NaCl — Networking and Cryptography library

Peter Schwabe

Eindhoven University of Technology
Tgchmsche Universiteit
TU e Elr:‘\'e’e‘?svitey"af'(echnmagy
2009-11-30

10th SPAN Workshop

Technische Universiteit
. Eindhoven
Cred ItS University of Technology

Work presented in this talk is mostly not my own work
Responsible for NaCl are Daniel J. Bernstein and Tanja Lange
Several other people contributing including me

Thanks to NSF ITR-0716498

Thanks to EU FP7 IST-216499 CACE

vV v v v Y

NaCl — Networking and Cryptography library 2

Technische Universiteit
Eindhoven

Introduction — Security and Cryptography TU/ University o Technology

» Lots of applications in IT security rely on cryptography
» Two possibilities when they need crypto:

> Develop your own primitives and protocols
> Choose well-known and studied primitives

NaCl — Networking and Cryptography library 3

Technische Universiteit
Eindhoven

Introduction — Security and Cryptography TU/ University o Technology

» Lots of applications in IT security rely on cryptography
» Two possibilities when they need crypto:

> Develop your own primitives and protocols
> Choose well-known and studied primitives

» Assuming the second, you have another choice:

> Implement yourself
» Take existing implementation (from a library)

NaCl - Networking and Cryptography library 3

Technische Universiteit
Eindhoven

Introduction — Security and Cryptography TU/ University o Technology

v

Lots of applications in IT security rely on cryptography
Two possibilities when they need crypto:

v

> Develop your own primitives and protocols
> Choose well-known and studied primitives

v

Assuming the second, you have another choice:

> Implement yourself
» Take existing implementation (from a library)

v

Usual “best case”: Use something like OpenSSL

NaCl - Networking and Cryptography library 3

Introduction — Security and Cryptography TU/

» Lots of applications in IT security rely on cryptography
» Two possibilities when they need crypto:

> Develop your own primitives and protocols
> Choose well-known and studied primitives

» Assuming the second, you have another choice:

> Implement yourself
» Take existing implementation (from a library)

» Usual “best case™: Use something like OpenSSL

» In the following: Use OpenSSL as example to show how NaCl
improves upon other libraries

» Some examples are specific to OpenSSL, others are not

Technische Universiteit

Eindhoven
University of Technology

NaCl - Networking and Cryptography library 3

Technische Universiteit
. Eindhoven
Things that go wrong — Part |: Speed TU/ Uniersiyof Technoloy
» Example: OpenSSL's AES implementation takes ~ 18.3 cycles/byte
on an Intel Core 2 Q6600
» ... and = 14.3 on a Core 2 Q9550

> Speed records (for parallel modes): 9.32 and 7.59 cycles/byte
respectively

» Almost a factor of 2 faster!

NaCl — Networking and Cryptography library a

Technische Universiteit
. Eindhoven
Things that go wrong — Part |: Speed TU/ Uniersiyof Technoloy
» Example: OpenSSL's AES implementation takes ~ 18.3 cycles/byte
on an Intel Core 2 Q6600
» ... and = 14.3 on a Core 2 Q9550

> Speed records (for parallel modes): 9.32 and 7.59 cycles/byte
respectively

» Almost a factor of 2 faster!

Is speed that important?

» Example: Truecrypt moved from AES implementation in C to
Assembly, reason: speed

» Another example: Have you ever tried to access
https://google.nl?

NaCl - Networking and Cryptography library a

Technische Universiteit
. Eindhoven
Things that go wrong — Part |: Speed TU/ Uniersiyof Technoloy
» Example: OpenSSL's AES implementation takes ~ 18.3 cycles/byte
on an Intel Core 2 Q6600
» ... and = 14.3 on a Core 2 Q9550
» Speed records (for parallel modes): 9.32 and 7.59 cycles/byte
respectively
» Almost a factor of 2 faster!

Is speed that important?

» Example: Truecrypt moved from AES implementation in C to
Assembly, reason: speed

» Another example: Have you ever tried to access
https://google.nl?

> ... You will be redirected to http://google.nl

» Reason: Crypto is too expensive (too slow!)

NaCl — Networking and Cryptography library a

Technische Universiteit
. Eindhoven
Things that go wrong — Part |: Speed TU/ Uniersiyof Technoloy
» Example: OpenSSL's AES implementation takes ~ 18.3 cycles/byte
on an Intel Core 2 Q6600
» ... and = 14.3 on a Core 2 Q9550
» Speed records (for parallel modes): 9.32 and 7.59 cycles/byte
respectively
» Almost a factor of 2 faster!

Is speed that important?

» Example: Truecrypt moved from AES implementation in C to
Assembly, reason: speed

» Another example: Have you ever tried to access
https://google.nl?

> ... You will be redirected to http://google.nl

» Reason: Crypto is too expensive (too slow!)

= A crypto library should offer the best possible speed for any given

primitive and any given platform!
NaCl — Networking and Cryptography library a

Technische Universiteit
I Eindhoven
NaCl Pa rt I Speed U/ University of Technology

» How do we measure the speed of an implementation?

» Answer: SUPERCOP - System for Unified Performance Evaluation
Related to Cryptographic Operations and Primitives

» Benchmarking suite run by Daniel J. Bernstein and Tanja Lange

» On each platform: Compiles each implementation of each primitive
with a huge variety of compiler options

» Checks compatibility with a a reference implementation
» Measures speed for different input lengths (if applicable)
» Currently contains benchmarking results from > 100 computers

NaCl — Networking and Cryptography library 5

Technische Universiteit
I Eindhoven
NaCl Pa rt I Speed U/ University of Technology

v

SUPERCOP and NaCl are using the same API

They are also using the same build techniques

v

v

On each computer:

Compile each implementation ...

of each primitive ...

with all possible (reasonable) compiler options ...

Pick the fastest one ...

Link all these fastest primitives together to the NaCl library

yVvyVvYVvYy

v

Of course this still requires fast implementations

v

Currently several speed-record-setting implementations are part of
NaCl (or to be integrated)

NaCl — Networking and Cryptography library 6

Technische Universiteit
e I U Eindhoven
Pa rt | | U Sa bl | |ty University of Technology

> Let's try to encrypt and authenticate a given message with a given
symmetric key and a given nonce

> Message: char *m = "This is the message";
> Key: uint8_t key[32] = {0x00, 0x01, 0x02, ..., Oxif};
» Nonce: uint8_t nonce[32] = {0x00, 0x00, ..., 0x00};

NaCl — Networking and Cryptography library 7

Technische Universiteit
e I U Eindhoven
Pa rt | | U Sa bl | |ty University of Technology

> Let's try to encrypt and authenticate a given message with a given
symmetric key and a given nonce

> Message: char *m = "This is the message";
> Key: uint8_t key[32] = {0x00, 0x01, 0x02, ..., Oxif};
» Nonce: uint8_t nonce[32] = {0x00, 0x00, ..., 0x00};

...Code examples. ..

NaCl — Networking and Cryptography library 7

Technische Universiteit
e I U Eindhoven
Pa rt | | U Sa bl | |ty University of Technology

> Let's try to encrypt and authenticate a given message with a given
symmetric key and a given nonce

> Message: char *m = "This is the message";

» Key: uint8_t key[32] = {0x00, 0x01, 0x02, ..., Ox1f};

» Nonce: uint8_t nonce[32] = {0x00, 0x00, ..., 0x00};
...Code examples. ..

» Verification + Decryption is pretty much the inverse

» For NaCl the function is called crypto_secretbox_open

NaCl — Networking and Cryptography library 7

Technische Universiteit
Eindhoven

Things that go wrong — Part IlI: Security TU/ University o Technology

Choosing primitives

» From the example before: We chose AES256-CBC and
HMAC-SHA256

Why didn’t we choose DES and HMAC-MD4?
Why should we have to make the decision at all?

The library is developed by crypto experts

vV v v v

Why not let the experts choose what's best for “encrypt and
authenticate”

» In particular if algorithms such as DES and MD4 are still in the
library!

NaCl — Networking and Cryptography library 8

Technische Universiteit
- Eindhoven
NaCl Part I | | Securlty TU/ University of Technology

Choosing primitives

» NaCl only contains high-security primitives
» No 80-bit security primitives

» High level functions such as crypto_box, crypto_secretbox,
crypto_scalarmult, crypto_hash

» Underlying primitives chosen by experts
» It is still possible to give the primitives explicitely
» For example: Use crypto_secretbox_aes256hmacshab12

NaCl — Networking and Cryptography library 9

Technische Universiteit
Eindhoven

Things that go wrong — Part IlI: Security TU/ Universiy o echnalogy

Timing attacks

Idea of timing attacks

If execution time depends on secret data an attacker can deduce
information by measuring the execution time

Examples for such timing variations

» Innput dependent branches (branch prediction)
» Loading from secret positions

v

Loads take different time depending on whether data is in cache
Attacker can overwrite certain cache lines

Check whether crypto implementation loaded from these lines
Remote attacks are also possible

A2 A

All cryptographic libraries (I know) are vulnerable to such attacks!

NaCl — Networking and Cryptography library 10

Technische Universiteit
- Eindhoven
NaCl Part I | | Securlty TU/ University of Technology

Preventing timing attacks

» In NaCl by default all implementations are constant time
» No secret-input-dependent branches, e.g. replace:
if(a) b = c;
else b = d;
by
b = axc + (1-a)*d;
» No loads indexed by secret data by using techniques such as
bitslicing
» Don’t use strcmp to verify validity of auth tags

» If non-constant-time implementations are faster you can choose to
use them

» Again, the default is: constant-time implementations!

NaCl — Networking and Cryptography library 1

T U/ TEe"ch:g::: Universiteit
T h | ngs that go Wrong —_ Pa rt |V B ugs University of Technology

Location Edit Wiew Go Bookmarks TIools Settings Window Help

wh X EL Q&

E Location [oc http:ffwww.ocert orgfadvisories/ocert-2008-016.htrml

oCERT
FAQ Advisories

Mailing Lists

oCERT Advisories
#2008-016 multiple OpenSSL signature verification API misuse
Report an Incident
Description:
Report = Vulnerability
Several functions inside the 1 0penSSL library incorrectly check the result after calling the
Resources EVP_VerifyFinal function
ssssssssssss———
This bug allews a malformed signature to be treated as a good signature rather than as an error, This
issue affects the signature checks on DSA and ECDSA keys used with SSL/TLS.
The flaw may be exploited by a malicious server or a man-in-the-middle attack that presents a
malformed SSL/TLS signature from a certificate chain to a vulnerable client, bypassing validation
A patch fixing the issue with proper return code <heckmq and further important recommendations are
described in the original OpenSSL Team advisory, @

At the reauest of the OnenSSI team. aCFRT has aided in the remediation coardination for ather oraiects

NaCl — Networking and Cryptography library 12

Technische Universiteit
Eindhoven
University of Technology

Things that go wrong — Part IV: Bugs

“This bug allows a malformed signature to be treated as a good signature
rather than as an error. This issue affects the signature checks on DSA
and ECDSA keys used with SSL/TLS. The flaw may be exploited by a
malicious server or a man-in-the-middle attack that presents a malformed
SSL/TLS signature from a certificate chain to a vulnerable client,
bypassing validation.”

NaCl — Networking and Cryptography library 12

TU/ TEei’cI::i;:::Universiteil
NaCl — Part IV: Avoiding Bugs University ofTechnology

How can we avoid such bugs?

Accept any byte array of appropriate length as valid input
Systematic testing:

In NaCl every implementation is checked during the build process

vV v vy

Tests to ensure functionality, e.g:

» Decryption is the inverse of encryption
» Operations don't overwrite input

» Extra bytes are cleared
>

» Compatibility tests of different implementations of the same
primitive

» Other groups within CACE are working on formal verification

NaCl — Networking and Cryptography library 13

Technische Universiteit
Eindhoven
University of Technology

Final remarks

» NaCl is in development, some primitives are not implemented yet
» No digital signatures yet

» No network functionality yet (although prototypes currently used in
breaking ECC2K-130)

» All code is in public domain

Library: http://nacl.cace-project.eu
Benchmarking: http://bench.cr.yp.to/supercop.html
CACE Project: http://cace-project.eu

NaCl — Networking and Cryptography library 14

http://nacl.cace-project.eu
http://bench.cr.yp.to/supercop.html
http://cace-project.eu

	Credits
	Introduction
	Speed
	Usability
	Security
	Conclusion

