Post-quantum cryptography

Peter Schwabe
Radboud University, The Netherlands

WMine €

c[ .
PN,
[
{/Crre"'

December 3, 2015

Santacrypt 2015, Prague, Czech Republic



Crypto in TLS
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Lots of choices to make. ..

» Some primitives are intentionally cryptographically weak (EXPORT)

» Some primitives are unintentionally cryptographically weak (RC4,
MD5)

» Some primitives are prone to implementation attacks (AES-CBC)
» Some primitives need very high-quality randomness ((EC-)DSA)

» What parameters are “secure enough’? 1024-bit RSA? 1024-bit
DSA?

Very hard choices, easy to screw up!



Crypto in TLS that survives a “quantum attack”

[this slide intentionally left empty]
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Quantum attacks

Definition
A quantum attack is an attack that is (partially) running on a quantum
computer.

Should we be scared?

Largely accepted: A sufficiently large quantum computer does not exist
(no, not even with the NSA, also not with DWAVE).

Should we be scared (part 11)?

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it'll happen sometime. | used to think it was 50. Now I'm
thinking like it’s 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers



NSA's data center in Bluffdale




NSA's data center in Bluffdale

Estimated numbers
» Electricity consumption: 65 MW
» Energy bill: US$40, 000, 000/year
» Storage: 3-12EB
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What will really be broken?

RSA (encryption and signatures): dead (Shor)
DSA, ElGamal, Schnorr etc.: dead (Shor)
ECC (DH, ElGamal, signatures): dead (Shor)

Symmetric encryption: ./ -time for single-target key search
(Grover)

» Hashes:  /—-time for single-target (second) preimages (Grover)

vV v v v

» Hashes: . /—-time for collision search (same as classicall)



PQCRYPTO

» Project funded by EU in Horizon 2020.
» Starting date 1 March 2015, runs for 3 years.

» 11 partners from academia and industry, TU/e is coordinator:

DTU Danmarks Tekniske Universitet

Eechnischs
U e i iversiait -
I - eindheven BUNDES 4 DRUCKEREI -—

INVENTEURS DU MONDE NUMERIQUE r \L

50 TECHNISCHE
UNIVERSITAT

DARMSTADT
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Aims of PQCRYPTO

» Design a portfolio of high-security post-quantum public-key systems

» Provide efficient implementations of high-security post-quantum
cryptography for a broad spectrum of real-world applications.
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Aims of PQCRYPTO

» Design a portfolio of high-security post-quantum public-key systems

» Provide efficient implementations of high-security post-quantum
cryptography for a broad spectrum of real-world applications.

Technical work packages

» WP1: Post-quantum cryptography for small devices
Leader: Tim Giineysu, co-leader: Peter Schwabe

» WP2: Post-quantum cryptography for the Internet
Leader: Daniel J. Bernstein, co-leader: Bart Preneel

» WP3: Post-quantum cryptography for the cloud
Leader: Nicolas Sendrier, co-leader: Lars Knudsen



PQCRYPTO — aims and workpackages

Aims of PQCRYPTO

» Design a portfolio of high-security post-quantum public-key systems

» Provide efficient implementations of high-security post-quantum
cryptography for a broad spectrum of real-world applications.

Non-technical work packages

» WP4: Management and dissemination
Leader: Tanja Lange

» WP5: Standardization
Leader: Walter Fumy
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Ring-Learning-with-errors (RLWE)

vV Yy VY

Let Ry = Z,[X]/(X™ + 1)

Let x be an error distribution on R,
Let s € Ry be secret

Attacker is given pairs (a,as + e) with

> a uniformly random from R,
» e sampled from x

» Task for the attacker: find s

Common choice for x: discrete Gaussian

Common “optimization” for protocols: fix a (more later)

10



Peikert's RLWE-based KEM

Parameters: ¢, n, x
KEM.Setup() :
ad Ry

Alice (server)

Bob (client)

KEM.Gen(a) :
s,e <& x

b
b+as +e =

u,v

p<s—rec(2us, v')

KEM.Decaps(s, (u,v')) :  +—

KEM.Encaps(a,b) :

S/, e/’ e <i X
u<as’ + €
vbs' +e”
v & dbl(v)

/

vV = <\7>2

M I_\_;l 2

Idea: us = ass’ +e's~ass’ +es' +e’ =v
"

Use v’ to resolve the problems from “~" (at least most of the time)



BCNS key exchange

» Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:

Phrase the KEM as key exchange

Instantiate with concrete parameters

Integrate with OpenSSL — post-quantum TLS key exchange
Also: combined ECDH+RLWE key exchange

v

vvyy
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> |nstantiate with concrete parameters

> Integrate with OpenSSL — post-quantum TLS key exchange
> Also: combined ECDH-+RLWE key exchange

» Parameters chosen by BCNS:
Rq = Zo[X]/(X™ +1)
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BCNS key exchange

» Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:

Phrase the KEM as key exchange

> |nstantiate with concrete parameters

> Integrate with OpenSSL — post-quantum TLS key exchange
> Also: combined ECDH-+RLWE key exchange

» Parameters chosen by BCNS:
Rq = Zo[X]/(X™ +1)

v

v

> n = 1024
»g=2% -1

> X:DZ,U

> 0 =8v2mr =~ 3.192

» Claimed security level: 128 bits pre-quantum

12
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A new hope

v

Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

» Drastically reduce ¢ to 12289 < 24

» Analysis of post-quantum security

> Use centered binomial noise 1, (Zjil b, — bj for b;,b; € {0,1})
» Choose a fresh parameter a for every protocol run

>

Encode polynomials in NTT domain

13



A new

vV v.v v v .Y

hope

Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

Drastically reduce ¢ to 12289 < 214

Analysis of post-quantum security

Use centered binomial noise v (Zjil b, — bj for b;,b; € {0,1})
Choose a fresh parameter a for every protocol run

Encode polynomials in NTT domain

Provide C reference and fast AVX2 implementation

13



A new hope — protocol

Parameters: g = 12289 < 2™ n = 1024
Error distribution: 112

Alice (server)
seed & {0,1}2%
a«—Parse(SHAKE-128(seed))

k<Rec(v', 1)
j1~SHA3-256(k)

$
s,e < g
(b,seed)
b«as + e —
u,r
v'—us ()

Bob (client)

s e e &gy
a«Parse(SHAKE-128(seed))
u«as’ + €'

v«bs' +e”

r < HelpRec(v)
k<Rec(v,r)
u—SHA3-256(k)

14



Security analysis

» Consider RLWE instance as LWE instance
» Attack using BKZ

» BKZ uses SVP oracle in smaller dimension
>

Consider only the cost of one call to that oracle (“core-SVP
hardness”)
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Consider RLWE instance as LWE instance
Attack using BKZ
BKZ uses SVP oracle in smaller dimension

Consider only the cost of one call to that oracle (“core-SVP
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> Best-known quantum cost (BKC)
> Best-plausible quantum cost (BPC)

Primal attack: unique-SVP from LWE; solve using BKZ
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Security analysis

vV v v v

Consider RLWE instance as LWE instance
Attack using BKZ
BKZ uses SVP oracle in smaller dimension

Consider only the cost of one call to that oracle (“core-SVP
hardness”)

Consider quantum sieve as SVP oracle

. 20.26811

. 204207577,

> Best-known quantum cost (BKC)
> Best-plausible quantum cost (BPC)

Primal attack: unique-SVP from LWE; solve using BKZ
Dual attack: find short vector in dual lattice

Length determines complexity and attacker’s advantage €

15



Post-quantum security

BCNS proposal

| Attack | BKZ block dim. b log,(BKC) log,(BPC) |
Primal 294 78 61
Dual (e = 27128) 230 62 48
Dual (e = 1/2) 331 89 69

A new hope

| Attack | BKZ block dim. b log,(BKC) log,(BPC) |
Primal 886 237 183
Dual (e = 27128) 658 176 136
Dual (e = 1/2) 1380 370 286

16



Against all authority

Remember the optimization of fixed a?
What if a is backdoored?
Parameter-generating authority can break key exchange
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“Solution”: Nothing-up-my-sleeves (involves endless dicussion!)
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Remember the optimization of fixed a?

What if a is backdoored?

Parameter-generating authority can break key exchange
“Solution”: Nothing-up-my-sleeves (involves endless dicussion!)
Even without backdoor:

» Perform massive precomputation based on a

» Use precomputation to break all key exchanges
> Infeasible today, but who knows. ..

» Attack in the spirit of Logjam

Solution in Newhope: Choose a fresh a every time
Use SHAKE-128 to expand a 32-byte seed
Server can cache a for some time (e.g., 1h)

17



Implementation

> Very fast multiplication in R,: use NTT
» Define message format:

» Send polynomials in NTT domain
» Eliminate half of the required NTTs
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The protocol revisited

Parameters: g = 12289 < 2 n = 1024
Error distribution: s

Alice (server)
seed & {0,...,255}%
Parse(SHAKE-128(seed))

$
s, € < g
mg=encodeA(b,seed)

b+aoNTT(s) + NTT(e) oren
ytes

(u, r)<decodeB(my) Jrv=encodeBlur)
2048 Bytes

V«NTT !(uos)
k<Rec(v', 1)
j14~SHA3-256(k)

Bob (client)

(b, seed)<—decodeA(my)
a+Parse(SHAKE-128(seed))
t<NTT(s)

u<aot+ NTT(e)
veNTT Y (bot 4+ NTT(e"))
r & HelpRec(v)

k<+Rec(v,r)
j14~SHA3-256(k)

18



Implementation

> Very fast multiplication in R,: use NTT
» Define message format:

>

>

Send polynomials in NTT domain
Eliminate half of the required NTTs

» C reference implementation:

>

>
>
>

Arithmetic on 16-bit and 32-bit integers
No division (/) or modulo (%) operator
Use Montgomery reductions inside NTT
Use ChaCha20 for noise sampling
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Very fast multiplication in R,: use NTT

Define message format:

>

>

Send polynomials in NTT domain
Eliminate half of the required NTTs

C reference implementation:

>

>
>
>

Arithmetic on 16-bit and 32-bit integers
No division (/) or modulo (%) operator
Use Montgomery reductions inside NTT
Use ChaCha20 for noise sampling

AVX2 implementation:

Yy VvV VY

Speed up NTT using vectorized double arithmetic
Use AES-256 for noise sampling
Use AVX2 for centered binomial
Use AVX2 for error reconciliation
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Implementation
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Very fast multiplication in R,: use NTT
Define message format:

» Send polynomials in NTT domain

» Eliminate half of the required NTTs
C reference implementation:

» Arithmetic on 16-bit and 32-bit integers
> No division (/) or modulo (%) operator
> Use Montgomery reductions inside NTT
» Use ChaCha20 for noise sampling

AVX2 implementation:

Speed up NTT using vectorized double arithmetic
Use AES-256 for noise sampling
Use AVX2 for centered binomial
Use AVX2 for error reconciliation

Yy VvV VY

Microcontroller implementation (ongoing):

» Cortex-M0O
» Cortex-M4

18



Performance

BCNS | Ours (C ref) | Ours (AVX2)

Key generation (server) | a~ 2477958 265968 107534
(265 933) (107 385)

Key gen ~ 3995977 380676 126 236
+ shared key (client) (380936) (126 336)
Shared key (server) ~ 481937 82312 22104

» Benchmarks on one core of an Intel i7-4770K (Haswell)

» BCNS benchmarks are derived from openssl speed

» Numbers in parantheses are average; all other numbers are median.

» Includes around 57 000 cycles for generation of a on each side




SPHINCS - stateless,
practical, hash-based,
incredibly nice,
collision-resilient
signatures

Daniel J. Bernstein

Daira Hopwood

Andreas Hiilsing

Tanja Lange

Ruben Niederhagen
Louiza Papachristodoulou
Michael Schneider

Peter Schwabe

Zooko Wilcox-O'Hearn




Hash-based signatures

v

Security relies only on secure hash function

> Post-quantum
» Reliable security estimates

Fast (e.g., XMSS by Buchmann, Dahmen, Hiilsing, 2011)
Reasonably small keys, small signatures
Stateful

v

v

v

i1
AR CATION TREE MITH N = 3.

21



Merkle Trees

(o) (o) (o) (o) (i) (i) (o) ()

» Merkle, 1979: Leverage one-time signatures to multiple messages
» Binary hash tree on top of OTS public keys



Merkle Trees

| Auth for i = 001

() (Koor) (Fowe) (orr) (Xaw) () (o) (o)

» Use OTS keys sequentially
» SIG = (i,sign(M, X;),Y;, Auth)
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About the state

» Used for security:
Stores index i = Prevents using one-time keys twice.

» Used for efficiency:

Stores intermediate results for fast Auth computation.
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About the state

» Used for security:
Stores index i = Prevents using one-time keys twice.

» Used for efficiency:

Stores intermediate results for fast Auth computation.

» Problems:

Load-balancing
Multi-threading
Backups
Virtual-machine images
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About the state

» Used for security:
Stores index i = Prevents using one-time keys twice.

» Used for efficiency:
Stores intermediate results for fast Auth computation.
» Problems:
Load-balancing
Multi-threading
Backups
Virtual-machine images
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» This is not even compatible with the definition of cryptographic
signatures

» “Huge foot-cannon” (Adam Langley, Google)
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Stateless hash-based signatures

Goldreich's approach: Security parameter A = 128
Use binary tree as in Merkle, but...
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Stateless hash-based signatures

Goldreich's approach: Security parameter A = 128
Use binary tree as in Merkle, but...
» For security

» pick index ¢ at random;
> requires huge tree to avoid index collisions
(e.g., height h = 2\ = 256).
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Stateless hash-based signatures

Goldreich's approach: Security parameter A = 128
Use binary tree as in Merkle, but...
» For security
» pick index ¢ at random;
> requires huge tree to avoid index collisions
(e.g., height h = 2\ = 256).
» For efficiency:
> use binary certification tree of OTS;
> all OTS secret keys are generated
pseudorandomly.
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It works, but signatures are painfully long

» 0.6 MB for Goldreich signature using short-public-key Winternitz-16
one-time signatures.

» Would dominate traffic in typical applications, and add user-visible
latency on typical network connections.
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It works, but signatures are painfully long

» 0.6 MB for Goldreich signature using short-public-key Winternitz-16
one-time signatures.

» Would dominate traffic in typical applications, and add user-visible
latency on typical network connections.
» Example:
» Debian operating system is designed for frequent upgrades.
At least one new signature for each upgrade.
Typical upgrade: one package or just a few packages.
1.2 MB average package size.
0.08 MB median package size.
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It works, but signatures are painfully long

» 0.6 MB for Goldreich signature using short-public-key Winternitz-16
one-time signatures.
» Would dominate traffic in typical applications, and add user-visible
latency on typical network connections.
» Example:
» Debian operating system is designed for frequent upgrades.
> At least one new signature for each upgrade.
» Typical upgrade: one package or just a few packages.
» 1.2 MB average package size.
> 0.08 MB median package size.
» Example:

» HTTPS typically sends multiple signatures per page.
> 1.8 MB average web page in Alexa Top 1000000.



The SPHINCS approach
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Use a “hyper-tree” of total height h
Parameter d > 1, such that d | h
Each (Merkle) tree has height h/d
(h/d)-ary certification tree
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The SPHINCS approach

» Pick index (pseudo-)randomly

» Messages signed with few-time signature
scheme

» Significantly reduce total tree height

» Require
Pr[r-times Coll] - Pr[Forgery after r
signatures] = negl(n)
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The SPHINCS approach

vV v v v

Designed to be collision-resilient
Trees: MSS-SPR trees

OTS: WOTSH

FTS: HORST (HORS with tree)
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SPHINCS-256

» Designed for 128 bits of post-quantum security
(yes, we did the analysis!)

> 12 trees of height 5 each
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SPHINCS-256

» Designed for 128 bits of post-quantum security
(yes, we did the analysis!)

12 trees of height 5 each

n = 256 bit hashes in WOTS and HORST

Winternitz paramter w = 16

HORST with 26 expanded-secret-key chunks (total: 2 MB)
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SPHINCS-256

» Designed for 128 bits of post-quantum security
(yes, we did the analysis!)

12 trees of height 5 each

n = 256 bit hashes in WOTS and HORST

Winternitz paramter w = 16

HORST with 26 expanded-secret-key chunks (total: 2 MB)
m = 512 bit message hash (BLAKE-512)

ChaChal2 as PRG

vV vV v. v v Yy
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Cost of SPHINCS-256 signing

» Three main componenents:
> PRG for HORST secret-key expansion to 2 MB
» Hashing in WOTS and HORS public-key generation:
F:{0,1}%% — {0,1}**°
> Hashing in trees (mainly HORST public-key):
H:{0,1}%'% — {0,1}*¢
» Overall: 451456 invocations of F, 91251 invocations of H
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Cost of SPHINCS-256 signing

v

Three main componenents:
> PRG for HORST secret-key expansion to 2 MB
» Hashing in WOTS and HORS public-key generation:
F:{0,1}%% — {0,1}**°
> Hashing in trees (mainly HORST public-key):
H:{0,1}%'% — {0,1}*¢
Overall: 451456 invocations of F', 91251 invocations of H
Full hash function would be overkill for F' and H
Construction in SPHINCS-256:
> F(My) = Chopysg(m(M1]|C))
> H(Mi[|Mz2) = Chopyss(m(m(Mi]|C) @ (M:|[0%°)))
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Cost of SPHINCS-256 signing

v

Three main componenents:
> PRG for HORST secret-key expansion to 2 MB
» Hashing in WOTS and HORS public-key generation:
F:{0,1}%% — {0,1}**°
> Hashing in trees (mainly HORST public-key):
H:{0,1}%'% — {0,1}*¢
Overall: 451456 invocations of F', 91251 invocations of H
Full hash function would be overkill for F' and H
Construction in SPHINCS-256:
> F(My) = Chopysg(m(M1]|C))
> H(M1||Mz) = Chopyse (m(m(Mi]|C) @ (M2][0%)))
Use fast ChaChal2 permutation for m
All building blocks (PRG, message hash, H, F') built from very
similar permutations
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SPHINCS-256 speed and sizes

SPHINCS-256 sizes
» 0.041 MB signature (= 15x smaller than Goldreich!)
> 0.001 MB public key
» 0.001 MB private key
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SPHINCS-256 speed and sizes

SPHINCS-256 sizes

» 0.041 MB signature (= 15x smaller than Goldreich!)
> 0.001 MB public key
» 0.001 MB private key

High-speed implementation

> Target Intel Haswell with 256-bit AVX2 vector instructions
> Use 8x parallel hashing, vectorize on high level
» = 1.6 cycles/byte for H and F
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SPHINCS-256 speed and sizes

SPHINCS-256 sizes

» 0.041 MB signature (= 15x smaller than Goldreich!)
> 0.001 MB public key
» 0.001 MB private key

High-speed implementation

> Target Intel Haswell with 256-bit AVX2 vector instructions
> Use 8x parallel hashing, vectorize on high level
» = 1.6 cycles/byte for H and F

SPHINCS-256 speed
» Signing: < 52 Mio. Haswell cycles (> 200 sigs/sec, 4 Core, 3GHz)

» Verification: < 1.5 Mio. Haswell cycles

> Keygen: < 3.3 Mio. Haswell cycles
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Resources online

PQCRYPTO project:

Newhope Paper:
Newhope Code

SPHINCS:

https

https
https

https

://pgcrypto.eu.org

://cryptojedi.org/papers/#newhope
://cryptojedi.org/crypto/#newhope

://sphincs.cr.yp.to/
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