Achieving Software Speed Records with ghasm

Peter Schwabe

Eindhoven University of Technology
Technische Universiteit
TU/e s
12.10.2008

EIPSI Seminar



Overview

What is ghasm?

What does a ghasm program look like?

AES on the UltraSPARC - a CACE study

Achieving Software Speed Records with ghasm 2



What is ghasm?

...as opposed to Assembly and C.

Achieving Software Speed Records with ghasm



What is ghasm?

...as opposed to Assembly and C.
> Assembly:
» Programmer has full control (choice of instructions, scheduling,
usage of memory/registers)
» Different instruction set for different architectures = different
implementation for each architecture
» Different syntax for different architectures

Achieving Software Speed Records with ghasm



What is ghasm?

...as opposed to Assembly and C.
> Assembly:
» Programmer has full control (choice of instructions, scheduling,
usage of memory/registers)
» Different instruction set for different architectures = different
implementation for each architecture
» Different syntax for different architectures

> Choice of instructions, scheduling etc. left to compiler, programmer
can only give hints (register)

» Unified “instruction set” and unified syntax = just one
implementation on all architectures

Achieving Software Speed Records with ghasm



What is ghasm?

...as opposed to Assembly and C.
> Assembly:

» Programmer has full control (choice of instructions, scheduling,
usage of memory/registers)

» Different instruction set for different architectures = different
implementation for each architecture

» Different syntax for different architectures

> Programmer has to keep track of which “variable” is in which register

> Choice of instructions, scheduling etc. left to compiler, programmer
can only give hints (register)

» Unified “instruction set” and unified syntax = just one
implementation on all architectures

Achieving Software Speed Records with ghasm



What is ghasm?

...as opposed to Assembly and C.
> Assembly:

» Programmer has full control (choice of instructions, scheduling,
usage of memory/registers)

» Different instruction set for different architectures = different
implementation for each architecture

» Different syntax for different architectures

> Programmer has to keep track of which “variable” is in which register

> Choice of instructions, scheduling etc. left to compiler, programmer
can only give hints (register)

» Unified “instruction set” and unified syntax = just one
implementation on all architectures

» ghasm assigns registers to register variables
» ghasm assigns stack space to stack variables automatically

Achieving Software Speed Records with ghasm



Why would anyone want ghasm?

Achieving Software Speed Records with ghasm



Why would anyone want ghasm?

Consider AES implementation for UltraSPARC

Achieving Software Speed Records with ghasm 4



Why would anyone want ghasm?

Consider AES implementation for UltraSPARC
> 25.08 cycles/byte with gcc

Achieving Software Speed Records with ghasm 4



Why would anyone want ghasm?

Consider AES implementation for UltraSPARC
> 25.08 cycles/byte with gcc
» 20.75 cycles/byte with Sun C compiler

Achieving Software Speed Records with ghasm



Why would anyone want ghasm?

Consider AES implementation for UltraSPARC
> 25.08 cycles/byte with gcc
» 20.75 cycles/byte with Sun C compiler
> 15.98 cycles/byte with ghasm implementation

Achieving Software Speed Records with ghasm



What does a ghasm program look like?

» No function calls
> One instruction (line) in ghasm translates into one CPU instrution

» Which instructions are available: Check documentation

Achieving Software Speed Records with ghasm



The Baseline

» Consider 128 bit AES (10 Rounds) in Counter mode

Achieving Software Speed Records with ghasm 6



The Baseline

» Consider 128 bit AES (10 Rounds) in Counter mode
» Each round has 20 loads, 16 shifts, 16 masks and 16 xors

Achieving Software Speed Records with ghasm 6



The Baseline

vV v . vY

v

Consider 128 bit AES (10 Rounds) in Counter mode
Each round has 20 loads, 16 shifts, 16 masks and 16 xors
Last round is slightly different: Needs 16 more mask instructions

Four load instructions to load input, four xors with key stream, four
stores for output

...some more overhead

» Results in 720 instructions needed to encrypt a block of 16 bytes

Specifically: 208 loads, 4 stores, 508 integer instructions

Achieving Software Speed Records with ghasm



How can the UltraSPARC handle these instructions?

Reminder: 208 loads, 4 stores, 508 integer instructions

Achieving Software Speed Records with ghasn 7



How can the UltraSPARC handle these instructions?

Reminder: 208 loads, 4 stores, 508 integer instructions

» Can dispatch several (up to 4) instructions per cycle

Achieving Software Speed Records with ghasm



How can the UltraSPARC handle these instructions?

Reminder: 208 loads, 4 stores, 508 integer instructions

» Can dispatch several (up to 4) instructions per cycle

» Only one load or store per cycle (= at least 212 cycles)

Achieving Software Speed Records with ghasm



How can the UltraSPARC handle these instructions?

Reminder: 208 loads, 4 stores, 508 integer instructions
» Can dispatch several (up to 4) instructions per cycle

» Only one load or store per cycle (= at least 212 cycles)
» Only 2 integer instructions per cycle (= at least 254 cycles)

Achieving Software Speed Records with ghasm



How can the UltraSPARC handle these instructions?

Reminder: 208 loads, 4 stores, 508 integer instructions

Can dispatch several (up to 4) instructions per cycle
Only one load or store per cycle (= at least 212 cycles)
Only 2 integer instructions per cycle (= at least 254 cycles)

vV v v VY

Idea: “Hide" load/store instructions between integer instructions
(needs more registers!)

Achieving Software Speed Records with ghasn



How can the UltraSPARC handle these instructions?

Reminder: 208 loads, 4 stores, 508 integer instructions

Can dispatch several (up to 4) instructions per cycle
Only one load or store per cycle (= at least 212 cycles)
Only 2 integer instructions per cycle (= at least 254 cycles)

vV v v VY

Idea: “Hide" load/store instructions between integer instructions
(needs more registers!)

Result: 254 cycles/block, 15.98 cycles/byte in the eSTREAM
benchmarking framework for encryption of 4096 bytes

v

Achieving Software Speed Records with ghasm



Some more results (joint work with D.J. Bernstein)

12.08 cycles/byte for UltraSPARC Il
14.57 cycles/byte for PowerPC G4 7410
14.15 cycles/byte for Pentium 4 {12
10.57 cycles/byte for Core 2

10.43 cycles/byte for Athlon64

vV v.v. v .Yy

Achieving Software Speed Records with ghasm 8



Some more results (joint work with D.J. Bernstein)

12.08 cycles/byte for UltraSPARC Il

14.57 cycles/byte for PowerPC G4 7410

14.15 cycles/byte for Pentium 4 {12

10.57 cycles/byte for Core 2

10.43 cycles/byte for Athlon64

All these implementations improve upon previously fastest code.

vV v.v v v .Yy

Achieving Software Speed Records with ghasn 8



Some more results (joint work with D.J. Bernstein)

vV V. v vV v v .Y

12.08 cycles/byte for UltraSPARC Il

14.57 cycles/byte for PowerPC G4 7410

14.15 cycles/byte for Pentium 4 {12

10.57 cycles/byte for Core 2

10.43 cycles/byte for Athlon64

All these implementations improve upon previously fastest code.

All these implementations are in the public domain

Achieving Software Speed Records with ghasm



	What is qhasm?
	What does a qhasm program look like?
	AES on the UltraSPARC -- a CACE study

