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A few

words about Taiwan and Academia Sinica

Taiwan (57%) is an island south of China

» About 36,200 km? large

v

Territory of the Republic of China (not to be confused with the
People’'s Republic of China)

Capital is Taipei (£1b)

Marine tropical climate

99 summits over 3000 meters (highest peak: 3952 m)
Wildlife includes black bears, salmon, monkeys. ..
Academia Sinica is a research facility funded by ROC
About 30 institutes

More than 800 principal investigators, about 900 postdocs and more
than 2200 students

EdDSA signatures and Ed25519



Introduction — the NaCl library
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How it started

» My research during Ph.D. was within the European project CACE
(Computer Aided Cryptography Engineering)

» One of the deliverables: Networking and Cryptography Library
(NaCl, pronounced “salt”)
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» My research during Ph.D. was within the European project CACE
(Computer Aided Cryptography Engineering)

One of the deliverables: Networking and Cryptography Library
(NaCl, pronounced “salt”)

Aim of this library: High-speed, high-security, easy-to-use
cryptographic protection for network communication
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We are willing to sacrifice compatibility to other crypto libraries

At the end of 2010 the library contained
» the stream cipher Salsa20,
> the Poly1305 secret-key authenticator, and
» Curve25519 elliptic-curve Diffie-Hellman key-exchange software.
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This serves the typical one-to-one communication of most internet
connections
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How it started

>

My research during Ph.D. was within the European project CACE
(Computer Aided Cryptography Engineering)

One of the deliverables: Networking and Cryptography Library
(NaCl, pronounced “salt”)

Aim of this library: High-speed, high-security, easy-to-use
cryptographic protection for network communication

» We are willing to sacrifice compatibility to other crypto libraries
> At the end of 2010 the library contained

» the stream cipher Salsa20,

> the Poly1305 secret-key authenticator, and

» Curve25519 elliptic-curve Diffie-Hellman key-exchange software.
This is wrapped in a crypto_box API that performs high-security
public-key authenticated encryption
This serves the typical one-to-one communication of most internet
connections

Still required at the end of 2010: One-to-many authentication, i.e.
cryptographic signatures
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Designing a public-key signature scheme

» Core requirements: 128-bit security, fast signing, fast verification,
secure software implementation

» Obvious candidates: RSA, ElGamal, DSA, ECDSA, Schnorr. ..

EdDSA signatures and Ed25519

5



Designing a public-key signature scheme

» Core requirements: 128-bit security, fast signing, fast verification,
secure software implementation

» Obvious candidates: RSA, ElGamal, DSA, ECDSA, Schnorr. ..

» Conventional wisdom: ECC is faster than anything based on
factoring or the DLP in Z7

> (Twisted) Edwards curves support very fast arithmetic
» Edwards addition is complete (important for secure implementations)

» Curve25519 has an Edwards representation and offers very high
security
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Designing a public-key signature scheme

» Core requirements: 128-bit security, fast signing, fast verification,
secure software implementation

» Obvious candidates: RSA, ElGamal, DSA, ECDSA, Schnorr. ..

» Conventional wisdom: ECC is faster than anything based on
factoring or the DLP in Z7

> (Twisted) Edwards curves support very fast arithmetic
» Edwards addition is complete (important for secure implementations)

» Curve25519 has an Edwards representation and offers very high
security

> Looks like “some” signature scheme using Edwards arithmetic on
Curve25519 is a good choice
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One step back: Is ECC really faster than, e.g., RSA?

» RSA with public exponent e = 3 can verify signatures with just one
modular multiplication and one squaring

» Very hard to beat with any elliptic-curve-based signature scheme
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RSA with public exponent e = 3 can verify signatures with just one
modular multiplication and one squaring

Very hard to beat with any elliptic-curve-based signature scheme

Verification speed primarily matters in applications that need to
verify many signatures

Idea: To get close to RSA verification speed, support batch
verification
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One step back: Is ECC really faster than, e.g., RSA?

>

RSA with public exponent e = 3 can verify signatures with just one
modular multiplication and one squaring

Very hard to beat with any elliptic-curve-based signature scheme

Verification speed primarily matters in applications that need to
verify many signatures

Idea: To get close to RSA verification speed, support batch
verification

Easier: Verify batches of signatures under the same public key

Harder (but much more useful!): Verify batches of signatures under
different public keys

We don’t know where the NaCl library is used, so support the latter

» None of the above-mentioned schemes supports fast batch

verification

Schnorr signatures only require small changes (and have many nice
features anyways)

= Start with Schnorr signatures, modify as required
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Recall Schnorr signatures

» Variant of ElGamal Signatures

» Many more variants (DSA, ECDSA, KCDSA, ...)

> Uses finite group G = (B), with |G| =¢

» Uses hash-function H : G x Z — {0,...,2" — 1}

» Originally: G <%, here: consider elliptic-curve group
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» Variant of ElGamal Signatures

Many more variants (DSA, ECDSA, KCDSA, ...)
Uses finite group G = (B), with |G| = ¢

Uses hash-function H : G x Z — {0,...,2" — 1}
Originally: G <%, here: consider elliptic-curve group
Private key: a € {1,...,¢}, public key: A =—aB
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Recall Schnorr signatures

>
>
S
>
>
>
>

Variant of ElGamal Signatures
Many more variants (DSA, ECDSA, KCDSA, ...)
Uses finite group G = (B), with |G| = ¢
Uses hash-function H : G x Z — {0,...,2" — 1}
Originally: G <%, here: consider elliptic-curve group
Private key: a € {1,...,¢}, public key: A =—aB
Sign: Generate secret random r € {1,...,¢}, compute signature
(H(R,M),S) on M with
R=rB
S=(r+ H(R,M)a) mod ¢
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Recall Schnorr signatures

>
>
S
>
>
>
>

Variant of ElGamal Signatures

Many more variants (DSA, ECDSA, KCDSA, ...)
Uses finite group G = (B), with |G| = ¢

Uses hash-function H : G x Z — {0,...,2" — 1}
Originally: G <%, here: consider elliptic-curve group
Private key: a € {1,...,¢}, public key: A =—aB

Sign: Generate secret random r € {1,...,¢}, compute signature
(H(R,M),S) on M with

R=rB
S=(r+ H(R,M)a) mod ¢

Verifier computes R = SB + H(R, M)A and checks that

H(R,M) = H(R, M)
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The EdDSA signature scheme
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EdDSA and Ed25519 parameters

EdDSA Ed25519-SHA-512
> Integer b > 10 » b =256
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EdDSA and Ed25519 parameters

EdDSA Ed25519-SHA-512
> Integer b > 10 > b =256
» Prime power ¢ =1 (mod 4) > ¢ = 2255 — 19 (prime)
> (b — 1)-bit encoding of » little-endian encoding of
elements of F, {0, ...,22% — 20}
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EdDSA
> Integer b > 10
» Prime power ¢ = 1 (mod 4)
» (b — 1)-bit encoding of

elements of I,

Hash function H with 2b-bit
output

Non-square d € IF,

» Be{(x,y) €

FyxFy, —22+y? = 1+dz?y?}
(twisted Edwards curve E)
prime ¢ € (20=%,20=3) with
/B =(0,1)

EdDSA and Ed25519 parameters

Ed25519-SHA-512

>

>

v

v

v

v

b = 256

q = 2%55 — 19 (prime)
little-endian encoding of
{0,...,2255 — 20}

H = SHA-512

d = —121665/121666

B = (x,4/5), with  "even”

¢ a 253-bit prime
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EdDSA and Ed25519 parameters

EdDSA Ed25519-SHA-512
> Integer b > 10 > b =256
» Prime power ¢ = 1 (mod 4) > ¢ = 2255 — 19 (prime)
» (b — 1)-bit encoding of » little-endian encoding of
elements of I, {0, ...,22% — 20}
» Hash function H with 2b-bit » H = SHA-512
output

» Non-square d € F,

» Be{(x,y) €
FyxFy, —22+y? = 1+dz?y?}
(twisted Edwards curve E)

» prime £ € (20~ 20=3) with » ( a 253-bit prime
/B =(0,1)

v

d = —121665/121666
B = (x,4/5), with  "even”

v

Ed25519 curve is birationally equivalent to the Curve25519 curve.
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EdDSA keys

> Secret key: b-bit string k
» Compute H(k) = (ho,...,hap—1)
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EdDSA keys

Secret key: b-bit string k

Compute H (k) = (ho, ..., hap—1)

Derive integer a =272 + Y, ., . 2'h;
Note that a is a multiple of 8 o

vV v v v
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EdDSA keys

Secret key: b-bit string k

Compute H (k) = (ho, ..., hap—1)

Derive integer a =272 + Y, ., . 2'h;
Note that a is a multiple of 8 o
Compute A =aB

vV v.v. v v .Y

Public key: Encoding A of A = (z4,y4) as ya and one (parity) bit
of x4 (needs b bits)
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EdDSA keys

vV v.v. v v .Y

Secret key: b-bit string k

Compute H (k) = (ho, ..., hap—1)

Derive integer a =272 + Y, ., . 2'h;
Note that a is a multiple of 8 o
Compute A =aB

Public key: Encoding A of A = (z4,y4) as ya and one (parity) bit
of x4 (needs b bits)

Compute A from A: x4 = j:\/ /(dy% + 1)

EdDSA signatures and Ed25519
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EdDSA signatures

Signing
» Message M determines 7 = H(hy, ..., hoy_1, M) € {0,...,2%* — 1}
» Define R=1rB
> Define S = (r+ H(R, A, M)a) mod ¢
» Signature: (R,S), with S the b-bit little-endian encoding of S
> (R,S) has 2b bits (3 known to be zero)
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EdDSA signatures

Signing
» Message M determines 7 = H(hy, ..., hoy_1, M) € {0,...,2%* — 1}
» Define R=1rB
> Define S = (r+ H(R, A, M)a) mod ¢
» Signature: (R,S), with S the b-bit little-endian encoding of S
> (R,S) has 2b bits (3 known to be zero)

Verification

» Verifier parses A from A and R from R
» Computes H(R, A, M)
» Checks group equation

8SB=8R+8H(R,A, M)A
» Rejects if parsing fails or equation does not hold
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EdDSA and Ed25519 security
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Collision resilience

» ECDSA uses H(M)
» Collisions in H allow existential forgery
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Collision resilience

» ECDSA uses H(M)

» Collisions in H allow existential forgery

» Schnorr signatures and EdDSA include R in the hash
» Schnorr: H(R, M)
» EdDSA: H(R, A, M)

» Signatures are hash-function-collision resilient
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Collision resilience

» ECDSA uses H(M)
» Collisions in H allow existential forgery
» Schnorr signatures and EdDSA include R in the hash
» Schnorr: H(R, M)
» EdDSA: H(R, A, M)
» Signatures are hash-function-collision resilient
» Including A alleviates concerns about attacks against multiple keys

EdDSA signatures and Ed25519
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Foolproof session keys

» Each message needs a different, hard-to-predict r (“session key”)
» Just knowing a few bits of r for many signatures allows to recover a

» Usual approach (e.g., Schnorr signatures): Choose random r for
each message

EdDSA signatures and Ed25519

14



Foolproof session keys

» Each message needs a different, hard-to-predict r (“session key”)
» Just knowing a few bits of r for many signatures allows to recover a

» Usual approach (e.g., Schnorr signatures): Choose random r for
each message

» Potential problems: Bad random-number generators,
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Foolproof session keys

» Each message needs a different, hard-to-predict r (“session key”)

Just knowing a few bits of  for many signatures allows to recover a

Usual approach (e.g., Schnorr signatures): Choose random r for
each message

Potential problems: Bad random-number generators,
off-by-one(-byte) bugs

Even worse: No random-number generator: Sony's PS3 security
disaster

EdDSA uses deterministic, pseudo-random session keys
H(hb7 ) h2b713 M)

» Same security as random 7 under standard PRF assumptions

Does not consume per-message randomness

Better for testing (deterministic output)
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Constant-time implementation

Avoiding secret branch conditions

» Many scalar-multiplication algorithms contain parts like

if(s) do A
else do B
where s is a part (e.g., a bit) of the secret scalar
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» Many scalar-multiplication algorithms contain parts like

if(s) do A
else do B

where s is a part (e.g., a bit) of the secret scalar
» Program takes different amount of time depending on the value of s
» This is true, even if A and B take the same amount of time!

» Reason: Branch predictors contained in all modern CPUs
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Many scalar-multiplication algorithms contain parts like

if(s) do A
else do B

where s is a part (e.g., a bit) of the secret scalar

Program takes different amount of time depending on the value of s
This is true, even if A and B take the same amount of time!

Reason: Branch predictors contained in all modern CPUs

Attacker can gain information about the secret scalar by timing the
execution of the program
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Program takes different amount of time depending on the value of s
This is true, even if A and B take the same amount of time!

Reason: Branch predictors contained in all modern CPUs

Attacker can gain information about the secret scalar by timing the
execution of the program

In 2011, Brumley and Tuveri recoverd the OpenSSL ECDSA secret
signing key through such a timing attack
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Constant-time implementation

Avoiding secret branch conditions

vV v v v

Many scalar-multiplication algorithms contain parts like

if(s) do A
else do B

where s is a part (e.g., a bit) of the secret scalar

Program takes different amount of time depending on the value of s
This is true, even if A and B take the same amount of time!

Reason: Branch predictors contained in all modern CPUs

Attacker can gain information about the secret scalar by timing the
execution of the program

In 2011, Brumley and Tuveri recoverd the OpenSSL ECDSA secret
signing key through such a timing attack

Ed25519 software does not contain any secret branch
conditions
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Constant-time implementation
Avoiding secret lookup indices
» In particular fixed-basepoint scalar-multiplication algorithms contain
parts like
P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar
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Constant-time implementation

Avoiding secret lookup indices

» In particular fixed-basepoint scalar-multiplication algorithms contain
parts like

P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar

» Loading from memory can take a different amount of time
depending on the (secret) address s

» Reason: Access to memory is cached, if data is found in cache the
load is fast (cache hit), otherwise it's slow
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Constant-time implementation

Avoiding secret lookup indices

>

In particular fixed-basepoint scalar-multiplication algorithms contain
parts like

P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar

Loading from memory can take a different amount of time
depending on the (secret) address s

Reason: Access to memory is cached, if data is found in cache the
load is fast (cache hit), otherwise it's slow

Again: Attacker can gain information about the secret scalar by
timing the execution of the program

In 2005, Osvik, Shamir, and Tromer discovered the AES key used for
hard-disk encryption in Linux in just 65 ms using such a
cache-timing attack
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Constant-time implementation

Avoiding secret lookup indices

>

In particular fixed-basepoint scalar-multiplication algorithms contain
parts like

P += precomputed_points[s]
where s is a part (e.g., a bit) of the secret scalar

Loading from memory can take a different amount of time
depending on the (secret) address s

Reason: Access to memory is cached, if data is found in cache the
load is fast (cache hit), otherwise it's slow

Again: Attacker can gain information about the secret scalar by
timing the execution of the program

In 2005, Osvik, Shamir, and Tromer discovered the AES key used for
hard-disk encryption in Linux in just 65 ms using such a
cache-timing attack

Ed25519 software does not perform any loads from secret
addresses
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Speed of Ed25519
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Fast arithmetic in Fy2s5_1g

Radix 264
» Standard: break elements of Fg2s5_19 into 4 64-bit integers

> (Schoolbook) multiplication breaks down into 16 64-bit integer
multiplications

» Adding up partial results requires many add-with-carry (adc)
» Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle
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Fast arithmetic in Fy2s5_1g

Radix 264

v

v

v

v

Standard: break elements of Fy2s5 _19 into 4 64-bit integers

(Schoolbook) multiplication breaks down into 16 64-bit integer
multiplications

Adding up partial results requires many add-with-carry (adc)

Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 2°!

vV v.v. v .Y

Instead break into 5 64-bit integers, use radix 2°!

Schoolbook multiplication now 25 64-bit integer multiplications
Partial results have < 128 bits, adding upper part is add, not adc
Easy to merge multiplication with reduction (multiplies by 19)

Better performance on Westmere/Nehalem, worse on 65 nm Core 2
and AMD processors
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Fast signing

» Main computational task: Compute R = rB
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Fast signing

» Main computational task: Compute R = rB
» First compute  mod ¢, write it as ro 4+ 167 + - - - 4+ 1653143, with

ri € {—8,-7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}
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lookup table at compile time
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Fast signing

» Main computational task: Compute R = rB
» First compute  mod ¢, write it as ro 4+ 167 + - - - 4+ 1653143, with
r; € {-8,-7,—6,-5,—-4,-3,-2,-1,0,1,2,3,4,5,6,7}
» Precompute 16|r;|B for i =0,...,63 and |r;| € {1,...,8},ina
lookup table at compile time
» Compute R = 3.%° 16'r; B
> 64 table lookups, 64 conditional point negations, 63 point additions

v

Wait, table lookups?
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Fast signing

v

v

vV v v v

Main computational task: Compute R = rB
First compute  mod ¢, write it as 7g + 1611 + - - - + 165373, with

ri € {—8,—7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}
Precompute 16¢|r;|B for i = 0,...,63 and |r;] € {1,...,8},in a
lookup table at compile time
Compute R = 3% 16'r; B
64 table lookups, 64 conditional point negations, 63 point additions

Wait, table lookups?

In each lookup load all 8 relevant entries from the table, use
arithmetic to obtain the desired one
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Fast signing

v

v

vV v v v

v

Main computational task: Compute R = rB

First compute  mod ¢, write it as 7g + 1611 + - - - + 165373, with
ri€ {8, —7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

Precompute 16¢|r;|B for i = 0,...,63 and |r;] € {1,...,8},in a
lookup table at compile time

Compute R = 3% 16'r; B
64 table lookups, 64 conditional point negations, 63 point additions
Wait, table lookups?

In each lookup load all 8 relevant entries from the table, use
arithmetic to obtain the desired one

Signing takes 87548 cycles on an Intel Westmere CPU

» Key generation takes about 6000 cycles more (read from

/dev/urandom)
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Fast verification

» First part: point decompression, compute = coordinate xg of R as

fo:I:\/ dyR+1)

» Looks like a square root and an inversion is required
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Fast verification

» First part: point decompression, compute = coordinate xg of R as

fo:I:\/ dyR+1)

» Looks like a square root and an inversion is required

» As g =5 (mod 8) for each square « we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by v/—1 if 82 = —
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Fast verification

» First part: point decompression, compute = coordinate xg of R as

fo:I:\/ dyR+1)

» Looks like a square root and an inversion is required

» As g =5 (mod 8) for each square « we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by v/—1 if 82 = —

» Decompression has o = u/v, merge square root with inversion:

B = (ufv)at3d)/s

EdDSA signatures and Ed25519

20



Fast verification

» First part: point decompression, compute = coordinate xg of R as

fo:I:\/ dyR+1)

» Looks like a square root and an inversion is required

» As g =5 (mod 8) for each square « we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by /=1 if 2 = —
> Decompression has a = u/v, merge square root with inversion:
8= (u/v)(q+3)/8 — y(a+3)/8,a—1—(q+3)/8

— OB /BY(TaID/E 8 () TY(0-5)/8.
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Fast verification

» First part: point decompression, compute = coordinate xg of R as

JJR—:E\/ dyR+1)

» Looks like a square root and an inversion is required

» As g =5 (mod 8) for each square « we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by /=1 if 2 = —
> Decompression has a = u/v, merge square root with inversion:
8= (u/v)(q+3)/8 — y(a+3)/8,a—1—(q+3)/8

— OB /BY(TaID/E 8 () TY(0-5)/8.

» Second part: computation of SB — H(R, A, M)A
» Double-scalar multiplication using signed sliding windows

» Different window sizes for B (compile time) and A (run time)
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Fast verification

>

First part: point decompression, compute = coordinate xg of R as

JJR—:E\/ dyR+1)

» Looks like a square root and an inversion is required

As g =5 (mod 8) for each square a we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by v/—1 if 82 = —

vV v v .Yy

Decompression has o = u/v, merge square root with inversion:
8= (u/v)(q+3)/8 — y(a+3)/8,a—1—(q+3)/8

a8/ (Ta=10 /8 _ 8 (00 TY(a-5)/8.

Second part: computation of SB — H(R, A, M)A
Double-scalar multiplication using signed sliding windows
Different window sizes for B (compile time) and A (run time)
Verification takes 273364 cycles
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Faster batch verification

» Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;
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Faster batch verification

» Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

» Choose independent uniform random 128-bit integers z;
» Compute H; = H(R;, As, M;)
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Faster
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v

batch verification

Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

Choose independent uniform random 128-bit integers z;
Compute H; = H(R;, Ai, M;)
Verify the equation

< > 28 mod €>B + 3 zRi+ Y (2H; mod ()A; =0

K2
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Faster
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batch verification

Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

Choose independent uniform random 128-bit integers z;
Compute H; = H(R;, Ai, M;)
Verify the equation

< > 28 mod €>B + 3 zRi+ Y (2H; mod ()A; =0

K2

Use Bos-Coster algorithm for multi-scalar multiplication
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Faster

batch verification

Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

Choose independent uniform random 128-bit integers z;

» Compute H; = H(R;, Ai, M;)

Verify the equation
< > 28 mod €>B + 3 zRi+ Y (2H; mod ()A; =0

Use Bos-Coster algorithm for multi-scalar multiplication

Verifying a batch of 64 valid signatures takes 8.55 million cycles
(i.e., < 134000 cycles/signature)
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The Bos-Coster algorithm

» Computation of Q = >} s; P
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The Bos-Coster algorithm

v

Computation of Q@ = > s; P
Idea: Assume s; > s > --- > s,,. Recursively compute
Q= (s1—52)PL +52(P1+ P) +s3P3---+ s, P,

Each step requires the two largest scalars, one scalar subtraction and
one point addition

v

v

v

Each step “eliminates” expected log n scalar bits
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The Bos-Coster algorithm

» Computation of Q = Y7 s; P,
> Idea: Assume s; > s > --- > s,,. Recursively compute
Q= (s1—52)PL +52(P1+ P) +s3P3---+ s, P,

» Each step requires the two largest scalars, one scalar subtraction and
one point addition

» Each step “eliminates” expected log n scalar bits

» Requires fast access to the two largest scalars: put scalars into a
heap

» Crucial for good performance: fast heap implementation
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A fast heap

» Typical heap root replacement (pop operation): start at the root,
swap down until at the right position
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A fast heap

» Typical heap root replacement (pop operation): start at the root,
swap down until at the right position

» Floyd's heap: swap down to the bottom, swap up for a until at the
right position, advantages:

» Each swap-down step needs only one comparison (instead of two)
» Swap-down loop is more friendly to branch predictors
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A fast heap

» Typical heap root replacement (pop operation): start at the root,
swap down until at the right position

» Floyd's heap: swap down to the bottom, swap up for a until at the
right position, advantages:
» Each swap-down step needs only one comparison (instead of two)
» Swap-down loop is more friendly to branch predictors

» Only support odd heap size: no need to check whether both child
nodes exist
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The Bos-Coster algorithm

» Computation of Q = > s; P;

> Idea: Assume s; > s > -+ > s,,. Recursively compute
Q= (51 —52)P1+ s2(P1 + P2) +83P3-- -+ 5, P,

» Each step requires the two largest scalars, one scalar subtraction and
one point addition

» Each step “eliminates” expected log n scalar bits

» Requires fast access to the two largest scalars: put scalars into a
heap

» Crucial for good performance: fast heap implementation
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The Bos-Coster algorithm

Computation of @ = >7 s; P;

> Idea: Assume s; > s > -+ > s,,. Recursively compute

Q= (51 —52)P1+ s2(P1 + P2) +83P3-- -+ 5, P,
Each step requires the two largest scalars, one scalar subtraction and
one point addition

Each step “eliminates” expected log n scalar bits

Requires fast access to the two largest scalars: put scalars into a
heap

» Crucial for good performance: fast heap implementation

Further optimization: Start with heap without the z; until largest
scalar has < 128 bits

Then: extend heap with the z;
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The Bos-Coster algorithm

Computation of @ = >7 s; P;

> Idea: Assume s; > s > -+ > s,,. Recursively compute

Q= (51 —52)P1+ s2(P1 + P2) +83P3-- -+ 5, P,
Each step requires the two largest scalars, one scalar subtraction and
one point addition

Each step “eliminates” expected log n scalar bits

Requires fast access to the two largest scalars: put scalars into a
heap

» Crucial for good performance: fast heap implementation

Further optimization: Start with heap without the z; until largest
scalar has < 128 bits

» Then: extend heap with the z;

Optimize the heap on the assembly level
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Results

vV v.v. v v Y

New fast and secure signature scheme

(Slow) C and Python reference implementations

Fast AMD64 assembly implementations

Also new speed records for Curve25519 ECDH

All software in the public domain and included in eBATS

All reported benchmarks (except batch verification) are eBATS
benchmarks

» All reported benchmarks had TurboBoost switched off
» Software to be included in the NaCl library

http://ed25519.cr.yp.to/
http://nacl.cr.yp.to/
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Even more results

» Fast implementations of Ed25519 (and more) for NEON
> 2172 signatures/second on an 800-MHz Cortex-A8

» 1230 verifications/second
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Even more results

Fast implementations of Ed25519 (and more) for NEON
2172 signatures/second on an 800-MHz Cortex-A8

1230 verifications/second

vV v v v

1517 computations of a shared secret key (DH)
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Even more results

Fast implementations of Ed25519 (and more) for NEON

2172 signatures/second on an 800-MHz Cortex-A8

1230 verifications/second

1517 computations of a shared secret key (DH)

7.9 cycles/byte for authenticated encryption (Salsa20/Poly1305)

vV v v v Y
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