Implementing post-quantum cryptography
Peter Schwabe
Radboud University, Nijmegen, The Netherlands
June 28, 2018

PQCRYPTO Mini-School 2018, Taipei, Taiwan



Part |: How to make software secure

cryptography 2




Timing Attacks

General idea of those attacks

> Secret data has influence on timing of software
> Attacker measures timing
> Attacker computes influence™' to obtain secret data

! ing post. cryptography




Timing Attacks

General idea of those attacks
> Secret data has influence on timing of software
> Attacker measures timing
> Attacker computes influence™' to obtain secret data

Two kinds of remote. ..

» Timing attacks are a type of side-channel attacks
» Unlike other side-channel attacks, they work remotely:

» Some need to run attack code in parallel to the target software
> Attacker can log in remotely (ssh)

! ing post. cryptography




Timing Attacks

General idea of those attacks
> Secret data has influence on timing of software

> Attacker measures timing
> Attacker computes influence™' to obtain secret data

Two kinds of remote. ..

» Timing attacks are a type of side-channel attacks

» Unlike other side-channel attacks, they work remotely:
» Some need to run attack code in parallel to the target software
> Attacker can log in remotely (ssh)

» Some attacks work by measuring network delays
» Attacker does not even need an account on the target machine

I ing post. cryptography




Timing Attacks

General idea of those attacks

> Secret data has influence on timing of software
> Attacker measures timing
» Attacker computes influence™! to obtain secret data

Two kinds of remote. ..

» Timing attacks are a type of side-channel attacks
» Unlike other side-channel attacks, they work remotely:
» Some need to run attack code in parallel to the target software
Attacker can log in remotely (ssh)
Some attacks work by measuring network delays
Attacker does not even need an account on the target machine

v VvYyy

» Can't protect against timing attacks by locking a room
» This talk: don't consider “local” side-channel attacks

I ing post. cryptography




Problem No. 1

if (secret)
{

do_AQ);
}

else

{
do_BQ);
}

ing post. cryptography 4




Examples

» Square-and-multiply (or double-and-add):

“if s is one: multiply”

! ing post. cryptography




Examples

» Square-and-multiply (or double-and-add):
“if s is one: multiply”
» Modular reduction:

“if a > q: subtract ¢ from a”

! ing post. cryptography




Examples

» Square-and-multiply (or double-and-add):
“if s is one: multiply”
» Modular reduction:
“if a > q: subtract ¢ from a”
» Rejection sampling:

“if a < q: accept a”

! ing post. cryptography




Examples

v

Square-and-multiply (or double-and-add):
“if s is one: multiply”

Modular reduction:

v

“if a > q: subtract ¢ from a”
» Rejection sampling:

“if a < q: accept a”

v

Byte-array (tag) comparison:
“if ali] # bli]: return”

! ing post. cryptography



Examples

v

Square-and-multiply (or double-and-add):

“if s is one: multiply”

v

Modular reduction:
“if a > q: subtract ¢ from a”
» Rejection sampling:

“if a < q: accept a”

v

Byte-array (tag) comparison:
“if ali] # bli]: return”

v

Sorting and permuting:

“if @ < b: branch into subroutine”

! ing post. cryptography



Eliminating branches

» So, what do we do with code like this?

if s then
r+ A
else
r<+ B
end if

cryptography

6



Eliminating branches

» So, what do we do with code like this?

if s then
r+ A
else
r<+ B
end if

» Replace by
r«sA+(1—s)B

cryptography

6



Eliminating branches

» So, what do we do with code like this?
if s then
r+ A
else
r<+ B
end if

» Replace by
r«sA+(1—s)B

» Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

! ing post. cryptography




Eliminating branches

v

So, what do we do with code like this?
if s then
r+ A
else
r<+ B
end if

Replace by

v

r«sA+(1—s)B

v

Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

v

For very fast A and B this can even be faster

! ing post. cryptography




Problem No. 2

table[secret]

! ing post. cryptography




Timing leakage part I

v

Consider lookup table of 32-bit integers

v

Cache lines have 64 bytes

v

Crypto and the attacker’s program run
on the same CPU

Tables are in cache

v

| ing post cryptography 8



Timing leakage part Il

» Consider lookup table of 32-bit integers
» Cache lines have 64 bytes

» Crypto and the attacker's program run
on the same CPU

» Tables are in cache

» The attacker’s program replaces some
cache lines

! ing post. cryptography




Timing leakage part I

» Consider lookup table of 32-bit integers
» Cache lines have 64 bytes

Crypto and the attacker’s program run
on the same CPU

» Tables are in cache
» The attacker’s program replaces some

cache lines

Crypto continues, loads from table
again

| ing post cryptography



Timing leakage part Il

m”?

77

77

m”

m @

Consider lookup table of 32-bit integers

» Cache lines have 64 bytes

Crypto and the attacker’s program run
on the same CPU

» Tables are in cache
» The attacker’s program replaces some

cache lines

Crypto continues, loads from table
again

Attacker loads his data:

! ing post. cryptography



Timing leakage part Il

m”?

77

Consider lookup table of 32-bit integers

» Cache lines have 64 bytes

Crypto and the attacker’s program run
on the same CPU

» Tables are in cache
» The attacker’s program replaces some

cache lines

Crypto continues, loads from table
again

Attacker loads his data:

» Fast: cache hit (crypto did not just
load from this line)

! ing post. cryptography



Timing leakage part Il

» Consider lookup table of 32-bit integers

m? » Cache lines have 64 bytes

77

» Crypto and the attacker's program run
on the same CPU

» Tables are in cache

» The attacker’s program replaces some
cache lines

» Crypto continues, loads from table
again
» Attacker loads his data:
» Fast: cache hit (crypto did not just
load from this line)
> Slow: cache miss (crypto just loaded
from this line)

! ing post. cryptography



The general case

Loads from and stores to addresses that depend on secret data
leak secret data.

I ing post. cryptography




“Countermeasure’

» Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
» Idea: Lookups within one cache line should be safe

! ing post: cryptography

10



“Countermeasure’

» Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
» Idea: Lookups within one cache line should be safe... or are they?

! ing post: cryptography

10



“Countermeasure’

» Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
» Idea: Lookups within one cache line should be safe... or are they?

» Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

P cryptography

10



“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”

P cryptography

10



“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”
Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”
Reasons:

» Cache-bank conflicts

» Failed store-to-load forwarding
> DEEEEY

P cryptography

10



“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”
Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”
Reasons:

» Cache-bank conflicts

» Failed store-to-load forwarding

>...

OpenSSL is using it in BN_mod_exp_mont_consttime

P cryptography

10



“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”
Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”
Reasons:

» Cache-bank conflicts

» Failed store-to-load forwarding

> ...
OpenSSL is using it in BN_mod_exp_mont_consttime
Brickell (Intel), 2011: yeah, it's fine as a countermeasure

I ing post: cryptography

10



“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”
Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”
Reasons:

» Cache-bank conflicts

» Failed store-to-load forwarding

> ...
OpenSSL is using it in BN_mod_exp_mont_consttime
Brickell (Intel), 2011: yeah, it's fine as a countermeasure
Bernstein, Schwabe, 2013: Demonstrate timing variability for access
within one cache line

P cryptography

10



“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”
Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”
Reasons:

» Cache-bank conflicts

» Failed store-to-load forwarding

> ..
OpenSSL is using it in BN_mod_exp_mont_consttime
Brickell (Intel), 2011: yeah, it's fine as a countermeasure
Bernstein, Schwabe, 2013: Demonstrate timing variability for access
within one cache line
Yarom, Genkin, Heninger: CacheBleed attack “is able to recover
both 2048-bit and 4096-bit RSA secret keys from OpenSSL 1.0.2f
running on Intel Sandy Bridge processors after observing only 16,000
secret-key operations (decryption, signatures).”

I post. cryptography

10



Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t 1i;
int b;
uint32_t r = table[0];
for(i=1;i<TABLE_LENGTH;i++)
{
b = (i == pos);
cmov (&r, &table[i], b); // See "eliminating branches"

}

return r;

P cryptography

11



Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)
{
size_t 1i;
int b;
uint32_t r = table[0];
for(i=1;i<TABLE_LENGTH;i++)
{
b = (i == pos); /* DON’T! Compiler may do funny things! */
cmov (&r, &table[i], b);
}

return r;

P cryptography 11



Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t 1i;
int b;
uint32_t r = table[0];
for(i=1;i<TABLE_LENGTH;i++)
{

b = isequal(i, pos);

cmov (&r, &table[i], b);
}

return r;

cryptography

11



Countermeasure, part 2

int isequal(uint32_t a, uint32_t b)

{

size_t i; uint32_t r = O;
unsigned char *ta = (unsigned char *)&a;
unsigned char *tb = (unsigned char *)&b;
for(i=0;i<sizeof (uint32_t) ;i++)
{
r |= (talil ~ tb[il);
X
r = (-r) > 31;
return (int) (1-r);

cryptography

11



Part II: How to make software fast

cryptography

12



Vector computations

Scalar computation

» Load 32-bit integer a
» Load 32-bit integer b

» Perform addition
c+—a+b

» Store 32-bit integer ¢

Vectorized computation

» Load 4 consecutive 32-bit integers
(a0, a1, az,a3)

» Load 4 consecutive 32-bit integers
(bo, b1, b2, b3)

» Perform addition (co, c1, ¢a,c3)
(ao + bg, a1 + b1, as + ba, az + bg)

» Store 128-bit vector (co, ¢1, 2, ¢3)

post. cryptography

13



Vector computations

Scalar computation

» Load 32-bit integer a
» Load 32-bit integer b

» Perform addition
c+—a+b

» Store 32-bit integer ¢

Vectorized computation

» Load 4 consecutive 32-bit integers
(a0, a1, az,a3)

» Load 4 consecutive 32-bit integers
(bo, b1, b2, b3)

» Perform addition (co, c1, ¢a,c3)
(ao + bg, a1 + b1, as + ba, az + bg)

» Store 128-bit vector (co, ¢1, 2, ¢3)

» Perform the same operations on independent data streams (SIMD)

» Vector instructions available on most “large” processors

» Instructions for vectors of bytes, integers, floats. ..

! ing post: cryptography

13



Vector computations

Scalar computation

>

Load 32-bit integer a

» Load 32-bit integer b

Perform addition
c+—a+b

Store 32-bit integer ¢

vV v.v. v Yy

Vectorized computation

» Load 4 consecutive 32-bit integers
(a0, a1, az,a3)

» Load 4 consecutive 32-bit integers
(bo, b1, b2, b3)

» Perform addition (co, c1, ¢a,c3)
(ao + bg, a1 + b1, as + ba, az + bg)

» Store 128-bit vector (co, ¢1, 2, ¢3)

Perform the same operations on independent data streams (SIMD)
Vector instructions available on most “large” processors
Instructions for vectors of bytes, integers, floats. ..

Need to interleave data items (e.g., 32-bit integers) in memory

Compilers will not help with vectorization

I ing post: cryptography

13



Vector computations

Scalar computation

>

Load 32-bit integer a

» Load 32-bit integer b

Perform addition
c+—a+b

Store 32-bit integer ¢

vV v.v. v Yy

Vectorized computation

» Load 4 consecutive 32-bit integers
(a0, a1, az,a3)

» Load 4 consecutive 32-bit integers
(bo, b1, b2, b3)

» Perform addition (co, c1, ¢a,c3)
(ao + bg, a1 + b1, as + ba, az + bg)

» Store 128-bit vector (co, ¢1, 2, ¢3)

Perform the same operations on independent data streams (SIMD)
Vector instructions available on most “large” processors
Instructions for vectors of bytes, integers, floats. ..

Need to interleave data items (e.g., 32-bit integers) in memory

Compilers will not really help with vectorization

I ing post: cryptography

13



Why is this so great?

» Consider the Intel Skylake processor

cryptography

14



Why is this so great?

» Consider the Intel Skylake processor
> 32-bit load throughput: 2 per cycle
» 32-bit add throughput: 4 per cycle
» 32-bit store throughput: 1 per cycle

cryptography

14



Why is this so great?

» Consider the Intel Skylake processor

>

Yy vy VY VY

32-bit load throughput: 2 per cycle
32-bit add throughput: 4 per cycle
32-bit store throughput: 1 per cycle
256-bit load throughput: 2 per cycle
8x 32-bit add throughput: 3 per cycle
256-bit store throughput: 1 per cycle

! ing post: cryptography

14



Why is this so great?

» Consider the Intel Skylake processor

» 32-bit load throughput: 2 per cycle
32-bit add throughput: 4 per cycle
32-bit store throughput: 1 per cycle
256-bit load throughput: 2 per cycle
8x 32-bit add throughput: 3 per cycle
256-bit store throughput: 1 per cycle

v vy vy VvYy

» Vector instructions are almost as fast as scalar instructions but
do 8x the work

! ing post: cryptography

14



Why is this so great?

v

v

v

v

Consider the Intel Skylake processor

» 32-bit load throughput: 2 per cycle
32-bit add throughput: 4 per cycle
32-bit store throughput: 1 per cycle
256-bit load throughput: 2 per cycle
8x 32-bit add throughput: 3 per cycle
256-bit store throughput: 1 per cycle

v vy vy VvYy

Vector instructions are almost as fast as scalar instructions but
do 8x the work

Situation on other architectures/microarchitectures is similar

Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)

I ing post: cryptography

14



Take-home message

“Big multipliers are pre-quantum,
vectorization is post-quantum”

post. cryptography 15




Standard-lattice-based schemes

» Standard-lattices operate on matrices over Z,, for “small” ¢
» These are trivially vectorizable
» So trivial that even compilers may do it!

cryptography

16



Standard-lattice-based schemes

Standard-lattices operate on matrices over Z,, for “small” ¢
These are trivially vectorizable
So trivial that even compilers may do it!

Standard-lattice-based signatures (e.g., Bai-Galbraith):

> Multiple attempts for signing (rejection sampling)
» Each attempt: compute Av for fixed A

vV v v Y

cryptography

16



Standard-lattice-based schemes

Standard-lattices operate on matrices over Z,, for “small” ¢
These are trivially vectorizable
So trivial that even compilers may do it!

Standard-lattice-based signatures (e.g., Bai-Galbraith):

> Multiple attempts for signing (rejection sampling)
» Each attempt: compute Av for fixed A

vV v v Y

More efficient:

v

» Compute multiple products Av;
» Typically ignore some results

cryptography

16



Standard-lattice-based schemes

Standard-lattices operate on matrices over Z,, for “small” ¢
These are trivially vectorizable
So trivial that even compilers may do it!

Standard-lattice-based signatures (e.g., Bai-Galbraith):

> Multiple attempts for signing (rejection sampling)
» Each attempt: compute Av for fixed A

vV v v Y

More efficient:

v

» Compute multiple products Av;
» Typically ignore some results

Reason: reuse coefficients of A in cache

v

cryptography

16



Structured lattices

» Structured lattices (NTRU, RLWE, MLWE) work with polynomials
» Most important operation: multiply polynomials
» Obvious question: How do we vectorize polynomial multiplication?

post. cryptography

17



Structured lattices

Structured lattices (NTRU, RLWE, MLWE) work with polynomials
Most important operation: multiply polynomials
Obvious question: How do we vectorize polynomial multiplication?

vV v.v v

Let's take an example:

ro = fogo

r1 = fog1 + f190

r2 = fog2 + f191 + f290

r3 = fogs + f192 + fag1 + f390
T4 = f193 + fog2 + f301

5 = f2g3 + f392

T6 = f393

post. cryptography




Structured lattices

Most important operation: multiply polynomials

vV v.v v

Let's take an example:

ro = fogo

r1 = fog1 + f190

r2 = fog2 + f191 + f290

r3 = fogs + f192 + fag1 + f390
T4 = f193 + fog2 + f301

5 = f2g3 + f392

T6 = f393

» Can eas”y load (f05f17f27f3) and (g07g1592593)
> MUItlplyv obtain (ngOaf1g17f2927f393)

Structured lattices (NTRU, RLWE, MLWE) work with polynomials

Obvious question: How do we vectorize polynomial multiplication?

cryptography

17



Structured lattices

vV v.v v

» Can easily load (fo, f1, f2, f3) and (g0, 91, 92, 93)

To

Let's take an example:

= fogo

= fog1 + f190

= fog2 + f191 + f290

= fogs + f192 + f291 + f390
= f193 + f292 + f301

= f293 + [392

= [393

> Multiply, obtain (fogo, f191, f292, f393)

» And now what?

Structured lattices (NTRU, RLWE, MLWE) work with polynomials
Most important operation: multiply polynomials
Obvious question: How do we vectorize polynomial multiplication?

cryptography

17



Structured lattices

vV v.v v

vV v. vy

Structured lattices (NTRU, RLWE, MLWE) work with polynomials
Most important operation: multiply polynomials

Obvious question: How do we vectorize polynomial multiplication?
Let's take an example:

ro = fogo

r1 = fog1 + f190

r2 = fog2 + f191 + f290

r3 = fogs + f192 + fag1 + f390
T4 = f193 + fog2 + f301

5 = f2g3 + f392

T6 = f393

Can eas”y load (f05f17f27f3) and (g07g1592593)

Multiply, obtain (fogo, f191, f292, f393)
And now what?

Looks like we need to shuffle a lot!

post. cryptography

17



Karatsuba and Toom

» Our polynomials have many more coefficients (say, 256-1024)
> Idea: use Karatsuba's trick:

» consider n = 2k-coefficient polynomials f and g
» Split multiplication f - g into 3 half-size multiplications

(fe+X"fn) - (90 + X*gn)
= foge + X*(fogn + frge) + X" fagn
= foge + X*((fo + fn)(ge + gn) — fege — fagn) + X" frgn

post. cryptography

18



Karatsuba and Toom

» Our polynomials have many more coefficients (say, 256-1024)
> Idea: use Karatsuba's trick:

» consider n = 2k-coefficient polynomials f and g
» Split multiplication f - g into 3 half-size multiplications

(fe+X"fn) - (90 + X*gn)
= foge + X*(fogn + frge) + X" fagn
= foge + X*((fo + fn)(ge + gn) — fege — fagn) + X" frgn

» Apply recursively to obtain 9 quarter-size multiplications, 27
eighth-size multiplications etc.

post. cryptography

18



Karatsuba and Toom

» Our polynomials have many more coefficients (say, 256-1024)
> Idea: use Karatsuba's trick:

» consider n = 2k-coefficient polynomials f and g
» Split multiplication f - g into 3 half-size multiplications

(fe+X"fn) - (90 + X*gn)
= foge + X*(fogn + frge) + X" fagn
= foge + X*((fo + fn)(ge + gn) — fege — fagn) + X" frgn

» Apply recursively to obtain 9 quarter-size multiplications, 27
eighth-size multiplications etc.

> Generalization: Toom-Cook. Obtain, e.g., 5 third-size multiplications

» Split into sufficiently many “small” multiplications, vectorize across
those

post. cryptography

18



Transposing/Interleaving

» Small example: compute a-b, c-d, e-f, g-h

» Each factor with 3 coefficients, e.g., a = ag + a1 X + a2 X?>

cryptography

19



Transposing/Interleaving

» Small example: compute a-b, c-d, e-f, g-h
» Each factor with 3 coefficients, e.g., a = ag + a1 X + a2 X?>
» Coefficients in memory:

a0, al, a2, b0, bl, b2, c0,..., hl, h2

cryptography

19



Transposing/Interleaving

» Small example: compute a-b, c-d, e-f, g-h
» Each factor with 3 coefficients, e.g., a = ag + a1 X + a2 X?>
» Coefficients in memory:

a0, al, a2, b0, bl, b2, c0,..., hl, h2
» Problem:

> Vector loads will yield
vo = (a0, a1, az,bo) ve = (g2, ho, h1, h2)
» However, we need

vo = (ao, co, €0, ho) ve = (b2, d2, f2, g2)

I ing post: cryptography

19



Transposing/Interleaving

» Small example: compute a-b, c-d, e-f, g-h
» Each factor with 3 coefficients, e.g., a = ag + a1 X + a2 X?>
» Coefficients in memory:
a0, al, a2, b0, bl, b2, c0,..., hl, h2
» Problem:
> Vector loads will yield
vo = (a0, a1, az,bo) ve = (g2, ho, h1, h2)
» However, we need
vo = (ao, co, €0, ho) . ve = (b2, d2, f2, g2)
» Solution: transpose data matrix (or interleave words):

a0, c0, e0, hO, a1, c1, el,..., £2, g2

! ing post: cryptography

19



Two applications of Karatsuba/Toom

Streamlined NTRU Prime 459175
Multiply in the ring R = Zy501[X]/(X™ — X — 1)
Pad input polynomial to 768 coefficients

v

v

v

5 levels of Karatsuba: 243 multiplications of 24-coefficient
polynomials

v

Massively lazy reduction using double-precision floats

v

28 682 Haswell cycles for multiplication in R

cryptography

20



Two applications of Karatsuba/Toom

Streamlined NTRU Prime 4591761
» Multiply in the ring R = Zss01[X]/(X7! — X — 1)
» Pad input polynomial to 768 coefficients

> 5 levels of Karatsuba: 243 multiplications of 24-coefficient
polynomials

v

Massively lazy reduction using double-precision floats

v

28 682 Haswell cycles for multiplication in R

NTRU-HRSS-KEM
» Multiply in the ring R = Zg192[X]/(X™ — 1)

» Use Toom-Cook to split into 7 quarter-size, then 2 levels of
Karatsuba

» Obtain 63 multiplications of 44-coefficient polynomials

» 11722 Haswell cycles for multiplication in R

post. cryptography

20



We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:

> Work in polynomial ring R = Z4[X]/(X"™ + 1)
» Choose n a power of 2
> Choose q prime, s.t. 2n divides (¢ — 1)

cryptography

21



We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:
> Work in polynomial ring R = Z4[X]/(X"™ + 1)
» Choose n a power of 2
> Choose q prime, s.t. 2n divides (¢ — 1)

» Examples: NewHope (n = 1024, ¢ = 12289), Kyber
(n = 256, q = 7681)

cryptography

21



We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:

> Work in polynomial ring R = Z4[X]/(X"™ + 1)

» Choose n a power of 2

> Choose q prime, s.t. 2n divides (¢ — 1)
» Examples: NewHope (n = 1024, ¢ = 12289), Kyber

(n = 256,q = 7681)

» Big advantage: fast negacyclic number-theoretic transform
» Given g € R, n-th primitive root of unity w and ¥ = y/w, compute

n—1
NTT(g) =g=>_ &X', with
=0
n—1 )
gi =Y W gw,
j=0

post. cryptography

21



We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:
> Work in polynomial ring R = Z4[X]/(X"™ + 1)
» Choose n a power of 2
> Choose q prime, s.t. 2n divides (¢ — 1)

Examples: NewHope (n = 1024, ¢ = 12289), Kyber
(n = 256, q = 7681)

v

» Big advantage: fast negacyclic number-theoretic transform
» Given g € R, n-th primitive root of unity w and ¥ = y/w, compute
n—1
NTT(g) =g=>_ &X', with
=0
n—1
Gi= 3 W,
§=0

v

Compute f-gas NTT X (NTT(f) o NTT(g))

post. cryptography

21



We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:
> Work in polynomial ring R = Z4[X]/(X"™ + 1)
» Choose n a power of 2
> Choose q prime, s.t. 2n divides (¢ — 1)

Examples: NewHope (n = 1024, ¢ = 12289), Kyber
(n = 256, q = 7681)

v

» Big advantage: fast negacyclic number-theoretic transform
» Given g € R, n-th primitive root of unity w and ¥ = y/w, compute
n—1
NTT(g) =g=>_ &X', with
=0
n—1
Gi= 3 W,
§=0

v

Compute f-gas NTT X (NTT(f) o NTT(g))
NTT ! is essentially the same computation as NTT

v

! post. cryptography

21



Zooming into the NTT

» FFT in a finite field
» Evaluate polynomial f = fo+ f1X +---+ f,_1 X" ! at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(X?) + X f1(X?)

post. cryptography 22




Zooming into the NTT

» FFT in a finite field
» Evaluate polynomial f = fo+ f1X +---+ f,_1 X" ! at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(X?) + X f1(X?)
> Huge overlap between evaluating

f(B) = f0(52) + 5f1(ﬂ2) and
fo(B) = BA(B?)

=
|

=
[

ing post cryptography

22



Zooming into the NTT

» FFT in a finite field
» Evaluate polynomial f = fo+ f1X +---+ f,_1 X" ! at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(X?) + X f1(X?)
> Huge overlap between evaluating

f(B) = f0(52) + 5f1(ﬂ2) and
fo(B) = BA(B?)

=
|

=
[

v

fo has n/2 coefficients
Evaluate fo at all (n/2)-th roots of unity by recursive application
Same for f;

v

v

post. cryptography

22



Zooming into the NTT

» FFT in a finite field
» Evaluate polynomial f = fo+ f1X +---+ f,_1 X" ! at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(X?) + X f1(X?)
> Huge overlap between evaluating

f(B) = f0(52) + 5f1(ﬂ2) and
fo(B) = BA(B?)

=
|

=
[

v

fo has n/2 coefficients
Evaluate fo at all (n/2)-th roots of unity by recursive application
Same for f;

v

v

» Apply recursively through logn levels

post. cryptography

22



Vectorizing the NTT

v

v

v

v

v

First thing to do: replace recursion by iteration
Loop over logn levels with n/2 “butterflies” each
Butterfly on level k:

> Pick up fi and f; ok
Multiply f; o1 by a power of w to obtain ¢
Compute f;or < a; —t
Compute f; + a; +t

vyvvVvy

All n/2 butterflies on one level are independent
Vectorize across those butterflies

cryptography

23



Vectorized NTT results

» Giineysu, Oder, Péppelmann, Schwabe, 2013:
> 4480 Sandy Bridge cycles (n = 512, 23-bit ¢)
» Use double-precision floats to represent coefficients

cryptography

24



Vectorized NTT results

» Giineysu, Oder, Péppelmann, Schwabe, 2013:

> 4480 Sandy Bridge cycles (n = 512, 23-bit ¢)

» Use double-precision floats to represent coefficients
» Alkim, Ducas, Péppelmann, Schwabe, 2016:

> 8448 Haswell cycles (n = 1024, 14-bit q)
> Still use doubles

cryptography

24



Vectorized NTT results

» Giineysu, Oder, Péppelmann, Schwabe, 2013:

> 4480 Sandy Bridge cycles (n = 512, 23-bit ¢)

» Use double-precision floats to represent coefficients
» Alkim, Ducas, Péppelmann, Schwabe, 2016:

> 8448 Haswell cycles (n = 1024, 14-bit q)

» Still use doubles
» Longa, Naehrig, 2016:

> 9100 Haswell cycles (n = 1024, 14-bit q)
» Uses vectorized integer arithmetic

cryptography

24



Vectorized NTT results

» Giineysu, Oder, Péppelmann, Schwabe, 2013:
> 4480 Sandy Bridge cycles (n = 512, 23-bit ¢)
» Use double-precision floats to represent coefficients
» Alkim, Ducas, Péppelmann, Schwabe, 2016:
> 8448 Haswell cycles (n = 1024, 14-bit q)
» Still use doubles
» Longa, Naehrig, 2016:
> 9100 Haswell cycles (n = 1024, 14-bit q)
» Uses vectorized integer arithmetic
» Seiler, 2018:

> 2784 Haswell cycles (n = 1024, 14-bit q)
> 460 Haswell cycles (n = 256, 13-bit q)
» Uses vectorized integer arithmetic

cryptography

24



How about hashing?

» NTT-based multiplication is fast
» Consequence: “symmetric’ parts in lattice-based crypto becomes

significant overhead!
» Most important: hashes and XOFs

! i t. cryptography

25



How about hashing?

NTT-based multiplication is fast

Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

Most important: hashes and XOFs

Typical hash construction:

» Process message in blocks
» Each block modifies an internal state
» Cannot vectorize across blocks

v

v

v

v

! ing post: cryptography

25



How about hashing?

NTT-based multiplication is fast

Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

» Most important: hashes and XOFs
» Typical hash construction:

» Process message in blocks

» Each block modifies an internal state

» Cannot vectorize across blocks
Idea: Vectorize internal processing (permutation or compression
function)
Two problems:

» Often strong dependencies between instructions
» Need limited instruction-level parallelism for pipelining

! ing post: cryptography

25



How about hashing?

NTT-based multiplication is fast

Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

» Most important: hashes and XOFs
» Typical hash construction:

» Process message in blocks

» Each block modifies an internal state

» Cannot vectorize across blocks
Idea: Vectorize internal processing (permutation or compression
function)
Two problems:

» Often strong dependencies between instructions

» Need limited instruction-level parallelism for pipelining

Consequence: consider designing with parallel hash/XOF calls!

! ing post: cryptography

25



PQCRYPTO # Lattices

> So far we've looked at lattices, how about other PQCRYPTO?

» Code-based crypto (and some M Q-based crypto) need binary-field
arithmetic

» Typical: operations in Fyr for k € 1,...,20

! i t. cryptography 26




PQCRYPTO # Lattices

> So far we've looked at lattices, how about other PQCRYPTO?
» Code-based crypto (and some M Q-based crypto) need binary-field
arithmetic

v

Typical: operations in Fyr for k €1,...,20

v

Most architectures don't support this efficiently

v

Traditional approach: use lookups (log tables)

post. cryptography

26



PQCRYPTO # Lattices

> So far we've looked at lattices, how about other PQCRYPTO?
» Code-based crypto (and some M Q-based crypto) need binary-field

vV v v v

arithmetic

Typical: operations in Fyr for k €1,...,20
Most architectures don't support this efficiently
Traditional approach: use lookups (log tables)

Obvious question: can vector operations help?

post. cryptography

26



Bitslicing

» So far: vectors of bytes, 32-bit words, floats,. ..

» Consider now vectors of bits

cryptography

27



Bitslicing

So far: vectors of bytes, 32-bit words, floats,. ..
Consider now vectors of bits

Perform arithmetic on those vectors using XOR, AND, OR

vV v vvY

“Simulate hardware implemenations in software”

cryptography

27



Bitslicing

So far: vectors of bytes, 32-bit words, floats,. ..
Consider now vectors of bits
Perform arithmetic on those vectors using XOR, AND, OR

Technique was introduced by Biham in 1997 for DES

>
>
>
» “Simulate hardware implemenations in software”
>
» Bitslicing works for every algorithm

>

Efficient bitslicing needs a huge amount of data-level parallelism

| ing post: cryptography

27



Bitslicing binary polynomials

4-coefficient binary polynomials
(azx3 + agz? + a17 + ag), with a; € {0,1}

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */
typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4d f[64])
{
int 1,j;
for(i=0;i<4;i++)
{
r[i] = 0;
for(j=0;j<64;j++)
r[i] |= (unsigned long long) (1 & (£[j]1 >> i))<<j;

! ing post: cryptography

28



Bitsliced binary-polynomial multiplication

typedef unsigned long long poly4x64[4];
typedef unsigned long long poly7x64[7];

void poly4x64_mul (poly7x64 r, const poly4x64 f, const poly4x64 g)

{
r[0] = £[0] & g[0];

r[1] = (£[0] & g[1]) -~ (£[1] & gl[0]);

r[2] = (£[0] & g[2]) ~ (£[1]1 & g[1]1) ~ (£[2] & g[0l);

r[3] = (£[0] & gl31) ~ (£[1] & gl2]) -~ (£[2] & gl1]1) -~ (£[3] & gl[0l);
r[4] = (£[1] & g[3]) ~ (f[2] & gl[2]1) ~ (£[3] & gl1l);

r[6] = (£[2] & g[3]) ~ (£[3] & gl[2]);

r[6] = (£[3] & gl3]);

post. cryptography 29



McBits (revisited)

» Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
> Low-level: bitsliced arithmetic in Foi, k € {11,...,16}

post. cryptography 30




McBits (revisited)

» Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
> Low-level: bitsliced arithmetic in Foi, k € {11,...,16}
» Higher level:

» Additive FFT for efficient root finding
» Transposed FFT for syndrome computation
» Batcher sort for random permutations

post. cryptography

30



McBits (revisited)

v

Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
Low-level: bitsliced arithmetic in Fyr, k& € {11,...,16}
Higher level:

» Additive FFT for efficient root finding
» Transposed FFT for syndrome computation
» Batcher sort for random permutations

v

v

Results:

» 75935744 lvy Bridge cycles for 256 decodings at = 256-bit
pre-quantum security

> Not 75935 744/256 = 296 624 cycles for one decoding

» Reason: Need 256 independent decodings for parallelism

v

P cryptography

30



McBits (revisited)

» Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
> Low-level: bitsliced arithmetic in Foi, k € {11,...,16}
» Higher level:
» Additive FFT for efficient root finding
» Transposed FFT for syndrome computation
» Batcher sort for random permutations
> Results:
» 75935744 lvy Bridge cycles for 256 decodings at = 256-bit
pre-quantum security
> Not 75935 744/256 = 296 624 cycles for one decoding
» Reason: Need 256 independent decodings for parallelism
» Chou, CHES 2017: use internal parallelism

> Target even higher security (297 bits pre-quantum)
» Does not require independent decryptions
» Even faster, even when considering throughput

I ing post: cryptography

30



How about M Q?

» Most important operation: evaluate system of quadratic equations
> Massively parallel, efficiently vectorizable

I ing post: cryptography

31



How about M Q7

Most important operation: evaluate system of quadratic equations
Massively parallel, efficiently vectorizable
Distinguish 3 (or 4) different cases, depending on the field

vV v v v

F31: 16-bit-word vector elements, use integer arithmetic

! ing post: cryptography

31



How about M Q7

Most important operation: evaluate system of quadratic equations
Massively parallel, efficiently vectorizable

Distinguish 3 (or 4) different cases, depending on the field

F31: 16-bit-word vector elements, use integer arithmetic

Fy/Fy: Use bitslicing

vV vVv.v v Y

! ing post: cryptography

31



How about M Q7

Most important operation: evaluate system of quadratic equations
Massively parallel, efficiently vectorizable

Distinguish 3 (or 4) different cases, depending on the field

F31: 16-bit-word vector elements, use integer arithmetic

Fy/Fy: Use bitslicing

F16/Fa56: Use vector-permute instructions for table lookups

vV Vv vV v v .Y

For Fo56 use tower-field arithmetic on top of g

! ing post: cryptography

31



Recent M Q results

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe, 2016:
64 eqns in 64 vars over F31: 6616 Haswell cycles

post. cryptography 32




Recent M Q results

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe, 2016:

64 eqns in 64 vars over F31: 6616 Haswell cycles
» Chen, Li, Peng, Yang, Cheng, 2017:

>

vVYyY vy VvVyYy

256 eqns in 256 vars over Fo: 92800 Haswell cycles
128 eqns in 128 vars over F4: 32300 Haswell cycles
64 eqns in 64 vars over Fi5: 9600 Haswell cycles
64 eqns in 64 vars over F3;: 8700 Haswell cycles
64 eqns in 64 vars over Fas6: 16200 Haswell cycles
In particular for F2 speedups for public inputs

cryptography

32



Recent M Q results

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe, 2016:
64 eqns in 64 vars over F31: 6616 Haswell cycles
» Chen, Li, Peng, Yang, Cheng, 2017:
» 256 eqns in 256 vars over Fa: 92800 Haswell cycles
128 eqns in 128 vars over F4: 32300 Haswell cycles
64 eqns in 64 vars over Fi5: 9600 Haswell cycles
64 eqns in 64 vars over F3;: 8700 Haswell cycles
64 eqns in 64 vars over Fas6: 16200 Haswell cycles
In particular for F2 speedups for public inputs

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe, 2017:
128 eqns in 128 vars over Fy: 17558 Haswell cycles (batched)

vVYyY vy VvVyYy

! ing post: cryptography

32



Vectorizing hash-based signatures

» | said earlier that hashes are hard to vectorize
» How about hash-based signatures?

cryptography

33



Vectorizing hash-based signatures

| said earlier that hashes are hard to vectorize

How about hash-based signatures?

Most speed-critical operation is Winternitz public-key computation
Compute 67 independent hash chains of length 16 each

All hashes have the same (short) input length

vV V. v v v .Y

This is trivially vectorizable!

post. cryptography

33



Vectorizing hash-based signatures

| said earlier that hashes are hard to vectorize

How about hash-based signatures?

Most speed-critical operation is Winternitz public-key computation
Compute 67 independent hash chains of length 16 each

All hashes have the same (short) input length

This is trivially vectorizable!

vV VY vV vV vV VY

Examples:
» Oliveira, Lépez, Cabral, 2017: Optimize LMS and XMSS
> ~ 10ms for XMSS signing (h = 20) on Skylake

post. cryptography

33



Vectorizing hash-based signatures

vV VY vV vV vV VY

| said earlier that hashes are hard to vectorize

How about hash-based signatures?

Most speed-critical operation is Winternitz public-key computation

Compute 67 independent hash chains of length 16 each

All hashes have the same (short) input length

This is trivially vectorizable!

Examples:

>

>

>

v

Oliveira, Lépez, Cabral, 2017: Optimize LMS and XMSS
~ 10ms for XMSS signing (h = 20) on Skylake
Bernstein, Hopwood, Hiilsing, Lange, Niederhagen,

Papachristodoulou, Schneider, Schwabe, Wilcox-O'Hearn, 2015:

Optimize SPHINCS

Vectorize also Merkle-tree hashes inside HORST computation

~ 52 Mio cycles for signing on Haswell

cryptography

33



Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

v < (mfi], m[j], m[k], m[])

ing post: cryptography 34




Additional benefits

Two things very inefficient to vectorize
1. Variably indexed lookups:
v <= (mfi], m[j], m[k], m[])
2. Branches

v (c[0]?a : b,c[1]?c : d,c[2]?e: f,c[3]?7g : h)

ing post: cryptography 34




Additional benefits
Two things very inefficient to vectorize
1. Variably indexed lookups:
v <= (mfi], m[j], m[k], m[])
2. Branches

v (c[0]?a : b,c[1]?c : d,c[2]?e: f,c[3]?7g : h)

Rethink algorithms

» Consequence: rethink algorithms without those constructs
» Different approach to thinking algorithms: a lot of fun!

post. cryptography

34



Additional benefits

Two things very inefficient to vectorize
1. Variably indexed lookups:
v < (mfi], m[j], m[k], m[])
2. Branches

v (c[0]?a : b,c[1]?c : d,c[2]?e: f,c[3]?7g : h)

Rethink algorithms

Consequence: rethink algorithms without those constructs

S

» Different approach to thinking algorithms: a lot of fun!

» More importantly: eliminates most notorious timing side channels!
>

Efficient vectorized implementations are often also “constant-time”

! post. cryptography

34



References

» Alkim, Bindel, Buchmann, Dagdelen, Schwabe: TESLA:
Tightly-Secure Efficient Signatures from Standard Lattices.
https://cryptojedi.org/papers/#tesla (superseded by
https://eprint.iacr.org/2015/755)

» Bernstein, Chuengsatiansup, Lange, van Vredendaal: NTRU Prime:
reducing attack surface at low cost. http://cr.yp.to/papers.
html#ntruprime

» Hiilsing, Rijneveld, Schanck, Schwabe: High-speed key encapsulation
from NTRU. https://cryptojedi.org/papers/#ntrukem

post. cryptography

35


https://cryptojedi.org/papers/#tesla
https://eprint.iacr.org/2015/755
http://cr.yp.to/papers.html#ntruprime
http://cr.yp.to/papers.html#ntruprime
https://cryptojedi.org/papers/#ntrukem

References

» Giineysu, Oder, Péppelmann, Schwabe: Software speed records for
lattice-based signatures. https://cryptojedi.org/papers/#
lattisigns

» Alkim, Ducas, Péppelmann, Schwabe: Post-quantum key exchange
— a new hope. https://cryptojedi.org/papers/#newhope

» Longa, Naehrig: Speeding up the Number Theoretic Transform for
Faster Ideal Lattice-Based Cryptography. https://eprint.iacr.
org/2016/504

> Seiler: Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography https://eprint.iacr.org/2018/039

post. cryptography

35


https://cryptojedi.org/papers/#lattisigns
https://cryptojedi.org/papers/#lattisigns
https://cryptojedi.org/papers/#newhope
https://eprint.iacr.org/2016/504
https://eprint.iacr.org/2016/504
https://eprint.iacr.org/2018/039

References

» Bernstein, Chou, Schwabe: McBits: fast constant-time code-based
cryptography. https://cryptojedi.org/papers/#mcbits

» Chou: McBits revisited. https://eprint.iacr.org/2017/793

post. cryptography

35


https://cryptojedi.org/papers/#mcbits
https://eprint.iacr.org/2017/793

References

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe: From 5-pass
MQ-based identification to MQ-based signatures. https://
cryptojedi.org/papers/#mqdss

» Chen, Li, Peng, Yang, Cheng: Implementing 128-bit Secure MPKC
Signatures. https://eprint.iacr.org/2017/636

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe: SOFIA: MQ-based
signatures in the QROM. https://cryptojedi.org/papers/#
sofia

post. cryptography

35


https://cryptojedi.org/papers/#mqdss
https://cryptojedi.org/papers/#mqdss
https://eprint.iacr.org/2017/636
https://cryptojedi.org/papers/#sofia
https://cryptojedi.org/papers/#sofia

References

» Oliveira, Lépez, Cabral: High Performance of Hash-based Signature
Schemes http://thesai.org/Publications/ViewPaper?
Volume=8&Issue=3&Code=IJACSA&SerialNo=58

» Bernstein, Hopwood, Hiilsing, Lange, Niederhagen,
Papachristodoulou, Schneider, Schwabe, Wilcox-O'Hearn:
SPHINCS: practical stateless hash-based signatures. https://
cryptojedi.org/papers/#sphincs

post. cryptography

35


http://thesai.org/Publications/ViewPaper?Volume=8&Issue=3&Code=IJACSA&SerialNo=58
http://thesai.org/Publications/ViewPaper?Volume=8&Issue=3&Code=IJACSA&SerialNo=58
https://cryptojedi.org/papers/#sphincs
https://cryptojedi.org/papers/#sphincs

