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Part |: How to make software secure
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Timing Attacks

General idea of those attacks

> Secret data has influence on timing of software
> Attacker measures timing
> Attacker computes influence™' to obtain secret data
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Timing Attacks

General idea of those attacks

> Secret data has influence on timing of software
> Attacker measures timing
» Attacker computes influence™! to obtain secret data

Two kinds of remote. ..

» Timing attacks are a type of side-channel attacks
» Unlike other side-channel attacks, they work remotely:
» Some need to run attack code in parallel to the target software
Attacker can log in remotely (ssh)
Some attacks work by measuring network delays
Attacker does not even need an account on the target machine

v VvYyy

» Can't protect against timing attacks by locking a room
» This talk: don't consider “local” side-channel attacks
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Problem No. 1

if (secret)
{

do_AQ);
}

else

{
do_BQ);
}
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Examples

» Square-and-multiply (or double-and-add):

“if s is one: multiply”

! ing post. cryptography




Examples

» Square-and-multiply (or double-and-add):
“if s is one: multiply”
» Modular reduction:

“if a > q: subtract ¢ from a”

! ing post. cryptography




Examples

» Square-and-multiply (or double-and-add):
“if s is one: multiply”
» Modular reduction:
“if a > q: subtract ¢ from a”
» Rejection sampling:

“if a < q: accept a”

! ing post. cryptography




Examples

v

Square-and-multiply (or double-and-add):
“if s is one: multiply”

Modular reduction:

v

“if a > q: subtract ¢ from a”
» Rejection sampling:

“if a < q: accept a”

v

Byte-array (tag) comparison:
“if ali] # bli]: return”
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Examples

v

Square-and-multiply (or double-and-add):

“if s is one: multiply”

v

Modular reduction:
“if a > q: subtract ¢ from a”
» Rejection sampling:

“if a < q: accept a”

v

Byte-array (tag) comparison:
“if ali] # bli]: return”

v

Sorting and permuting:

“if @ < b: branch into subroutine”
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Eliminating branches

» So, what do we do with code like this?

if s then
r+ A
else
r<+ B
end if
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Eliminating branches

» So, what do we do with code like this?
if s then
r+ A
else
r<+ B
end if

» Replace by
r«sA+(1—s)B

» Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication
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Eliminating branches

v

So, what do we do with code like this?
if s then
r+ A
else
r<+ B
end if

Replace by

v

r«sA+(1—s)B

v

Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

v

For very fast A and B this can even be faster
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Problem No. 2

table[secret]
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Timing leakage part I

v

Consider lookup table of 32-bit integers

v

Cache lines have 64 bytes

v

Crypto and the attacker’s program run
on the same CPU

Tables are in cache

v
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» The attacker’s program replaces some
cache lines
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Consider lookup table of 32-bit integers

» Cache lines have 64 bytes

Crypto and the attacker’s program run
on the same CPU

» Tables are in cache
» The attacker’s program replaces some

cache lines

Crypto continues, loads from table
again

Attacker loads his data:
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Consider lookup table of 32-bit integers

» Cache lines have 64 bytes

Crypto and the attacker’s program run
on the same CPU

» Tables are in cache
» The attacker’s program replaces some

cache lines

Crypto continues, loads from table
again

Attacker loads his data:

» Fast: cache hit (crypto did not just
load from this line)
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Timing leakage part Il

» Consider lookup table of 32-bit integers

m? » Cache lines have 64 bytes

77

» Crypto and the attacker's program run
on the same CPU

» Tables are in cache

» The attacker’s program replaces some
cache lines

» Crypto continues, loads from table
again
» Attacker loads his data:
» Fast: cache hit (crypto did not just
load from this line)
> Slow: cache miss (crypto just loaded
from this line)
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The general case

Loads from and stores to addresses that depend on secret data
leak secret data.
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“Countermeasure’

» Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
» Idea: Lookups within one cache line should be safe
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» Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
» Idea: Lookups within one cache line should be safe... or are they?

» Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
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“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line

Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”

Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”
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“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”
Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”
Reasons:

» Cache-bank conflicts

» Failed store-to-load forwarding
> DEEEEY
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“Countermeasure’

>

Observation: This simple cache-timing attack does not reveal the
secret address, only the cache line
Idea: Lookups within one cache line should be safe... or are they?
Bernstein, 2005: “Does this guarantee constant-time S-box lookups?
No!”
Osvik, Shamir, Tromer, 2006: “This is insufficient on processors
which leak low address bits”
Reasons:

» Cache-bank conflicts

» Failed store-to-load forwarding

> ..
OpenSSL is using it in BN_mod_exp_mont_consttime
Brickell (Intel), 2011: yeah, it's fine as a countermeasure
Bernstein, Schwabe, 2013: Demonstrate timing variability for access
within one cache line
Yarom, Genkin, Heninger: CacheBleed attack “is able to recover
both 2048-bit and 4096-bit RSA secret keys from OpenSSL 1.0.2f
running on Intel Sandy Bridge processors after observing only 16,000
secret-key operations (decryption, signatures).”
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Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t 1i;
int b;
uint32_t r = table[0];
for(i=1;i<TABLE_LENGTH;i++)
{
b = (i == pos);
cmov (&r, &table[i], b); // See "eliminating branches"

}

return r;
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Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)
{
size_t 1i;
int b;
uint32_t r = table[0];
for(i=1;i<TABLE_LENGTH;i++)
{
b = (i == pos); /* DON’T! Compiler may do funny things! */
cmov (&r, &table[i], b);
}

return r;
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Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t 1i;
int b;
uint32_t r = table[0];
for(i=1;i<TABLE_LENGTH;i++)
{

b = isequal(i, pos);

cmov (&r, &table[i], b);
}

return r;
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Countermeasure, part 2

int isequal(uint32_t a, uint32_t b)

{

size_t i; uint32_t r = O;
unsigned char *ta = (unsigned char *)&a;
unsigned char *tb = (unsigned char *)&b;
for(i=0;i<sizeof (uint32_t) ;i++)
{
r |= (talil ~ tb[il);
X
r = (-r) > 31;
return (int) (1-r);

cryptography
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Part II: How to make software fast
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Vector computations

Scalar computation

» Load 32-bit integer a
» Load 32-bit integer b

» Perform addition
c+—a+b

» Store 32-bit integer ¢

Vectorized computation

» Load 4 consecutive 32-bit integers
(a0, a1, az,a3)

» Load 4 consecutive 32-bit integers
(bo, b1, b2, b3)

» Perform addition (co, c1, ¢a,c3)
(ao + bg, a1 + b1, as + ba, az + bg)

» Store 128-bit vector (co, ¢1, 2, ¢3)
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Scalar computation

» Load 32-bit integer a
» Load 32-bit integer b

» Perform addition
c+—a+b
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» Load 4 consecutive 32-bit integers
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» Perform addition (co, c1, ¢a,c3)
(ao + bg, a1 + b1, as + ba, az + bg)

» Store 128-bit vector (co, ¢1, 2, ¢3)

» Perform the same operations on independent data streams (SIMD)

» Vector instructions available on most “large” processors

» Instructions for vectors of bytes, integers, floats. ..
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Vector computations

Scalar computation

>

Load 32-bit integer a

» Load 32-bit integer b

Perform addition
c+—a+b

Store 32-bit integer ¢

vV v.v. v Yy

Vectorized computation

» Load 4 consecutive 32-bit integers
(a0, a1, az,a3)

» Load 4 consecutive 32-bit integers
(bo, b1, b2, b3)

» Perform addition (co, c1, ¢a,c3)
(ao + bg, a1 + b1, as + ba, az + bg)

» Store 128-bit vector (co, ¢1, 2, ¢3)

Perform the same operations on independent data streams (SIMD)
Vector instructions available on most “large” processors
Instructions for vectors of bytes, integers, floats. ..

Need to interleave data items (e.g., 32-bit integers) in memory

Compilers will not help with vectorization
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Vector computations

Scalar computation

>

Load 32-bit integer a

» Load 32-bit integer b

Perform addition
c+—a+b

Store 32-bit integer ¢

vV v.v. v Yy

Vectorized computation

» Load 4 consecutive 32-bit integers
(a0, a1, az,a3)

» Load 4 consecutive 32-bit integers
(bo, b1, b2, b3)

» Perform addition (co, c1, ¢a,c3)
(ao + bg, a1 + b1, as + ba, az + bg)

» Store 128-bit vector (co, ¢1, 2, ¢3)

Perform the same operations on independent data streams (SIMD)
Vector instructions available on most “large” processors
Instructions for vectors of bytes, integers, floats. ..

Need to interleave data items (e.g., 32-bit integers) in memory

Compilers will not really help with vectorization
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Why is this so great?

» Consider the Intel Skylake processor
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» 32-bit store throughput: 1 per cycle
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» Consider the Intel Skylake processor
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32-bit load throughput: 2 per cycle
32-bit add throughput: 4 per cycle
32-bit store throughput: 1 per cycle
256-bit load throughput: 2 per cycle
8x 32-bit add throughput: 3 per cycle
256-bit store throughput: 1 per cycle
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» 32-bit load throughput: 2 per cycle
32-bit add throughput: 4 per cycle
32-bit store throughput: 1 per cycle
256-bit load throughput: 2 per cycle
8x 32-bit add throughput: 3 per cycle
256-bit store throughput: 1 per cycle

v vy vy VvYy

» Vector instructions are almost as fast as scalar instructions but
do 8x the work
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Why is this so great?

v

v

v

v

Consider the Intel Skylake processor

» 32-bit load throughput: 2 per cycle
32-bit add throughput: 4 per cycle
32-bit store throughput: 1 per cycle
256-bit load throughput: 2 per cycle
8x 32-bit add throughput: 3 per cycle
256-bit store throughput: 1 per cycle

v vy vy VvYy

Vector instructions are almost as fast as scalar instructions but
do 8x the work

Situation on other architectures/microarchitectures is similar

Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)
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Take-home message

“Big multipliers are pre-quantum,
vectorization is post-quantum”

post. cryptography 15




Standard-lattice-based schemes

» Standard-lattices operate on matrices over Z,, for “small” ¢
» These are trivially vectorizable
» So trivial that even compilers may do it!
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Standard-lattices operate on matrices over Z,, for “small” ¢
These are trivially vectorizable
So trivial that even compilers may do it!

Standard-lattice-based signatures (e.g., Bai-Galbraith):

> Multiple attempts for signing (rejection sampling)
» Each attempt: compute Av for fixed A

vV v v Y
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> Multiple attempts for signing (rejection sampling)
» Each attempt: compute Av for fixed A

vV v v Y

More efficient:

v

» Compute multiple products Av;
» Typically ignore some results
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Standard-lattice-based schemes

Standard-lattices operate on matrices over Z,, for “small” ¢
These are trivially vectorizable
So trivial that even compilers may do it!

Standard-lattice-based signatures (e.g., Bai-Galbraith):

> Multiple attempts for signing (rejection sampling)
» Each attempt: compute Av for fixed A

vV v v Y

More efficient:

v

» Compute multiple products Av;
» Typically ignore some results

Reason: reuse coefficients of A in cache

v

cryptography
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Structured lattices

» Structured lattices (NTRU, RLWE, MLWE) work with polynomials
» Most important operation: multiply polynomials
» Obvious question: How do we vectorize polynomial multiplication?
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Structured lattices

Structured lattices (NTRU, RLWE, MLWE) work with polynomials
Most important operation: multiply polynomials
Obvious question: How do we vectorize polynomial multiplication?

vV v.v v

Let's take an example:

ro = fogo

r1 = fog1 + f190

r2 = fog2 + f191 + f290

r3 = fogs + f192 + fag1 + f390
T4 = f193 + fog2 + f301

5 = f2g3 + f392

T6 = f393
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Most important operation: multiply polynomials
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Let's take an example:

ro = fogo

r1 = fog1 + f190

r2 = fog2 + f191 + f290

r3 = fogs + f192 + fag1 + f390
T4 = f193 + fog2 + f301

5 = f2g3 + f392

T6 = f393

» Can eas”y load (f05f17f27f3) and (g07g1592593)
> MUItlplyv obtain (ngOaf1g17f2927f393)

Structured lattices (NTRU, RLWE, MLWE) work with polynomials

Obvious question: How do we vectorize polynomial multiplication?
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Structured lattices

vV v.v v

» Can easily load (fo, f1, f2, f3) and (g0, 91, 92, 93)

To

Let's take an example:

= fogo

= fog1 + f190

= fog2 + f191 + f290

= fogs + f192 + f291 + f390
= f193 + f292 + f301

= f293 + [392

= [393

> Multiply, obtain (fogo, f191, f292, f393)

» And now what?

Structured lattices (NTRU, RLWE, MLWE) work with polynomials
Most important operation: multiply polynomials
Obvious question: How do we vectorize polynomial multiplication?
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Structured lattices

vV v.v v

vV v. vy

Structured lattices (NTRU, RLWE, MLWE) work with polynomials
Most important operation: multiply polynomials

Obvious question: How do we vectorize polynomial multiplication?
Let's take an example:

ro = fogo

r1 = fog1 + f190

r2 = fog2 + f191 + f290

r3 = fogs + f192 + fag1 + f390
T4 = f193 + fog2 + f301

5 = f2g3 + f392

T6 = f393

Can eas”y load (f05f17f27f3) and (g07g1592593)

Multiply, obtain (fogo, f191, f292, f393)
And now what?

Looks like we need to shuffle a lot!

post. cryptography
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Karatsuba and Toom

» Our polynomials have many more coefficients (say, 256-1024)
> Idea: use Karatsuba's trick:

» consider n = 2k-coefficient polynomials f and g
» Split multiplication f - g into 3 half-size multiplications

(fe+X"fn) - (90 + X*gn)
= foge + X*(fogn + frge) + X" fagn
= foge + X*((fo + fn)(ge + gn) — fege — fagn) + X" frgn

post. cryptography

18



Karatsuba and Toom

» Our polynomials have many more coefficients (say, 256-1024)
> Idea: use Karatsuba's trick:

» consider n = 2k-coefficient polynomials f and g
» Split multiplication f - g into 3 half-size multiplications

(fe+X"fn) - (90 + X*gn)
= foge + X*(fogn + frge) + X" fagn
= foge + X*((fo + fn)(ge + gn) — fege — fagn) + X" frgn

» Apply recursively to obtain 9 quarter-size multiplications, 27
eighth-size multiplications etc.
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Karatsuba and Toom

» Our polynomials have many more coefficients (say, 256-1024)
> Idea: use Karatsuba's trick:

» consider n = 2k-coefficient polynomials f and g
» Split multiplication f - g into 3 half-size multiplications

(fe+X"fn) - (90 + X*gn)
= foge + X*(fogn + frge) + X" fagn
= foge + X*((fo + fn)(ge + gn) — fege — fagn) + X" frgn

» Apply recursively to obtain 9 quarter-size multiplications, 27
eighth-size multiplications etc.

> Generalization: Toom-Cook. Obtain, e.g., 5 third-size multiplications

» Split into sufficiently many “small” multiplications, vectorize across
those
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Transposing/Interleaving

» Small example: compute a-b, c-d, e-f, g-h

» Each factor with 3 coefficients, e.g., a = ag + a1 X + a2 X?>
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» Each factor with 3 coefficients, e.g., a = ag + a1 X + a2 X?>
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Transposing/Interleaving

» Small example: compute a-b, c-d, e-f, g-h
» Each factor with 3 coefficients, e.g., a = ag + a1 X + a2 X?>
» Coefficients in memory:

a0, al, a2, b0, bl, b2, c0,..., hl, h2
» Problem:

> Vector loads will yield
vo = (a0, a1, az,bo) ve = (g2, ho, h1, h2)
» However, we need

vo = (ao, co, €0, ho) ve = (b2, d2, f2, g2)
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Transposing/Interleaving

» Small example: compute a-b, c-d, e-f, g-h
» Each factor with 3 coefficients, e.g., a = ag + a1 X + a2 X?>
» Coefficients in memory:
a0, al, a2, b0, bl, b2, c0,..., hl, h2
» Problem:
> Vector loads will yield
vo = (a0, a1, az,bo) ve = (g2, ho, h1, h2)
» However, we need
vo = (ao, co, €0, ho) . ve = (b2, d2, f2, g2)
» Solution: transpose data matrix (or interleave words):

a0, c0, e0, hO, a1, c1, el,..., £2, g2
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Two applications of Karatsuba/Toom

Streamlined NTRU Prime 459175
Multiply in the ring R = Zy501[X]/(X™ — X — 1)
Pad input polynomial to 768 coefficients

v

v

v

5 levels of Karatsuba: 243 multiplications of 24-coefficient
polynomials

v

Massively lazy reduction using double-precision floats

v

28 682 Haswell cycles for multiplication in R
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Two applications of Karatsuba/Toom

Streamlined NTRU Prime 4591761
» Multiply in the ring R = Zss01[X]/(X7! — X — 1)
» Pad input polynomial to 768 coefficients

> 5 levels of Karatsuba: 243 multiplications of 24-coefficient
polynomials

v

Massively lazy reduction using double-precision floats

v

28 682 Haswell cycles for multiplication in R

NTRU-HRSS-KEM
» Multiply in the ring R = Zg192[X]/(X™ — 1)

» Use Toom-Cook to split into 7 quarter-size, then 2 levels of
Karatsuba

» Obtain 63 multiplications of 44-coefficient polynomials

» 11722 Haswell cycles for multiplication in R

post. cryptography

20



We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:

> Work in polynomial ring R = Z4[X]/(X"™ + 1)
» Choose n a power of 2
> Choose q prime, s.t. 2n divides (¢ — 1)
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We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:

> Work in polynomial ring R = Z4[X]/(X"™ + 1)

» Choose n a power of 2

> Choose q prime, s.t. 2n divides (¢ — 1)
» Examples: NewHope (n = 1024, ¢ = 12289), Kyber

(n = 256,q = 7681)

» Big advantage: fast negacyclic number-theoretic transform
» Given g € R, n-th primitive root of unity w and ¥ = y/w, compute

n—1
NTT(g) =g=>_ &X', with
=0
n—1 )
gi =Y W gw,
j=0
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We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:
> Work in polynomial ring R = Z4[X]/(X"™ + 1)
» Choose n a power of 2
> Choose q prime, s.t. 2n divides (¢ — 1)

Examples: NewHope (n = 1024, ¢ = 12289), Kyber
(n = 256, q = 7681)

v

» Big advantage: fast negacyclic number-theoretic transform
» Given g € R, n-th primitive root of unity w and ¥ = y/w, compute
n—1
NTT(g) =g=>_ &X', with
=0
n—1
Gi= 3 W,
§=0

v

Compute f-gas NTT X (NTT(f) o NTT(g))
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We can do better: NTTs

» Many LWE/MLWE systems use very specific parameters:
> Work in polynomial ring R = Z4[X]/(X"™ + 1)
» Choose n a power of 2
> Choose q prime, s.t. 2n divides (¢ — 1)

Examples: NewHope (n = 1024, ¢ = 12289), Kyber
(n = 256, q = 7681)

v

» Big advantage: fast negacyclic number-theoretic transform
» Given g € R, n-th primitive root of unity w and ¥ = y/w, compute
n—1
NTT(g) =g=>_ &X', with
=0
n—1
Gi= 3 W,
§=0

v

Compute f-gas NTT X (NTT(f) o NTT(g))
NTT ! is essentially the same computation as NTT

v
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Zooming into the NTT

» FFT in a finite field
» Evaluate polynomial f = fo+ f1X +---+ f,_1 X" ! at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(X?) + X f1(X?)
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» Evaluate polynomial f = fo+ f1X +---+ f,_1 X" ! at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(X?) + X f1(X?)
> Huge overlap between evaluating

f(B) = f0(52) + 5f1(ﬂ2) and
fo(B) = BA(B?)
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Zooming into the NTT

» FFT in a finite field
» Evaluate polynomial f = fo+ f1X +---+ f,_1 X" ! at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(X?) + X f1(X?)
> Huge overlap between evaluating

f(B) = f0(52) + 5f1(ﬂ2) and
fo(B) = BA(B?)

=
|

=
[

v

fo has n/2 coefficients
Evaluate fo at all (n/2)-th roots of unity by recursive application
Same for f;

v

v
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Zooming into the NTT

» FFT in a finite field
» Evaluate polynomial f = fo+ f1X +---+ f,_1 X" ! at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(X?) + X f1(X?)
> Huge overlap between evaluating

f(B) = f0(52) + 5f1(ﬂ2) and
fo(B) = BA(B?)

=
|

=
[

v

fo has n/2 coefficients
Evaluate fo at all (n/2)-th roots of unity by recursive application
Same for f;

v

v

» Apply recursively through logn levels
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Vectorizing the NTT

v

v

v

v

v

First thing to do: replace recursion by iteration
Loop over logn levels with n/2 “butterflies” each
Butterfly on level k:

> Pick up fi and f; ok
Multiply f; o1 by a power of w to obtain ¢
Compute f;or < a; —t
Compute f; + a; +t

vyvvVvy

All n/2 butterflies on one level are independent
Vectorize across those butterflies
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Vectorized NTT results

» Giineysu, Oder, Péppelmann, Schwabe, 2013:
> 4480 Sandy Bridge cycles (n = 512, 23-bit ¢)
» Use double-precision floats to represent coefficients
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» Use double-precision floats to represent coefficients
» Alkim, Ducas, Péppelmann, Schwabe, 2016:

> 8448 Haswell cycles (n = 1024, 14-bit q)

» Still use doubles
» Longa, Naehrig, 2016:

> 9100 Haswell cycles (n = 1024, 14-bit q)
» Uses vectorized integer arithmetic
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Vectorized NTT results

» Giineysu, Oder, Péppelmann, Schwabe, 2013:
> 4480 Sandy Bridge cycles (n = 512, 23-bit ¢)
» Use double-precision floats to represent coefficients
» Alkim, Ducas, Péppelmann, Schwabe, 2016:
> 8448 Haswell cycles (n = 1024, 14-bit q)
» Still use doubles
» Longa, Naehrig, 2016:
> 9100 Haswell cycles (n = 1024, 14-bit q)
» Uses vectorized integer arithmetic
» Seiler, 2018:

> 2784 Haswell cycles (n = 1024, 14-bit q)
> 460 Haswell cycles (n = 256, 13-bit q)
» Uses vectorized integer arithmetic
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How about hashing?

» NTT-based multiplication is fast
» Consequence: “symmetric’ parts in lattice-based crypto becomes

significant overhead!
» Most important: hashes and XOFs
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How about hashing?

NTT-based multiplication is fast

Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

Most important: hashes and XOFs

Typical hash construction:

» Process message in blocks
» Each block modifies an internal state
» Cannot vectorize across blocks

v

v

v

v
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How about hashing?

NTT-based multiplication is fast

Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

» Most important: hashes and XOFs
» Typical hash construction:

» Process message in blocks

» Each block modifies an internal state

» Cannot vectorize across blocks
Idea: Vectorize internal processing (permutation or compression
function)
Two problems:

» Often strong dependencies between instructions
» Need limited instruction-level parallelism for pipelining
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How about hashing?

NTT-based multiplication is fast

Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

» Most important: hashes and XOFs
» Typical hash construction:

» Process message in blocks

» Each block modifies an internal state

» Cannot vectorize across blocks
Idea: Vectorize internal processing (permutation or compression
function)
Two problems:

» Often strong dependencies between instructions

» Need limited instruction-level parallelism for pipelining

Consequence: consider designing with parallel hash/XOF calls!

! ing post: cryptography
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PQCRYPTO # Lattices

> So far we've looked at lattices, how about other PQCRYPTO?

» Code-based crypto (and some M Q-based crypto) need binary-field
arithmetic

» Typical: operations in Fyr for k € 1,...,20

! i t. cryptography 26




PQCRYPTO # Lattices

> So far we've looked at lattices, how about other PQCRYPTO?
» Code-based crypto (and some M Q-based crypto) need binary-field
arithmetic

v

Typical: operations in Fyr for k €1,...,20

v

Most architectures don't support this efficiently

v

Traditional approach: use lookups (log tables)
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PQCRYPTO # Lattices

> So far we've looked at lattices, how about other PQCRYPTO?
» Code-based crypto (and some M Q-based crypto) need binary-field

vV v v v

arithmetic

Typical: operations in Fyr for k €1,...,20
Most architectures don't support this efficiently
Traditional approach: use lookups (log tables)

Obvious question: can vector operations help?
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Bitslicing

» So far: vectors of bytes, 32-bit words, floats,. ..

» Consider now vectors of bits
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Bitslicing

So far: vectors of bytes, 32-bit words, floats,. ..
Consider now vectors of bits

Perform arithmetic on those vectors using XOR, AND, OR

vV v vvY

“Simulate hardware implemenations in software”
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Bitslicing

So far: vectors of bytes, 32-bit words, floats,. ..
Consider now vectors of bits
Perform arithmetic on those vectors using XOR, AND, OR

Technique was introduced by Biham in 1997 for DES

>
>
>
» “Simulate hardware implemenations in software”
>
» Bitslicing works for every algorithm

>

Efficient bitslicing needs a huge amount of data-level parallelism

| ing post: cryptography

27



Bitslicing binary polynomials

4-coefficient binary polynomials
(azx3 + agz? + a17 + ag), with a; € {0,1}

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */
typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4d f[64])
{
int 1,j;
for(i=0;i<4;i++)
{
r[i] = 0;
for(j=0;j<64;j++)
r[i] |= (unsigned long long) (1 & (£[j]1 >> i))<<j;
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Bitsliced binary-polynomial multiplication

typedef unsigned long long poly4x64[4];
typedef unsigned long long poly7x64[7];

void poly4x64_mul (poly7x64 r, const poly4x64 f, const poly4x64 g)

{
r[0] = £[0] & g[0];

r[1] = (£[0] & g[1]) -~ (£[1] & gl[0]);

r[2] = (£[0] & g[2]) ~ (£[1]1 & g[1]1) ~ (£[2] & g[0l);

r[3] = (£[0] & gl31) ~ (£[1] & gl2]) -~ (£[2] & gl1]1) -~ (£[3] & gl[0l);
r[4] = (£[1] & g[3]) ~ (f[2] & gl[2]1) ~ (£[3] & gl1l);

r[6] = (£[2] & g[3]) ~ (£[3] & gl[2]);

r[6] = (£[3] & gl3]);

post. cryptography 29



McBits (revisited)

» Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
> Low-level: bitsliced arithmetic in Foi, k € {11,...,16}
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McBits (revisited)

» Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
> Low-level: bitsliced arithmetic in Foi, k € {11,...,16}
» Higher level:

» Additive FFT for efficient root finding
» Transposed FFT for syndrome computation
» Batcher sort for random permutations

post. cryptography

30



McBits (revisited)

v

Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
Low-level: bitsliced arithmetic in Fyr, k& € {11,...,16}
Higher level:

» Additive FFT for efficient root finding
» Transposed FFT for syndrome computation
» Batcher sort for random permutations

v

v

Results:

» 75935744 lvy Bridge cycles for 256 decodings at = 256-bit
pre-quantum security

> Not 75935 744/256 = 296 624 cycles for one decoding

» Reason: Need 256 independent decodings for parallelism

v
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McBits (revisited)

» Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
> Low-level: bitsliced arithmetic in Foi, k € {11,...,16}
» Higher level:
» Additive FFT for efficient root finding
» Transposed FFT for syndrome computation
» Batcher sort for random permutations
> Results:
» 75935744 lvy Bridge cycles for 256 decodings at = 256-bit
pre-quantum security
> Not 75935 744/256 = 296 624 cycles for one decoding
» Reason: Need 256 independent decodings for parallelism
» Chou, CHES 2017: use internal parallelism

> Target even higher security (297 bits pre-quantum)
» Does not require independent decryptions
» Even faster, even when considering throughput
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How about M Q?

» Most important operation: evaluate system of quadratic equations
> Massively parallel, efficiently vectorizable
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How about M Q7

Most important operation: evaluate system of quadratic equations
Massively parallel, efficiently vectorizable
Distinguish 3 (or 4) different cases, depending on the field

vV v v v

F31: 16-bit-word vector elements, use integer arithmetic
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How about M Q7

Most important operation: evaluate system of quadratic equations
Massively parallel, efficiently vectorizable

Distinguish 3 (or 4) different cases, depending on the field

F31: 16-bit-word vector elements, use integer arithmetic

Fy/Fy: Use bitslicing

vV vVv.v v Y
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How about M Q7

Most important operation: evaluate system of quadratic equations
Massively parallel, efficiently vectorizable

Distinguish 3 (or 4) different cases, depending on the field

F31: 16-bit-word vector elements, use integer arithmetic

Fy/Fy: Use bitslicing

F16/Fa56: Use vector-permute instructions for table lookups

vV Vv vV v v .Y

For Fo56 use tower-field arithmetic on top of g
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Recent M Q results

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe, 2016:
64 eqns in 64 vars over F31: 6616 Haswell cycles
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Recent M Q results

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe, 2016:

64 eqns in 64 vars over F31: 6616 Haswell cycles
» Chen, Li, Peng, Yang, Cheng, 2017:

>

vVYyY vy VvVyYy

256 eqns in 256 vars over Fo: 92800 Haswell cycles
128 eqns in 128 vars over F4: 32300 Haswell cycles
64 eqns in 64 vars over Fi5: 9600 Haswell cycles
64 eqns in 64 vars over F3;: 8700 Haswell cycles
64 eqns in 64 vars over Fas6: 16200 Haswell cycles
In particular for F2 speedups for public inputs
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Recent M Q results

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe, 2016:
64 eqns in 64 vars over F31: 6616 Haswell cycles
» Chen, Li, Peng, Yang, Cheng, 2017:
» 256 eqns in 256 vars over Fa: 92800 Haswell cycles
128 eqns in 128 vars over F4: 32300 Haswell cycles
64 eqns in 64 vars over Fi5: 9600 Haswell cycles
64 eqns in 64 vars over F3;: 8700 Haswell cycles
64 eqns in 64 vars over Fas6: 16200 Haswell cycles
In particular for F2 speedups for public inputs

» Chen, Hiilsing, Rijneveld, Samardjiska, Schwabe, 2017:
128 eqns in 128 vars over Fy: 17558 Haswell cycles (batched)

vVYyY vy VvVyYy
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Vectorizing hash-based signatures

» | said earlier that hashes are hard to vectorize
» How about hash-based signatures?

cryptography

33



Vectorizing hash-based signatures

| said earlier that hashes are hard to vectorize

How about hash-based signatures?

Most speed-critical operation is Winternitz public-key computation
Compute 67 independent hash chains of length 16 each

All hashes have the same (short) input length

vV V. v v v .Y

This is trivially vectorizable!
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Vectorizing hash-based signatures

| said earlier that hashes are hard to vectorize

How about hash-based signatures?

Most speed-critical operation is Winternitz public-key computation
Compute 67 independent hash chains of length 16 each

All hashes have the same (short) input length

This is trivially vectorizable!

vV VY vV vV vV VY

Examples:
» Oliveira, Lépez, Cabral, 2017: Optimize LMS and XMSS
> ~ 10ms for XMSS signing (h = 20) on Skylake
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Vectorizing hash-based signatures

vV VY vV vV vV VY

| said earlier that hashes are hard to vectorize

How about hash-based signatures?

Most speed-critical operation is Winternitz public-key computation

Compute 67 independent hash chains of length 16 each

All hashes have the same (short) input length

This is trivially vectorizable!

Examples:

>

>

>

v

Oliveira, Lépez, Cabral, 2017: Optimize LMS and XMSS
~ 10ms for XMSS signing (h = 20) on Skylake
Bernstein, Hopwood, Hiilsing, Lange, Niederhagen,

Papachristodoulou, Schneider, Schwabe, Wilcox-O'Hearn, 2015:

Optimize SPHINCS

Vectorize also Merkle-tree hashes inside HORST computation

~ 52 Mio cycles for signing on Haswell
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Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

v < (mfi], m[j], m[k], m[])
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Two things very inefficient to vectorize
1. Variably indexed lookups:
v <= (mfi], m[j], m[k], m[])
2. Branches

v (c[0]?a : b,c[1]?c : d,c[2]?e: f,c[3]?7g : h)
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v <= (mfi], m[j], m[k], m[])
2. Branches

v (c[0]?a : b,c[1]?c : d,c[2]?e: f,c[3]?7g : h)

Rethink algorithms

» Consequence: rethink algorithms without those constructs
» Different approach to thinking algorithms: a lot of fun!
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Additional benefits

Two things very inefficient to vectorize
1. Variably indexed lookups:
v < (mfi], m[j], m[k], m[])
2. Branches

v (c[0]?a : b,c[1]?c : d,c[2]?e: f,c[3]?7g : h)

Rethink algorithms

Consequence: rethink algorithms without those constructs

S

» Different approach to thinking algorithms: a lot of fun!

» More importantly: eliminates most notorious timing side channels!
>

Efficient vectorized implementations are often also “constant-time”
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