures to 8-bit AVR microcontroller

I Write paper, submit to Africacrypt 2012

I Hopefully get accepted, go to Morocco

. . . what happened?

I Update the plan: Get the whole Networking and Cryptography
Library (NaCl) onto AVR

I Write paper about it, submit to Africacrypt 2013

I Get accepted, go to Egypt

3

The plan

I Bring Ed25519 elliptic-curve signatures to 8-bit AVR microcontroller

I Write paper, submit to Africacrypt 2012

I Hopefully get accepted, go to Morocco

. . . what happened?

I Update the plan: Get the whole Networking and Cryptography
Library (NaCl) onto AVR

I Write paper about it, submit to Africacrypt 2013

I Get accepted, go to Egypt

3

The plan

I Bring Ed25519 elliptic-curve signatures to 8-bit AVR microcontroller

I Write paper, submit to Africacrypt 2012

I Hopefully get accepted, go to Morocco

. . . what happened?

I Update the plan: Get the whole Networking and Cryptography
Library (NaCl) onto AVR

I Write paper about it, submit to Africacrypt 2013

I Get accepted, go to Egypt

3

The plan

I Bring Ed25519 elliptic-curve signatures to 8-bit AVR microcontroller

I Write paper, submit to Africacrypt 2012

I Hopefully get accepted, go to Morocco

. . . what happened?

I Update the plan: Get the whole Networking and Cryptography
Library (NaCl) onto AVR

I Write paper about it, submit to Africacrypt 2013

I Get accepted, go to Egypt

3

8-bit AVR microcontrollers

I Widely used in embedded systems, e.g., sensor nodes

I 3 product lines: ATxmega, ATmega, and ATtiny (no HW multiplier)

I Focus here: ATmega, example configurations:
I ATmega2560: 16MHz, 256KB flash, 8KB RAM
I ATmega128: 16MHz, 128KB flash, 4KB RAM
I ATmega328: 20MHz, 32KB flash, 2KB RAM

I RISC architecture (> 90 available instructions)

I 32 general purpose registers
I R1:R0 holds 16-bit multiplication result
I R16-R31 accessible by a limited set of instructions
I R26-R31 (X, Y, and Z) used for 16-bit addressing

I We performed benchmarks on the ATmega2560

4

8-bit AVR microcontrollers

I Widely used in embedded systems, e.g., sensor nodes

I 3 product lines: ATxmega, ATmega, and ATtiny (no HW multiplier)

I Focus here: ATmega, example configurations:
I ATmega2560: 16MHz, 256KB flash, 8KB RAM
I ATmega128: 16MHz, 128KB flash, 4KB RAM
I ATmega328: 20MHz, 32KB flash, 2KB RAM

I RISC architecture (> 90 available instructions)

I 32 general purpose registers
I R1:R0 holds 16-bit multiplication result
I R16-R31 accessible by a limited set of instructions
I R26-R31 (X, Y, and Z) used for 16-bit addressing

I We performed benchmarks on the ATmega2560

4

8-bit AVR microcontrollers

I Widely used in embedded systems, e.g., sensor nodes

I 3 product lines: ATxmega, ATmega, and ATtiny (no HW multiplier)

I Focus here: ATmega, example configurations:
I ATmega2560: 16MHz, 256KB flash, 8KB RAM
I ATmega128: 16MHz, 128KB flash, 4KB RAM
I ATmega328: 20MHz, 32KB flash, 2KB RAM

I RISC architecture (> 90 available instructions)

I 32 general purpose registers
I R1:R0 holds 16-bit multiplication result
I R16-R31 accessible by a limited set of instructions
I R26-R31 (X, Y, and Z) used for 16-bit addressing

I We performed benchmarks on the ATmega2560

4

NaCl: A new cryptographic library

I Networking and Cryptography library (NaCl, pronounced “salt”)

I Designed by Daniel J. Bernstein, Tanja Lange, Peter Schwabe

I Acknowledgment: Contributions by
I Matthew Dempsky (Mochi Media)
I Niels Duif (TU Eindhoven)
I Emilia Käsper (KU Leuven, now Google)
I Adam Langley (Google)
I Bo-Yin Yang (Academia Sinica)

I Public domain, no patents

I Used, for example, in OpenDNS, DNSCrypt, QuickTun VPN, and
Ethos OS

5

NaCl features

I Easy-to-use API:
I One function call to crypto box to generate public-key

authenticated ciphertext
I One function call to crypto sign to sign a message
I No error handling required, no memory allocation required

I Only ≥ 128-bit-secure cryptographic primitives

I Timing-attack protection:
I No load/store addresses that depend on secret data (no cache

timing!)
I No branch conditions that depend on secret data

I Very high speed

. . . on large desktop/server processors

6

NaCl features

I Easy-to-use API:
I One function call to crypto box to generate public-key

authenticated ciphertext
I One function call to crypto sign to sign a message
I No error handling required, no memory allocation required

I Only ≥ 128-bit-secure cryptographic primitives

I Timing-attack protection:
I No load/store addresses that depend on secret data (no cache

timing!)
I No branch conditions that depend on secret data

I Very high speed

. . . on large desktop/server processors

6

NaCl features

I Easy-to-use API:
I One function call to crypto box to generate public-key

authenticated ciphertext
I One function call to crypto sign to sign a message
I No error handling required, no memory allocation required

I Only ≥ 128-bit-secure cryptographic primitives

I Timing-attack protection:
I No load/store addresses that depend on secret data (no cache

timing!)
I No branch conditions that depend on secret data

I Very high speed

. . . on large desktop/server processors

6

NaCl features

I Easy-to-use API:
I One function call to crypto box to generate public-key

authenticated ciphertext
I One function call to crypto sign to sign a message
I No error handling required, no memory allocation required

I Only ≥ 128-bit-secure cryptographic primitives

I Timing-attack protection:
I No load/store addresses that depend on secret data (no cache

timing!)
I No branch conditions that depend on secret data

I Very high speed

. . . on large desktop/server processors

6

NaCl features

I Easy-to-use API:
I One function call to crypto box to generate public-key

authenticated ciphertext
I One function call to crypto sign to sign a message
I No error handling required, no memory allocation required

I Only ≥ 128-bit-secure cryptographic primitives

I Timing-attack protection:
I No load/store addresses that depend on secret data (no cache

timing!)
I No branch conditions that depend on secret data

I Very high speed . . . on large desktop/server processors

6

NaCl on ATmegas

I Target: Provide reasonable size-speed tradeoffs

I Optimize algorithms across primitives to reuse more code

I Memory access is uncached: secret load addresses are not a problem!

I No branch prediction, but still: avoid secret branch conditions
I Different cost for branch instructions on different AVRs
I Much easier to check than constant-time branches

I So far: No secure randomness generation (compute keys outside)

I Adresses have only 16 bits, so restrict message length to 216 − 1
(avoid expensive arithmetic on 64-bit integers)

7

NaCl on ATmegas

I Target: Provide reasonable size-speed tradeoffs

I Optimize algorithms across primitives to reuse more code

I Memory access is uncached: secret load addresses are not a problem!

I No branch prediction, but still: avoid secret branch conditions
I Different cost for branch instructions on different AVRs
I Much easier to check than constant-time branches

I So far: No secure randomness generation (compute keys outside)

I Adresses have only 16 bits, so restrict message length to 216 − 1
(avoid expensive arithmetic on 64-bit integers)

7

NaCl on ATmegas

I Target: Provide reasonable size-speed tradeoffs

I Optimize algorithms across primitives to reuse more code

I Memory access is uncached: secret load addresses are not a problem!

I No branch prediction, but still: avoid secret branch conditions
I Different cost for branch instructions on different AVRs
I Much easier to check than constant-time branches

I So far: No secure randomness generation (compute keys outside)

I Adresses have only 16 bits, so restrict message length to 216 − 1
(avoid expensive arithmetic on 64-bit integers)

7

NaCl on ATmegas

I Target: Provide reasonable size-speed tradeoffs

I Optimize algorithms across primitives to reuse more code

I Memory access is uncached: secret load addresses are not a problem!

I No branch prediction, but still: avoid secret branch conditions
I Different cost for branch instructions on different AVRs
I Much easier to check than constant-time branches

I So far: No secure randomness generation (compute keys outside)

I Adresses have only 16 bits, so restrict message length to 216 − 1
(avoid expensive arithmetic on 64-bit integers)

7

NaCl on ATmegas

I Target: Provide reasonable size-speed tradeoffs

I Optimize algorithms across primitives to reuse more code

I Memory access is uncached: secret load addresses are not a problem!

I No branch prediction, but still: avoid secret branch conditions
I Different cost for branch instructions on different AVRs
I Much easier to check than constant-time branches

I So far: No secure randomness generation (compute keys outside)

I Adresses have only 16 bits, so restrict message length to 216 − 1
(avoid expensive arithmetic on 64-bit integers)

7

NaCl on ATmegas

I Target: Provide reasonable size-speed tradeoffs

I Optimize algorithms across primitives to reuse more code

I Memory access is uncached: secret load addresses are not a problem!

I No branch prediction, but still: avoid secret branch conditions
I Different cost for branch instructions on different AVRs
I Much easier to check than constant-time branches

I So far: No secure randomness generation (compute keys outside)

I Adresses have only 16 bits, so restrict message length to 216 − 1
(avoid expensive arithmetic on 64-bit integers)

7

Under the hood of NaCl

Under the hood of crypto box

I Curve25519 elliptic-curve Diffie-Hellman

I Subsequent secret-key authenticated encryption

I Stream cipher: Salsa20

I Authenticator: Poly1305

I Note: allows repudiation

Under the hood of crypto sign

I Ed25519 elliptic-curve signatures

I Support for fast batch verification

8

Salsa20

I Stream cipher proposed in 2005 (within the eSTREAM project)

I Consists of 20 rounds and a 64-byte state (4× 4 32-bit state)

I We implemented two API entry points in C
I crypto stream: generates a pseudorandom stream
I crypto stream xor: XORs the stream with a message and outputs

the ciphertext

I Core functionality (crypto core) implemented in assembly
(initialization and round calculations)

I 80 quarterround function calls on either a row or a column

9

Salsa20 optimization

I Parameter passing using registers (no costly stack usage)

I Content of the state is modified in-place (no variables, copies, etc.)

I Shifts by 7 and 9 are cheap logical shifts (LSR and LSL)

I Shifts by 13 and 18 have been realized using MUL

I 176 cycles for one quarterround function call

10

Poly1305

I Designed by Bernstein in 2005

I Secret-key one-time authenticator based on arithmetic in Fp with
p = 2130 − 5

I Key k and (padded) 16-byte ciphertext blocks c1, . . . , ck are in Fp

I Main work: initialize authentication tag h with 0, then compute:

for i from 1 to k do
h← h+ ci
h← h · k

end for

I Per 16 bytes: 1 multiplication, 1 addition in F2130−5

I Some (fast) finalization to produce 16-byte authentication tag

11

Poly1305 optimization

I 17× 17-byte multiplication
I Split 136-bit multiplication into 8× 8, 9× 9, and 9× 8-byte

multiplications
I Partial products are processed according to schoolbook multiplication
I Performance: 1,882 cycles and 2,944 bytes of code (unrolled)

I Reduction mod 2130 − 5
I We applied fast reduction by exploiting the congruence 2130 ≡ 5
I Can be done by cheap shifts and additions on AVRs
I Re-use of bigint add which is also used for scalar arithmetic in

Ed25519

12

Curve25519 and Ed25519

Curve25519

I Elliptic-curve Diffie-Hellman protocol proposed by Bernstein in 2006

I Uses Montgomery curve over the field F2255−19

I Main operation: 253-step Montgomery ladder using
(X : Z)-coordinates

Ed25519

I Elliptic-curve signatures proposed by Bernstein, Duif, Lange,
Schwabe, and Yang in 2011

I Based on Schnorr signatures with some modifications

I Use twisted Edwards curve birationally equivalent to Curve25519

I Signing: fixed-base-point scalar multiplication

I Verification: point decompression + double-scalar multiplication

I Uses SHA-512 as hash function (plan: update to SHA-3)

13

∗25519 optimization

I Implemented Karatsuba’s technique

I 256-bit multiplication is split into two 16× 16 and one 17× 17
multiplication

I Allows us to re-use code of Poly1305

I For Ed25519, we stored pre-computed multiples of the base point in
flash memory and used a window size of 4 (high speed) and 2 (low
area)

I SHA-512: 64-bit transformations have been implemented in
assembly

14

AVR NaCl results

High-speed configuration

I Secret-key authenticated encryption: ≈ 500 cycles/byte (268 bytes
of RAM)

I Variable-basepoint scalar multiplication: 22, 791, 580 cycles (677
bytes of RAM)

I crypto sign: 23, 216, 241 cycles (1, 642 bytes of RAM)

I crypto sign open: 32, 634, 713 cycles (1, 315 bytes of RAM)

I 27, 962 bytes of ROM for NaCl

15

AVR NaCl results

Small-size configuration

I Secret-key authenticated encryption: ≈ 520 cycles/byte (273 bytes
of RAM)

I Variable-basepoint scalar multiplication: 27, 926, 288 cycles (917
bytes of RAM)

I crypto sign: 34, 303, 972 cycles (1, 289 bytes of RAM)

I crypto sign open: 40, 083, 281 cycles (1, 346 bytes of RAM)

I 17, 373 bytes of ROM for NaCl

16

Summary

I First implementation of NaCl on AVRs

I New speed records for Salsa20 on AVRs

I First Poly1305, Curve25519, and Ed25519 results on AVRs

I Fully compatible framework to other (already existing) NaCl
implementations for, e.g., servers, laptops, mobile phones,.

I 128-bit security level

I Full protection against timing attacks

17

Future work (things we don’t have, yet)

I Core algorithms are implemented, not the whole API, yet (in
particular no crypto box, yet)

I No flexible build system, yet

I Need more tradoffs, in particular for even smaller size

I Further optimizations in assembly

I Investigate protection against physical side-channel attacks

18

More NaCl online

I NaCl website: http://nacl.cr.yp.to

I This paper: http://cryptojedi.org/papers/#avrnacl

I Software: http://cryptojedi.org/crypto/#avrnacl

19

http://nacl.cr.yp.to
http://cryptojedi.org/papers/#avrnacl
http://cryptojedi.org/crypto/#avrnacl

