
NaCl � Networking and Cryptography library

Peter Schwabe

Eindhoven University of Technology

2009-11-30

10th SPAN Workshop



Credits

I Work presented in this talk is mostly not my own work

I Responsible for NaCl are Daniel J. Bernstein and Tanja Lange

I Several other people contributing including me

I Thanks to NSF ITR-0716498

I Thanks to EU FP7 IST-216499 CACE

NaCl � Networking and Cryptography library 2



Introduction � Security and Cryptography

I Lots of applications in IT security rely on cryptography

I Two possibilities when they need crypto:
I Develop your own primitives and protocols
I Choose well-known and studied primitives

I Assuming the second, you have another choice:

I Implement yourself
I Take existing implementation (from a library)

I Usual �best case�: Use something like OpenSSL

I In the following: Use OpenSSL as example to show how NaCl
improves upon other libraries

I Some examples are speci�c to OpenSSL, others are not

NaCl � Networking and Cryptography library 3



Introduction � Security and Cryptography

I Lots of applications in IT security rely on cryptography

I Two possibilities when they need crypto:
I Develop your own primitives and protocols
I Choose well-known and studied primitives

I Assuming the second, you have another choice:
I Implement yourself
I Take existing implementation (from a library)

I Usual �best case�: Use something like OpenSSL

I In the following: Use OpenSSL as example to show how NaCl
improves upon other libraries

I Some examples are speci�c to OpenSSL, others are not

NaCl � Networking and Cryptography library 3



Introduction � Security and Cryptography

I Lots of applications in IT security rely on cryptography

I Two possibilities when they need crypto:
I Develop your own primitives and protocols
I Choose well-known and studied primitives

I Assuming the second, you have another choice:
I Implement yourself
I Take existing implementation (from a library)

I Usual �best case�: Use something like OpenSSL

I In the following: Use OpenSSL as example to show how NaCl
improves upon other libraries

I Some examples are speci�c to OpenSSL, others are not

NaCl � Networking and Cryptography library 3



Introduction � Security and Cryptography

I Lots of applications in IT security rely on cryptography

I Two possibilities when they need crypto:
I Develop your own primitives and protocols
I Choose well-known and studied primitives

I Assuming the second, you have another choice:
I Implement yourself
I Take existing implementation (from a library)

I Usual �best case�: Use something like OpenSSL

I In the following: Use OpenSSL as example to show how NaCl
improves upon other libraries

I Some examples are speci�c to OpenSSL, others are not

NaCl � Networking and Cryptography library 3



Things that go wrong � Part I: Speed

I Example: OpenSSL's AES implementation takes ≈ 18.3 cycles/byte
on an Intel Core 2 Q6600

I . . . and ≈ 14.3 on a Core 2 Q9550

I Speed records (for parallel modes): 9.32 and 7.59 cycles/byte
respectively

I Almost a factor of 2 faster!

Is speed that important?

I Example: Truecrypt moved from AES implementation in C to
Assembly, reason: speed

I Another example: Have you ever tried to access
https://google.nl?

I . . . You will be redirected to http://google.nl

I Reason: Crypto is too expensive (too slow!)

⇒ A crypto library should o�er the best possible speed for any given
primitive and any given platform!

NaCl � Networking and Cryptography library 4



Things that go wrong � Part I: Speed

I Example: OpenSSL's AES implementation takes ≈ 18.3 cycles/byte
on an Intel Core 2 Q6600

I . . . and ≈ 14.3 on a Core 2 Q9550

I Speed records (for parallel modes): 9.32 and 7.59 cycles/byte
respectively

I Almost a factor of 2 faster!

Is speed that important?

I Example: Truecrypt moved from AES implementation in C to
Assembly, reason: speed

I Another example: Have you ever tried to access
https://google.nl?

I . . . You will be redirected to http://google.nl

I Reason: Crypto is too expensive (too slow!)

⇒ A crypto library should o�er the best possible speed for any given
primitive and any given platform!

NaCl � Networking and Cryptography library 4



Things that go wrong � Part I: Speed

I Example: OpenSSL's AES implementation takes ≈ 18.3 cycles/byte
on an Intel Core 2 Q6600

I . . . and ≈ 14.3 on a Core 2 Q9550

I Speed records (for parallel modes): 9.32 and 7.59 cycles/byte
respectively

I Almost a factor of 2 faster!

Is speed that important?

I Example: Truecrypt moved from AES implementation in C to
Assembly, reason: speed

I Another example: Have you ever tried to access
https://google.nl?

I . . . You will be redirected to http://google.nl

I Reason: Crypto is too expensive (too slow!)

⇒ A crypto library should o�er the best possible speed for any given
primitive and any given platform!

NaCl � Networking and Cryptography library 4



Things that go wrong � Part I: Speed

I Example: OpenSSL's AES implementation takes ≈ 18.3 cycles/byte
on an Intel Core 2 Q6600

I . . . and ≈ 14.3 on a Core 2 Q9550

I Speed records (for parallel modes): 9.32 and 7.59 cycles/byte
respectively

I Almost a factor of 2 faster!

Is speed that important?

I Example: Truecrypt moved from AES implementation in C to
Assembly, reason: speed

I Another example: Have you ever tried to access
https://google.nl?

I . . . You will be redirected to http://google.nl

I Reason: Crypto is too expensive (too slow!)

⇒ A crypto library should o�er the best possible speed for any given
primitive and any given platform!

NaCl � Networking and Cryptography library 4



NaCl Part I: Speed

I How do we measure the speed of an implementation?

I Answer: SUPERCOP � System for Uni�ed Performance Evaluation
Related to Cryptographic Operations and Primitives

I Benchmarking suite run by Daniel J. Bernstein and Tanja Lange

I On each platform: Compiles each implementation of each primitive
with a huge variety of compiler options

I Checks compatibility with a a reference implementation

I Measures speed for di�erent input lengths (if applicable)

I Currently contains benchmarking results from > 100 computers

NaCl � Networking and Cryptography library 5



NaCl Part I: Speed

I SUPERCOP and NaCl are using the same API

I They are also using the same build techniques

I On each computer:
I Compile each implementation . . .
I of each primitive . . .
I with all possible (reasonable) compiler options . . .
I Pick the fastest one . . .
I Link all these fastest primitives together to the NaCl library

I Of course this still requires fast implementations

I Currently several speed-record-setting implementations are part of
NaCl (or to be integrated)

NaCl � Networking and Cryptography library 6



Part II: Usability

I Let's try to encrypt and authenticate a given message with a given
symmetric key and a given nonce

I Message: char *m = "This is the message";

I Key: uint8_t key[32] = {0x00, 0x01, 0x02, ..., 0x1f};

I Nonce: uint8_t nonce[32] = {0x00, 0x00, ..., 0x00};

. . .Code examples. . .

I Veri�cation + Decryption is pretty much the inverse

I For NaCl the function is called crypto_secretbox_open

NaCl � Networking and Cryptography library 7



Part II: Usability

I Let's try to encrypt and authenticate a given message with a given
symmetric key and a given nonce

I Message: char *m = "This is the message";

I Key: uint8_t key[32] = {0x00, 0x01, 0x02, ..., 0x1f};

I Nonce: uint8_t nonce[32] = {0x00, 0x00, ..., 0x00};

. . .Code examples. . .

I Veri�cation + Decryption is pretty much the inverse

I For NaCl the function is called crypto_secretbox_open

NaCl � Networking and Cryptography library 7



Part II: Usability

I Let's try to encrypt and authenticate a given message with a given
symmetric key and a given nonce

I Message: char *m = "This is the message";

I Key: uint8_t key[32] = {0x00, 0x01, 0x02, ..., 0x1f};

I Nonce: uint8_t nonce[32] = {0x00, 0x00, ..., 0x00};

. . .Code examples. . .

I Veri�cation + Decryption is pretty much the inverse

I For NaCl the function is called crypto_secretbox_open

NaCl � Networking and Cryptography library 7



Things that go wrong � Part III: Security
Choosing primitives

I From the example before: We chose AES256-CBC and
HMAC-SHA256

I Why didn't we choose DES and HMAC-MD4?

I Why should we have to make the decision at all?

I The library is developed by crypto experts

I Why not let the experts choose what's best for �encrypt and
authenticate�

I In particular if algorithms such as DES and MD4 are still in the
library!

NaCl � Networking and Cryptography library 8



NaCl Part III: Security
Choosing primitives

I NaCl only contains high-security primitives

I No 80-bit security primitives

I High level functions such as crypto_box, crypto_secretbox,
crypto_scalarmult, crypto_hash

I Underlying primitives chosen by experts

I It is still possible to give the primitives explicitely

I For example: Use crypto_secretbox_aes256hmacsha512

NaCl � Networking and Cryptography library 9



Things that go wrong � Part III: Security
Timing attacks

Idea of timing attacks
If execution time depends on secret data an attacker can deduce
information by measuring the execution time

Examples for such timing variations

I Innput dependent branches (branch prediction)

I Loading from secret positions
I Loads take di�erent time depending on whether data is in cache
I Attacker can overwrite certain cache lines
I Check whether crypto implementation loaded from these lines
I Remote attacks are also possible

All cryptographic libraries (I know) are vulnerable to such attacks!

NaCl � Networking and Cryptography library 10



NaCl Part III: Security
Preventing timing attacks

I In NaCl by default all implementations are constant time

I No secret-input-dependent branches, e.g. replace:

if(a) b = c;

else b = d;

by

b = a*c + (1-a)*d;

I No loads indexed by secret data by using techniques such as
bitslicing

I Don't use strcmp to verify validity of auth tags

I If non-constant-time implementations are faster you can choose to
use them

I Again, the default is: constant-time implementations!

NaCl � Networking and Cryptography library 11



Things that go wrong � Part IV: Bugs

NaCl � Networking and Cryptography library 12



Things that go wrong � Part IV: Bugs

�This bug allows a malformed signature to be treated as a good signature
rather than as an error. This issue a�ects the signature checks on DSA
and ECDSA keys used with SSL/TLS. The �aw may be exploited by a
malicious server or a man-in-the-middle attack that presents a malformed
SSL/TLS signature from a certi�cate chain to a vulnerable client,
bypassing validation.�

NaCl � Networking and Cryptography library 12



NaCl � Part IV: Avoiding Bugs

How can we avoid such bugs?

I Accept any byte array of appropriate length as valid input

I Systematic testing:

I In NaCl every implementation is checked during the build process

I Tests to ensure functionality, e.g:
I Decryption is the inverse of encryption
I Operations don't overwrite input
I Extra bytes are cleared
I . . .

I Compatibility tests of di�erent implementations of the same
primitive

I Other groups within CACE are working on formal veri�cation

NaCl � Networking and Cryptography library 13



Final remarks

I NaCl is in development, some primitives are not implemented yet

I No digital signatures yet

I No network functionality yet (although prototypes currently used in
breaking ECC2K-130)

I All code is in public domain

Library: http://nacl.cace-project.eu
Benchmarking: http://bench.cr.yp.to/supercop.html
CACE Project: http://cace-project.eu

NaCl � Networking and Cryptography library 14

http://nacl.cace-project.eu
http://bench.cr.yp.to/supercop.html
http://cace-project.eu

	Credits
	Introduction
	Speed
	Usability
	Security
	Conclusion

