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Overview

What is ghasm?

What does a ghasm program look like?

AES on the UltraSPARC - a CACE study
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What is ghasm?

...as opposed to Assembly and C.
> Assembly:

» Programmer has full control (choice of instructions, scheduling,
usage of memory/registers)

» Different instruction set for different architectures = different
implementation for each architecture

» Different syntax for different architectures

> Programmer has to keep track of which “variable” is in which register

> Choice of instructions, scheduling etc. left to compiler, programmer
can only give hints (register)

» Unified “instruction set” and unified syntax = just one
implementation on all architectures

» ghasm assigns registers to register variables
» ghasm assigns stack space to stack variables automatically
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Why would anyone want ghasm?
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Consider AES implementation for UltraSPARC
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Consider AES implementation for UltraSPARC
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Why would anyone want ghasm?

Consider AES implementation for UltraSPARC
> 25.08 cycles/byte with gcc
» 20.75 cycles/byte with Sun C compiler
> 15.98 cycles/byte with ghasm implementation
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What does a ghasm program look like?

» No function calls
> One instruction (line) in ghasm translates into one CPU instrution

» Which instructions are available: Check documentation
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The Baseline

» Consider 128 bit AES (10 Rounds) in Counter mode
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The Baseline

» Consider 128 bit AES (10 Rounds) in Counter mode
» Each round has 20 loads, 16 shifts, 16 masks and 16 xors
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The Baseline
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Consider 128 bit AES (10 Rounds) in Counter mode
Each round has 20 loads, 16 shifts, 16 masks and 16 xors
Last round is slightly different: Needs 16 more mask instructions

Four load instructions to load input, four xors with key stream, four
stores for output

...some more overhead

» Results in 720 instructions needed to encrypt a block of 16 bytes

Specifically: 208 loads, 4 stores, 508 integer instructions
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How can the UltraSPARC handle these instructions?

Reminder: 208 loads, 4 stores, 508 integer instructions
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» Can dispatch several (up to 4) instructions per cycle
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Idea: “Hide" load/store instructions between integer instructions
(needs more registers!)
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How can the UltraSPARC handle these instructions?

Reminder: 208 loads, 4 stores, 508 integer instructions

Can dispatch several (up to 4) instructions per cycle
Only one load or store per cycle (= at least 212 cycles)
Only 2 integer instructions per cycle (= at least 254 cycles)
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Idea: “Hide" load/store instructions between integer instructions
(needs more registers!)

Result: 254 cycles/block, 15.98 cycles/byte in the eSTREAM
benchmarking framework for encryption of 4096 bytes

v
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Some more results (joint work with D.J. Bernstein)

12.08 cycles/byte for UltraSPARC Il
14.57 cycles/byte for PowerPC G4 7410
14.15 cycles/byte for Pentium 4 {12
10.57 cycles/byte for Core 2

10.43 cycles/byte for Athlon64
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12.08 cycles/byte for UltraSPARC Il

14.57 cycles/byte for PowerPC G4 7410

14.15 cycles/byte for Pentium 4 {12

10.57 cycles/byte for Core 2

10.43 cycles/byte for Athlon64

All these implementations improve upon previously fastest code.

All these implementations are in the public domain
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