Post-quantum cryptography

Peter Schwabe
Radboud University, The Netherlands

WMine €

c[.
PN,
[
{/Crre"'

December 3, 2015

Santacrypt 2015, Prague, Czech Republic

Crypto in TLS

TS ECOM ECOSA WITH_NULL SHA
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA2!

TLS_SRP_SHA WITH AES_128 CBC_SHA TLS_ECOH_RSA_WITH_AES_256_CBC_SHA384
. ECON ECDsA W AES 128 GCU ShAzse LS ECDHE ECDSA WITH AES 126, CAC SHA, TLS £COME oA WITH 30ES EDE cBc. SHA TLS ECDHEPSK_WITH_AES_128_CBC_SHA
RSB v n DHE_RSA_ WITH AES_128 GCM_SHA256 - PSK_WITH AES 128 (
TLS_ECDH_RSA WITH AES 128 CBC_SHA256 TLS_ECDHE_ECDSA_WITH_NUI TLS_DHE_DSS_WITH AES_256_GCM_SHA384 TLS_SRP_SHA_WITH AES_256_CBC_SHA
TUS_SRP_SHA_RSA_WITH_3DES_EDE_CBC, "% DHE DSS_WITH CAMELLIA 256 CBC SHA TLS ECDH_ECGSA WITH_AES_128_CBC_SHA
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA TLS_PSK_WITH_AES_128 cscéwxzss L, ‘;"2 - n_WITH AzESe 128 CBC_SHA256 715 DN anon WITH_CAMELLIA_128_CBC_SHA256
TLS_DH_DSS_WITH AES 128 GCM_SHA25¢
TLS_SRP_SHA_RSA_WITH AES255,CBC st TLS B0 RS W L oW, Pok W AES, 236, Srbgipanon WiTH.AES RS TLS _ECDHE _PSK_ WITH_3DES_EDE_CBC_SHA
o cue g LS O anon WITH CAMELUA 128 COCSHA |~ s o s s e ECOH _ECDSA WITH_AES_256.CBC_SHA3S4
TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA25¢ A TLS, DH_anon, WITH_AES, 128_GCM SHASe
TLS_PSK WITH_RC4 128 SHA TLS NTRU NSS WITH AES 256 CBC_SHA
TLS DH_anon T CAMELLIA 256 CBC SiiA 5 RSA PSK Wi
TLS_DHE_DSS_WITH AES_256_CBC_SHA2!

TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256
TLS_DH_DSS_WITH_CAMELLIA 256_CBC_SHA
TLS_ECDHE_PSK WITH_AES_256 CBC SHA

TLS_DHE_DSS_WITH_SEED_CBC_SHA TLS_RSA_WITH_HC_128_CBC_SHA
L& ECB ECOSA WITH 3625 EDE COC._SHA LS o DS WA 128.Coc snazss
TLS_PSK WITH NULL SHA256 TLS_NTRU_RSA WITH_AES 128 CBC < DHE_PSK WITH_AES_128_CBC_SHA256
LS. DH_DSS WITH CAMELLIA_126.CBC.SHA L5 RS, EXPORTL024_WITH ACh 56, MDS TLS_DH_RSA_WITH_CAMELLIA 128_CBC_SHA256
TLS_DH_DSS, WITH_AES,_128_CBC. 5Ha25TLS_DHE RSA WITH_CAMELLIA_128_CBC_SHA
‘TCS_ECOH_RSA_WITH_AES 128 GCM_SHAZ56 TLS_RSA WITH CAMELLIA 128 CBC SHA TLS_KRBS_EXPORT_WITH RC4_40_MDS
TUS_DHE_DSS WITH CAVELLIA. 128 CBC srase TLS Rsh WITH Aes 236 Coc

TLS_PSK_WITH NULL SHA384
H
SK WITA AES 256 CBC_SHA

i

8
TLS_RSA_EXPORT1024_WITH RC2_56_MDS.

SHA TLS_DHE_PSK WITH RC4 128 S}
A Sk e coc . “%HWWEE e TSR B
'TLS RSA WITH_NULL SHA256 LS _DHE DSS EXPORT WITH_DES40_C CEC SHA
LS ECOH_RSA WITH A€ 358 GCM SNASBATLS . RSAWITH AFS 175, CBC-SHA 55L_FORTEZZA_KEA WITH RC4_128_SHA
AR oxecrc

y
LLAES, 256?(55% saHs S s g{gﬂc 75 EXPORT_WITH_DES40_CBC_SHA (S Or DL WiTR AFS_256_CBc. smxnf BDT\S?% %r%%s"zsstcsc SHA256
LS Or-RSA I, CAMELLI128-COC SHA 115 01 s Som- i bt i ST R TGR W0Rce a0 oS MTRURSA MITIRCA 128 5 i S s 3o, o cac_sin
TLS_RSA_WITH_DES CBC SMA YLS DNE DSS W\TH DES - SHA SSL_CK_DES_64_CBC_WITH_MDS

YI.S NULL WIYN NULLC NUCL TLS_KRBS_WITH_ NCO 128 MDS KLRCA 64 WITH MDS TLS KRS, WWN EDES £oE - CoC.| w05 TLS DHE RSA WITH / AES\ZS 3_CBC_SHA256
S_RSA_WITH_3DES_EDE_CBC_SHA “TLS_DH_L DSs W\TM DES CBC_SHA »_DH_RSA_EXPORT_WITH_DES40_CBC SFi

“TLS_KRBS_WITH_IDEA_CBC_MD:
RS ReA WITH FORTEZZA GO SHA | - TLS_O.DSS.MWITH_AES 256_GCM swoos
s owe 05 wiTH 3055 £DE CBC SR T o ns W 30E5 £0E coc S LS D R W A 120 GO stzse
e D anan EXPORT WITH RC4 40 48 110 ghs Wi 2 170 o R it oes SRR Frs i B coc sun
Tt 05D TLS KBS WITH.RC4 128 SHA TLS D1 RS WITH AES 256 CBC_SHA 11 s ExpoRT WITH RG4S, TLS.OHE PSKCWITH Ao 175 CoC 5
s one SR G S DHE RSA WITH DES CC SHA o anan Wk CAMELA 256.CBC. SWAZ56
TLS DH RSA WITH_AES 128 CBC_SHA™
DH_anon WITH_AES 128 CBC S AT TLS_KRB5_WITH_DES_ CBC, SHA TLS ASA PSKWITH_3DES EDE cBC shin
15 R P T AES 128 GO S35 115 Knms EXPORT WHTH, KCZ CoC 40 oS 5_OH_anon WITK AES 256.CBC SHA S Wi SoEs FOF GoC 5
s D1 oss wms nEE TS S Py "
TUS ECOME RSA WITH RCa 120 swA TL5-DHE DSS WITHAC 120 oA SA_WITH_AES_126_CBC_SHAZ56

X s TS T RSAWITH CAvELLA 256 CBC. 5HA SSL_RSA_FIPS) ww "soes.eoe coc.sha
TLS_DHE_DSS WITH AES 128 CBC_SHA TUS_RSA_PSK_WITH_AES_128_CBC SH
RS 7oA i i 128 coc s

LS DHDSSWITH AES. 256 CBC SHA236 TRV NSSWITH AES 125 COC_SHA LS NTRU_NSS_WITH_RC4_128_SHA.
TLS_DHE RSA WITH CAMELLIA 256 COC S _DHE_DSS WITH AES_256_CBC_SHA
TLS_ECDHE_ECDSA WITH_AES_256_GCM SHA3GH TR0 Re With 3DES EDE cac sHA TLS_NTRU_NSS,WITH, Sa2s BE £k

TLS_SRP_SHA_DSS WITH_3DES_EDE CEC_SHA TS BRE PSR it AL T2 KM SHAZse

1A25¢

A ROA WITH AES 128 CBC. SHA
TLS DH RSAWITH 4TS 376 CB.
TLS_RSA psk WiTH M 256

x
TS PSK WITH AES . 128.GoM Sikzss
“TLS_DHE_RSA_WITH_SEED CBC
s, cunnsA WITH AES 128 CBC SHA256
TLS_DH_RSAWITH CAMELLIA 256, CBC SHA "TUS_ECDH_ECDSA WITH_RCA_128 SHA
uLL S LS RSA PSK WITH_AES 128 CBC SHA
£ PSKTUITH ABs 126 coc sH;\zss“S-D"'“'SSJ”TH'SEEE"':BC'SHA
TLS_DHE_PSK_WITH_IDES_EDE_CBC_SHA TLS_RSA_WITH_AES_256_GCM _¢ sHAzsa TLS_DHE_RSA_WITH_AES_256_CBC_SHA H RC4 178 SHA
TLS_SRP_SHA DSS WITH AES 256 CBC_SHA LS DHE PSK WITH AES 256 CAc iia OO RSA WITH_RC4 126 SHA . OHE RSAWITH_CAMELLLA_126_CBC_SHA2S6
e TLS_DH_DSS_WITH_CAMELLIA 256 CBC S TS RS T A 128 G S_ECDH_ECDSA_WITH_AES_126_CBC_SHA256
DN Ebsa W Soes.Eoe cac_sHA
DHE P IITH RCa 128 SHA LS RSA EXPORTION WITH_RC_56_SHA TLE ECDHE_RSA WITHLAES. 236_CBC. SHA264
TLS DM 0SS WITH_CAMELUA-198. CBC 1AD SO non T AES 256 oM. SWASB8 1 ol BTRYReA WIT €S 226 coc cha \ WITH_AES_256_CBC
TLS ECOHE RSA WITH AES 256 GCM sHa3gd LS DH RSA WITH SEED cBC o L% Diy RS T CAECLA 256, CBC SHAZSS TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
LS ECOH RSAWITH AFS 126 CBC SHA LS ECOHE | Bk T UL sHAzBa RN EISRESY g m econe psa vt ses 120 coc sia
TLS_ECDHE_PSK_WITH N TLS_PSK_WITH_AES_256_GCM_SHA384 ECDH_RSA_WITH_AES_256_CBC_SHA
Ls_ECOH_ECDSA WITH AES 256 GCM SHA384 “5 RSA_WITH_CAMELLIA s _CBC_SHA256 TLS_ECDHE_RSA_WITH, AES 256.CBC_SHA
TLS SRP_SHA DSS WITH AES 128 CBC_SHA TLS_ECDH_RSA WITH 3DES EDE CBC SHA
 ECDH_arion_ WITH AES_256_CBC_SHA ~TLS_DHE_PSK WITH_AES 256 CBC_SHA384

TLS ECDH anon WITH AES 128 CBC_SHA
TLS ECDHE PSK WITH NULL SHA256

TUS_RSA_PSK WITH AES 256 CBC SHA384
15 oS- ECO anor Wit

TLS ECDHE RSA WITH AES 128 GCM SHA256

Lots of choices to make. ..

» Some primitives are intentionally cryptographically weak (EXPORT)

Lots of choices to make. ..

» Some primitives are intentionally cryptographically weak (EXPORT)

» Some primitives are unintentionally cryptographically weak (RC4,
MD5)

Lots of choices to make. ..

» Some primitives are intentionally cryptographically weak (EXPORT)

» Some primitives are unintentionally cryptographically weak (RC4,
MD5)

» Some primitives are prone to implementation attacks (AES-CBC)

Lots of choices to make. ..

v

Some primitives are intentionally cryptographically weak (EXPORT)

v

Some primitives are unintentionally cryptographically weak (RC4,
MD5)

Some primitives are prone to implementation attacks (AES-CBC)

v

v

Some primitives need very high-quality randomness ((EC-)DSA)

Lots of choices to make. ..

» Some primitives are intentionally cryptographically weak (EXPORT)

» Some primitives are unintentionally cryptographically weak (RC4,
MD5)

» Some primitives are prone to implementation attacks (AES-CBC)
» Some primitives need very high-quality randomness ((EC-)DSA)

» What parameters are “secure enough’? 1024-bit RSA? 1024-bit
DSA?

Lots of choices to make. ..

» Some primitives are intentionally cryptographically weak (EXPORT)

» Some primitives are unintentionally cryptographically weak (RC4,
MD5)

» Some primitives are prone to implementation attacks (AES-CBC)
» Some primitives need very high-quality randomness ((EC-)DSA)

» What parameters are “secure enough’? 1024-bit RSA? 1024-bit
DSA?

Very hard choices, easy to screw up!

Crypto in TLS that survives a “quantum attack”

[this slide intentionally left empty]

Quantum attacks

Definition
A quantum attack is an attack that is (partially) running on a quantum
computer.

Quantum attacks

Definition
A quantum attack is an attack that is (partially) running on a quantum
computer.

Should we be scared?
Largely accepted: A sufficiently large quantum computer does not exist
(no, not even with the NSA, also not with DWAVE).

Quantum attacks

Definition
A quantum attack is an attack that is (partially) running on a quantum
computer.

Should we be scared?

Largely accepted: A sufficiently large quantum computer does not exist
(no, not even with the NSA, also not with DWAVE).

Should we be scared (part 11)?

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it'll happen sometime. | used to think it was 50. Now I'm
thinking like it’s 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers

NSA's data center in Bluffdale

NSA's data center in Bluffdale

Estimated numbers
» Electricity consumption: 65 MW
» Energy bill: US$40, 000, 000/year
» Storage: 3-12EB

What will really be broken?

» RSA (encryption and signatures): dead (Shor)
» DSA, ElGamal, Schnorr etc.: dead (Shor)
» ECC (DH, ElGamal, signatures): dead (Shor)

What will really be broken?

RSA (encryption and signatures): dead (Shor)
DSA, ElGamal, Schnorr etc.: dead (Shor)
ECC (DH, ElGamal, signatures): dead (Shor)

Symmetric encryption: ./ -time for single-target key search
(Grover)

vV v v v

What will really be broken?

RSA (encryption and signatures): dead (Shor)
DSA, ElGamal, Schnorr etc.: dead (Shor)
ECC (DH, ElGamal, signatures): dead (Shor)

Symmetric encryption: ./ -time for single-target key search
(Grover)

» Hashes: /—-time for single-target (second) preimages (Grover)

vV v v v

» Hashes: . /—-time for collision search (same as classicall)

PQCRYPTO

» Project funded by EU in Horizon 2020.
» Starting date 1 March 2015, runs for 3 years.

» 11 partners from academia and industry, TU/e is coordinator:

DTU Danmarks Tekniske Universitet

Eechnischs
U e i iversiait -
I - eindheven BUNDES 4 DRUCKEREI -—

INVENTEURS DU MONDE NUMERIQUE r \L

50 TECHNISCHE
UNIVERSITAT

DARMSTADT

PQCRYPTO — aims and workpackages

Aims of PQCRYPTO

» Design a portfolio of high-security post-quantum public-key systems

» Provide efficient implementations of high-security post-quantum
cryptography for a broad spectrum of real-world applications.

PQCRYPTO — aims and workpackages

Aims of PQCRYPTO

» Design a portfolio of high-security post-quantum public-key systems

» Provide efficient implementations of high-security post-quantum
cryptography for a broad spectrum of real-world applications.

Technical work packages

» WP1: Post-quantum cryptography for small devices
Leader: Tim Giineysu, co-leader: Peter Schwabe

» WP2: Post-quantum cryptography for the Internet
Leader: Daniel J. Bernstein, co-leader: Bart Preneel

» WP3: Post-quantum cryptography for the cloud
Leader: Nicolas Sendrier, co-leader: Lars Knudsen

PQCRYPTO — aims and workpackages

Aims of PQCRYPTO

» Design a portfolio of high-security post-quantum public-key systems

» Provide efficient implementations of high-security post-quantum
cryptography for a broad spectrum of real-world applications.

Non-technical work packages

» WP4: Management and dissemination
Leader: Tanja Lange

» WP5: Standardization
Leader: Walter Fumy

Ring-Learning-with-errors (RLWE)

Let Ry = Z,[X]/(X™ + 1)

Let x be an error distribution on R,
Let s € Ry be secret

Attacker is given pairs (a,as + e) with

vV Yy Vv Yy

> a uniformly random from R,
» e sampled from x

Task for the attacker: find s

v

10

Ring-Learning-with-errors (RLWE)

Let Ry = Z,[X]/(X™ + 1)

Let x be an error distribution on R,
Let s € Ry be secret

Attacker is given pairs (a,as + e) with

vV Yy Vv Yy

> a uniformly random from R,
» e sampled from x

Task for the attacker: find s

Common choice for x: discrete Gaussian

v

v

10

Ring-Learning-with-errors (RLWE)

vV Yy VY

Let Ry = Z,[X]/(X™ + 1)

Let x be an error distribution on R,
Let s € Ry be secret

Attacker is given pairs (a,as + e) with

> a uniformly random from R,
» e sampled from x

» Task for the attacker: find s

Common choice for x: discrete Gaussian

Common “optimization” for protocols: fix a (more later)

10

Peikert's RLWE-based KEM

Parameters: ¢, n, x
KEM.Setup() :
ad Ry

Alice (server)

Bob (client)

KEM.Gen(a) :
s,e <& x

b
b+as +e =

u,v

p<s—rec(2us, v')

KEM.Decaps(s, (u,v')) : +—

KEM.Encaps(a,b) :

S/, e/’ e <i X
u<as’ + €
vbs' +e”
v & dbl(v)

/

vV = <\7>2

M I__;l 2

Idea: us = ass’ +e's~ass’ +es' +e’ =v
"

Use v’ to resolve the problems from “~" (at least most of the time)

BCNS key exchange

» Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:

Phrase the KEM as key exchange

Instantiate with concrete parameters

Integrate with OpenSSL — post-quantum TLS key exchange
Also: combined ECDH+RLWE key exchange

v

vvyy

12

BCNS key exchange

» Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:

Phrase the KEM as key exchange

> |nstantiate with concrete parameters

> Integrate with OpenSSL — post-quantum TLS key exchange
> Also: combined ECDH-+RLWE key exchange

» Parameters chosen by BCNS:
Rq = Zo[X]/(X™ +1)

v

v

» n = 1024
»g=2% -1

> X:DZ,U

> 0 =8v2mr =~ 3.192

12

BCNS key exchange

» Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:

Phrase the KEM as key exchange

> |nstantiate with concrete parameters

> Integrate with OpenSSL — post-quantum TLS key exchange
> Also: combined ECDH-+RLWE key exchange

» Parameters chosen by BCNS:
Rq = Zo[X]/(X™ +1)

v

v

> n = 1024
»g=2% -1

> X:DZ,U

> 0 =8v2mr =~ 3.192

» Claimed security level: 128 bits pre-quantum

12

A new hope

» Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

13

A new hope

» Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

» Drastically reduce ¢ to 12289 < 24

13

A new hope

v

Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

Drastically reduce ¢ to 12289 < 214

Analysis of post-quantum security

v

v

13

A new hope

Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

Drastically reduce ¢ to 12289 < 214

Analysis of post-quantum security
Use centered binomial noise v (Zjil b, — bj for b;,b; € {0,1})

v

v

v

v

13

A new hope

v

Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

» Drastically reduce ¢ to 12289 < 24

» Analysis of post-quantum security

> Use centered binomial noise 1, (Zjil b, — bj for b;,b; € {0,1})
» Choose a fresh parameter a for every protocol run

13

A new hope

v

Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

» Drastically reduce ¢ to 12289 < 24

» Analysis of post-quantum security

> Use centered binomial noise 1, (Zjil b, — bj for b;,b; € {0,1})
» Choose a fresh parameter a for every protocol run

>

Encode polynomials in NTT domain

13

A new

vV v.v v v .Y

hope

Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

Drastically reduce ¢ to 12289 < 214

Analysis of post-quantum security

Use centered binomial noise v (Zjil b, — bj for b;,b; € {0,1})
Choose a fresh parameter a for every protocol run

Encode polynomials in NTT domain

Provide C reference and fast AVX2 implementation

13

A new hope — protocol

Parameters: g = 12289 < 2™ n = 1024
Error distribution: 112

Alice (server)
seed & {0,1}2%
a«—Parse(SHAKE-128(seed))

k<Rec(v', 1)
j1~SHA3-256(k)

$
s,e < g
(b,seed)
b«as + e —
u,r
v'—us ()

Bob (client)

s e e &gy
a«Parse(SHAKE-128(seed))
u«as’ + €'

v«bs' +e”

r < HelpRec(v)
k<Rec(v,r)
u—SHA3-256(k)

14

Security analysis

» Consider RLWE instance as LWE instance
» Attack using BKZ

» BKZ uses SVP oracle in smaller dimension
>

Consider only the cost of one call to that oracle (“core-SVP
hardness”)

15

Security analysis

» Consider RLWE instance as LWE instance
» Attack using BKZ

» BKZ uses SVP oracle in smaller dimension
>

Consider only the cost of one call to that oracle (“core-SVP
hardness”)

v

Consider quantum sieve as SVP oracle
. 20.26811
. 204207571,

> Best-known quantum cost (BKC)
> Best-plausible quantum cost (BPC)

15

Security analysis

vV v v v

Consider RLWE instance as LWE instance
Attack using BKZ
BKZ uses SVP oracle in smaller dimension

Consider only the cost of one call to that oracle (“core-SVP
hardness”)

Consider quantum sieve as SVP oracle

. 20.268n

. 204207571,

> Best-known quantum cost (BKC)
> Best-plausible quantum cost (BPC)

Primal attack: unique-SVP from LWE; solve using BKZ

15

Security analysis

vV v v v

Consider RLWE instance as LWE instance
Attack using BKZ
BKZ uses SVP oracle in smaller dimension

Consider only the cost of one call to that oracle (“core-SVP
hardness”)

Consider quantum sieve as SVP oracle

. 20.26811

. 204207577,

> Best-known quantum cost (BKC)
> Best-plausible quantum cost (BPC)

Primal attack: unique-SVP from LWE; solve using BKZ
Dual attack: find short vector in dual lattice

Length determines complexity and attacker’s advantage €

15

Post-quantum security

BCNS proposal

| Attack | BKZ block dim. b log,(BKC) log,(BPC) |
Primal 294 78 61
Dual (e = 27128) 230 62 48
Dual (e = 1/2) 331 89 69

A new hope

| Attack | BKZ block dim. b log,(BKC) log,(BPC) |
Primal 886 237 183
Dual (e = 27128) 658 176 136
Dual (e = 1/2) 1380 370 286

16

Against all authority

Remember the optimization of fixed a?
What if a is backdoored?
Parameter-generating authority can break key exchange

vV v v v

“Solution”: Nothing-up-my-sleeves (involves endless dicussion!)

17

Against all authority

Remember the optimization of fixed a?
What if a is backdoored?
Parameter-generating authority can break key exchange

“Solution”: Nothing-up-my-sleeves (involves endless dicussion!)

vV v v v .Yy

Even without backdoor:

» Perform massive precomputation based on a
Use precomputation to break all key exchanges
Infeasible today, but who knows. ..

Attack in the spirit of Logjam

vvYyy

Against all authority

vV v v v .Yy

v

v

Remember the optimization of fixed a?

What if a is backdoored?

Parameter-generating authority can break key exchange
“Solution”: Nothing-up-my-sleeves (involves endless dicussion!)
Even without backdoor:

» Perform massive precomputation based on a

» Use precomputation to break all key exchanges
> Infeasible today, but who knows. ..

» Attack in the spirit of Logjam

Solution in Newhope: Choose a fresh a every time
Use SHAKE-128 to expand a 32-byte seed

17

Against all authority

vV v v v .Yy

Remember the optimization of fixed a?

What if a is backdoored?

Parameter-generating authority can break key exchange
“Solution”: Nothing-up-my-sleeves (involves endless dicussion!)
Even without backdoor:

» Perform massive precomputation based on a

» Use precomputation to break all key exchanges
> Infeasible today, but who knows. ..

» Attack in the spirit of Logjam

Solution in Newhope: Choose a fresh a every time
Use SHAKE-128 to expand a 32-byte seed
Server can cache a for some time (e.g., 1h)

17

Implementation

> Very fast multiplication in R,: use NTT
» Define message format:

» Send polynomials in NTT domain
» Eliminate half of the required NTTs

18

The protocol revisited

Parameters: g = 12289 < 2 n = 1024
Error distribution: s

Alice (server)
seed & {0,...,255}%
Parse(SHAKE-128(seed))

$
s, € < g
mg=encodeA(b,seed)

b+aoNTT(s) + NTT(e) oren
ytes

(u, r)<decodeB(my) Jrv=encodeBlur)
2048 Bytes

V«NTT !(uos)
k<Rec(v', 1)
j14~SHA3-256(k)

Bob (client)

(b, seed)<—decodeA(my)
a+Parse(SHAKE-128(seed))
t<NTT(s)

u<aot+ NTT(e)
veNTT Y (bot 4+ NTT(e"))
r & HelpRec(v)

k<+Rec(v,r)
j14~SHA3-256(k)

18

Implementation

> Very fast multiplication in R,: use NTT
» Define message format:

>

>

Send polynomials in NTT domain
Eliminate half of the required NTTs

» C reference implementation:

>

>
>
>

Arithmetic on 16-bit and 32-bit integers
No division (/) or modulo (%) operator
Use Montgomery reductions inside NTT
Use ChaCha20 for noise sampling

18

Implementation

v

v

v

v

Very fast multiplication in R,: use NTT

Define message format:

>

>

Send polynomials in NTT domain
Eliminate half of the required NTTs

C reference implementation:

>

>
>
>

Arithmetic on 16-bit and 32-bit integers
No division (/) or modulo (%) operator
Use Montgomery reductions inside NTT
Use ChaCha20 for noise sampling

AVX2 implementation:

Yy VvV VY

Speed up NTT using vectorized double arithmetic
Use AES-256 for noise sampling
Use AVX2 for centered binomial
Use AVX2 for error reconciliation

18

Implementation

v

v

v

v

Very fast multiplication in R,: use NTT
Define message format:

» Send polynomials in NTT domain

» Eliminate half of the required NTTs
C reference implementation:

» Arithmetic on 16-bit and 32-bit integers
> No division (/) or modulo (%) operator
> Use Montgomery reductions inside NTT
» Use ChaCha20 for noise sampling

AVX2 implementation:

Speed up NTT using vectorized double arithmetic
Use AES-256 for noise sampling
Use AVX2 for centered binomial
Use AVX2 for error reconciliation

Yy VvV VY

Microcontroller implementation (ongoing):

» Cortex-M0O
» Cortex-M4

18

Performance

BCNS | Ours (C ref) | Ours (AVX2)

Key generation (server) | a~ 2477958 265968 107534
(265 933) (107 385)

Key gen ~ 3995977 380676 126 236
+ shared key (client) (380936) (126 336)
Shared key (server) ~ 481937 82312 22104

» Benchmarks on one core of an Intel i7-4770K (Haswell)

» BCNS benchmarks are derived from openssl speed

» Numbers in parantheses are average; all other numbers are median.

» Includes around 57 000 cycles for generation of a on each side

SPHINCS - stateless,
practical, hash-based,
incredibly nice,
collision-resilient
signatures

Daniel J. Bernstein

Daira Hopwood

Andreas Hiilsing

Tanja Lange

Ruben Niederhagen
Louiza Papachristodoulou
Michael Schneider

Peter Schwabe

Zooko Wilcox-O'Hearn

Hash-based signatures

v

Security relies only on secure hash function

> Post-quantum
» Reliable security estimates

Fast (e.g., XMSS by Buchmann, Dahmen, Hiilsing, 2011)
Reasonably small keys, small signatures
Stateful

v

v

v

i1
AR CATION TREE MITH N = 3.

21

Merkle Trees

(o) (o) (o) (o) (i) (i) (o) ()

» Merkle, 1979: Leverage one-time signatures to multiple messages
» Binary hash tree on top of OTS public keys

Merkle Trees

| Auth for i = 001

() (Koor) (Fowe) (orr) (Xaw) () (o) (o)

» Use OTS keys sequentially
» SIG = (i,sign(M, X;),Y;, Auth)

22

About the state

» Used for security:
Stores index i = Prevents using one-time keys twice.

» Used for efficiency:

Stores intermediate results for fast Auth computation.

23

About the state

» Used for security:
Stores index i = Prevents using one-time keys twice.

» Used for efficiency:

Stores intermediate results for fast Auth computation.

» Problems:

Load-balancing
Multi-threading
Backups
Virtual-machine images

v

vvy vy

23

About the state

» Used for security:
Stores index i = Prevents using one-time keys twice.

» Used for efficiency:
Stores intermediate results for fast Auth computation.
» Problems:
Load-balancing
Multi-threading
Backups
Virtual-machine images

v

vvy vy

» This is not even compatible with the definition of cryptographic
signatures

» “Huge foot-cannon” (Adam Langley, Google)

23

Stateless hash-based signatures

Goldreich's approach: Security parameter A = 128
Use binary tree as in Merkle, but...

25

Stateless hash-based signatures

Goldreich's approach: Security parameter A = 128
Use binary tree as in Merkle, but...
» For security

» pick index ¢ at random;
> requires huge tree to avoid index collisions
(e.g., height h = 2\ = 256).

25

Stateless hash-based signatures

Goldreich's approach: Security parameter A = 128
Use binary tree as in Merkle, but...
» For security
» pick index ¢ at random;
> requires huge tree to avoid index collisions
(e.g., height h = 2\ = 256).
» For efficiency:
> use binary certification tree of OTS;
> all OTS secret keys are generated
pseudorandomly.

25

It works, but signatures are painfully long

» 0.6 MB for Goldreich signature using short-public-key Winternitz-16
one-time signatures.

» Would dominate traffic in typical applications, and add user-visible
latency on typical network connections.

26

It works, but signatures are painfully long

» 0.6 MB for Goldreich signature using short-public-key Winternitz-16
one-time signatures.

» Would dominate traffic in typical applications, and add user-visible
latency on typical network connections.
» Example:
» Debian operating system is designed for frequent upgrades.
At least one new signature for each upgrade.
Typical upgrade: one package or just a few packages.
1.2 MB average package size.
0.08 MB median package size.

vVYyVvVYyYy

It works, but signatures are painfully long

» 0.6 MB for Goldreich signature using short-public-key Winternitz-16
one-time signatures.
» Would dominate traffic in typical applications, and add user-visible
latency on typical network connections.
» Example:
» Debian operating system is designed for frequent upgrades.
> At least one new signature for each upgrade.
» Typical upgrade: one package or just a few packages.
» 1.2 MB average package size.
> 0.08 MB median package size.
» Example:

» HTTPS typically sends multiple signatures per page.
> 1.8 MB average web page in Alexa Top 1000000.

The SPHINCS approach

vV v v v

Use a “hyper-tree” of total height h
Parameter d > 1, such that d | h
Each (Merkle) tree has height h/d
(h/d)-ary certification tree

SN
SN

h/d

IogtI

«%}95_..5

27

The SPHINCS approach

» Pick index (pseudo-)randomly

» Messages signed with few-time signature
scheme

» Significantly reduce total tree height

» Require
Pr[r-times Coll] - Pr[Forgery after r
signatures] = negl(n)

SN
SN

h/d

IogtI

«%}95_..5

27

The SPHINCS approach

vV v v v

Designed to be collision-resilient
Trees: MSS-SPR trees

OTS: WOTSH

FTS: HORST (HORS with tree)

SN
SN

h/d

IogtI

“QNE

27

SPHINCS-256

» Designed for 128 bits of post-quantum security
(yes, we did the analysis!)

> 12 trees of height 5 each

28

SPHINCS-256

» Designed for 128 bits of post-quantum security
(yes, we did the analysis!)

12 trees of height 5 each

n = 256 bit hashes in WOTS and HORST

Winternitz paramter w = 16

HORST with 26 expanded-secret-key chunks (total: 2 MB)

vV v v v

28

SPHINCS-256

» Designed for 128 bits of post-quantum security
(yes, we did the analysis!)

12 trees of height 5 each

n = 256 bit hashes in WOTS and HORST

Winternitz paramter w = 16

HORST with 26 expanded-secret-key chunks (total: 2 MB)
m = 512 bit message hash (BLAKE-512)

ChaChal2 as PRG

vV vV v. v v Yy

28

Cost of SPHINCS-256 signing

» Three main componenents:
> PRG for HORST secret-key expansion to 2 MB
» Hashing in WOTS and HORS public-key generation:
F:{0,1}%% — {0,1}**°
> Hashing in trees (mainly HORST public-key):
H:{0,1}%'% — {0,1}*¢
» Overall: 451456 invocations of F, 91251 invocations of H

29

Cost of SPHINCS-256 signing

v

Three main componenents:
> PRG for HORST secret-key expansion to 2 MB
» Hashing in WOTS and HORS public-key generation:
F:{0,1}%% — {0,1}**°
> Hashing in trees (mainly HORST public-key):
H:{0,1}%'% — {0,1}*¢
Overall: 451456 invocations of F', 91251 invocations of H
Full hash function would be overkill for F' and H
Construction in SPHINCS-256:
> F(My) = Chopysg(m(M1]|C))
> H(Mi[|Mz2) = Chopyss(m(m(Mi]|C) @ (M:|[0%°)))

v

v

v

29

Cost of SPHINCS-256 signing

v

Three main componenents:
> PRG for HORST secret-key expansion to 2 MB
» Hashing in WOTS and HORS public-key generation:
F:{0,1}%% — {0,1}**°
> Hashing in trees (mainly HORST public-key):
H:{0,1}%'% — {0,1}*¢
Overall: 451456 invocations of F', 91251 invocations of H
Full hash function would be overkill for F' and H
Construction in SPHINCS-256:
> F(My) = Chopysg(m(M1]|C))
> H(M1||Mz) = Chopyse (m(m(Mi]|C) @ (M2][0%)))
Use fast ChaChal2 permutation for m
All building blocks (PRG, message hash, H, F') built from very
similar permutations

v

v

v

v

v

29

SPHINCS-256 speed and sizes

SPHINCS-256 sizes
» 0.041 MB signature (= 15x smaller than Goldreich!)
> 0.001 MB public key
» 0.001 MB private key

30

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

» 0.041 MB signature (= 15x smaller than Goldreich!)
> 0.001 MB public key
» 0.001 MB private key

High-speed implementation

> Target Intel Haswell with 256-bit AVX2 vector instructions
> Use 8x parallel hashing, vectorize on high level
» = 1.6 cycles/byte for H and F

30

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

» 0.041 MB signature (= 15x smaller than Goldreich!)
> 0.001 MB public key
» 0.001 MB private key

High-speed implementation

> Target Intel Haswell with 256-bit AVX2 vector instructions
> Use 8x parallel hashing, vectorize on high level
» = 1.6 cycles/byte for H and F

SPHINCS-256 speed
» Signing: < 52 Mio. Haswell cycles (> 200 sigs/sec, 4 Core, 3GHz)

» Verification: < 1.5 Mio. Haswell cycles

> Keygen: < 3.3 Mio. Haswell cycles

30

Resources online

PQCRYPTO project:

Newhope Paper:
Newhope Code

SPHINCS:

https

https
https

https

://pgcrypto.eu.org

://cryptojedi.org/papers/#newhope
://cryptojedi.org/crypto/#newhope

://sphincs.cr.yp.to/

31

https://pqcrypto.eu.org
https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/crypto/#newhope
https://sphincs.cr.yp.to/

