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Making (crypto) software fast

On “small” processors

• Step 1: Efficiently map algorithm to (arithmetic) instructions

• Step 2: Reduce memory access

On “interesting” processors

• The above plus exploit parallelism

• Exploit parallelism 6= multicore implementations

• Pipelining: interleave execution of independent instructions

• Requires instruction-level parallelism

• Superscalar execution: multiple units ⇒ multiple ops per cycle

• Choose instructions that keep units busy

• Vectorize!
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Vector computations

Scalar computation

• Load 32-bit integer a

• Load 32-bit integer b

• Perform addition
c ← a+ b

• Store 32-bit integer c

Vectorized computation

• Load 4 consecutive 32-bit integers
(a0, a1, a2, a3)

• Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

• Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• Store 128-bit vector (c0, c1, c2, c3)

• Perform the same operations on independent data streams (SIMD)
• Vector instructions available on most “large” processors
• Instructions for vectors of bytes, integers, floats. . .
• Compilers will not help with vectorization
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Why is this so great?

• Consider the Intel Skylake processor

• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• Vector instructions are almost as fast as scalar instructions but
do 8× the work

• Situation on other architectures/microarchitectures is similar

• Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)

3



Why is this so great?

• Consider the Intel Skylake processor
• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle

• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• Vector instructions are almost as fast as scalar instructions but
do 8× the work

• Situation on other architectures/microarchitectures is similar

• Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)

3



Why is this so great?

• Consider the Intel Skylake processor
• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• Vector instructions are almost as fast as scalar instructions but
do 8× the work

• Situation on other architectures/microarchitectures is similar

• Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)

3



Why is this so great?

• Consider the Intel Skylake processor
• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• Vector instructions are almost as fast as scalar instructions but
do 8× the work

• Situation on other architectures/microarchitectures is similar

• Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)

3



Why is this so great?

• Consider the Intel Skylake processor
• 32-bit load throughput: 2 per cycle
• 32-bit add throughput: 4 per cycle
• 32-bit store throughput: 1 per cycle
• 256-bit load throughput: 2 per cycle
• 8× 32-bit add throughput: 3 per cycle
• 256-bit store throughput: 1 per cycle

• Vector instructions are almost as fast as scalar instructions but
do 8× the work

• Situation on other architectures/microarchitectures is similar

• Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)

3



Take-home message

“Big multipliers are pre-quantum,
vectorization is post-quantum”
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Standard-lattice-based schemes

• Standard-lattices operate on matrices over Zq, for “small” q

• These are trivially vectorizable

• So trivial that even compilers may do it!

• Standard-lattice-based signatures (e.g., Bai-Galbraith):
• Multiple attempts for signing (rejection sampling)
• Each attempt: compute Av for fixed A

• More efficient:
• Compute multiple products Avi

• Typically ignore some results

• Reason: reuse coefficients of A in cache
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Structured lattices

• Structured lattices (NTRU, RLWE, MLWE) work with polynomials
• Most important operation: multiply polynomials
• Obvious question: How do we vectorize polynomial multiplication?

• Let’s take an example:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

• Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

• Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

• And now what?
• Looks like we need to shuffle a lot!
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Karatsuba and Toom

• Our polynomials have many more coefficients (say, 256–1024)
• Idea: use Karatsuba’s trick:

• consider n = 2k-coefficient polynomials f and g

• Split multiplication f · g into 3 half-size multiplications

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b`− ahbh) + X nahbh

• Apply recursively to obtain 9 quarter-size multiplications, 27
eighth-size multiplications etc.

• Generalization: Toom-Cook. Obtain, e.g., 5 third-size multiplications

• Split into sufficiently many “small” multiplications, vectorize across
those

7
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Transposing/Interleaving

• Small example: compute a · b, c · d , e · f , g · h
• Each factor with 3 coefficients, e.g., a = a0 + a1X + a2X

2

• Coefficients in memory:

a0, a1, a2, b0, b1, b2, c0,..., h1, h2

• Problem:
• Vector loads will yield

v0 = (a0, a1, a2, b0) . . . v6 = (g2, h0, h1, h2)

• However, we need

v0 = (a0, c0, e0, h0) . . . v6 = (b2, d2, f2, g2)

• Solution: transpose data matrix (or interleave words):

a0, c0, e0, h0, a1, c1, e1,..., f2, g2
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Two applications of Karatsuba/Toom

Streamlined NTRU Prime 4591761

• Multiply in the ring R = Z4591[X ]/(X 761 − X − 1)

• Pad input polynomial to 768 coefficients

• 5 levels of Karatsuba: 243 multiplications of 24-coefficient
polynomials

• Massively lazy reduction using double-precision floats

• 28 682 Haswell cycles for multiplication in R

NTRU-HRSS-KEM

• Multiply in the ring R = Z8192[X ]/(X 701 − 1)

• Use Toom-Cook to split into 7 quarter-size, then 2 levels of
Karatsuba

• Obtain 63 multiplications of 44-coefficient polynomials

• 11 722 Haswell cycles for multiplication in R
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We can do better: NTTs

• Many LWE/MLWE systems use very specific parameters:
• Work in polynomial ring R = Zq[X ]/(X n + 1)
• Choose n a power of 2
• Choose q prime, s.t. 2n divides (q − 1)

• Examples: NewHope (n = 1024, q = 12289), Kyber
(n = 256, q = 7681)

• Big advantage: fast negacyclic number-theoretic transform
• Given g ∈ R, n-th primitive root of unity ω and ψ =

√
ω, compute

NTT(g) = ĝ =
n−1∑
i=0

ĝiX
i , with

ĝi =
n−1∑
j=0

ψjgjω
ij ,

• Compute f · g as NTT−1(NTT(f ) ◦ NTT(g))
• NTT−1 is essentially the same computation as NTT

10
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Zooming into the NTT

• FFT in a finite field

• Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th roots

of unity

• Divide-and-conquer approach
• Write polynomial f as f0(X 2) + Xf1(X

2)

• Huge overlap between evaluating

f (β) = f0(β
2) + βf1(β

2) and

f (−β) = f0(β
2)− βf1(β2)

• f0 has n/2 coefficients
• Evaluate f0 at all (n/2)-th roots of unity by recursive application
• Same for f1

• Apply recursively through log n levels
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• Same for f1

• Apply recursively through log n levels
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Vectorizing the NTT

• First thing to do: replace recursion by iteration

• Loop over log n levels with n/2 “butterflies” each

• Butterfly on level k :
• Pick up fi and fi+2k

• Multiply fi+2k by a power of ω to obtain t

• Compute fi+2k ← ai − t

• Compute fi ← ai + t

• All n/2 butterflies on one level are independent

• Vectorize across those butterflies

12



Vectorized NTT results

• Güneysu, Oder, Pöppelmann, Schwabe, 2013:
• 4480 Sandy Bridge cycles (n = 512, 23-bit q)
• Use double-precision floats to represent coefficients

• Alkim, Ducas, Pöppelmann, Schwabe, 2016:
• 8448 Haswell cycles (n = 1024, 14-bit q)
• Still use doubles

• Longa, Naehrig, 2016:
• 9100 Haswell cycles (n = 1024, 14-bit q)
• Uses vectorized integer arithmetic

• Seiler, 2018:
• 2784 Haswell cycles (n = 1024, 14-bit q)
• 460 Haswell cycles (n = 256, 13-bit q)
• Uses vectorized integer arithmetic
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How about hashing?

• NTT-based multiplication is fast

• Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

• Most important: hashes and XOFs

• Typical hash construction:
• Process message in blocks
• Each block modifies an internal state
• Cannot vectorize across blocks

• Idea: Vectorize internal processing (permutation or compression
function)

• Two problems:
• Often strong dependencies between instructions
• Need limited instruction-level parallelism for pipelining

• Consequence: consider designing with parallel hash/XOF calls!
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PQCRYPTO 6= Lattices

• So far we’ve looked at lattices, how about other PQCRYPTO?

• Code-based crypto (and someMQ-based crypto) need binary-field
arithmetic

• Typical: operations in F2k for k ∈ 1, . . . , 20

• Most architectures don’t support this efficiently

• Traditional approach: use lookups (log tables)

• Obvious question: can vector operations help?
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Bitslicing

• So far: vectors of bytes, 32-bit words, floats,. . .

• Consider now vectors of bits

• Perform arithmetic on those vectors using XOR, AND, OR

• “Simulate hardware implemenations in software”

• Technique was introduced by Biham in 1997 for DES

• Bitslicing works for every algorithm

• Efficient bitslicing needs a huge amount of data-level parallelism
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Bitslicing binary polynomials

4-coefficient binary polynomials
(a3x

3 + a2x
2 + a1x + a0), with ai ∈ {0, 1}

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */
typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4 x[64])
{

int i,j;
for(i=0;i<4;i++)
{

r[i] = 0;
for(j=0;j<64;j++)

r[i] |= (unsigned long long)(1 & (x[j] >> i))<<j;
}

}

17



Bitsliced binary-polynomial multiplication

typedef unsigned long long poly4x64[4];
typedef unsigned long long poly7x64[7];

void poly4x64_mul(poly7x64 r, const poly4x64 a, const poly4x64 b)
{

r[0] = a[0] & b[0];
r[1] = (a[0] & b[1]) ^ (a[1] & b[0]);
r[2] = (a[0] & b[2]) ^ (a[1] & b[1]) ^ (a[2] & b[0]);
r[3] = (a[0] & b[3]) ^ (a[1] & b[2]) ^ (a[2] & b[1]) ^ (a[3] & b[0]);
r[4] = (a[1] & b[3]) ^ (a[2] & b[2]) ^ (a[3] & b[1]);
r[5] = (a[2] & b[3]) ^ (a[3] & b[2]);
r[6] = (a[3] & b[3]);

}

18



McBits (revisited)

• Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto

• Low-level: bitsliced arithmetic in F2k , k ∈ {11, . . . , 16}

• Higher level:
• Additive FFT for efficient root finding
• Transposed FFT for syndrome computation
• Batcher sort for random permutations

• Results:
• 75 935 744 Ivy Bridge cycles for 256 decodings at ≈ 256-bit

pre-quantum security
• Not 75 935 744/256 = 296 624 cycles for one decoding
• Reason: Need 256 independent decodings for parallelism

• Chou, CHES 2017: use internal parallelism
• Target even higher security (297 bits pre-quantum)
• Does not require independent decryptions
• Even faster, even when considering throughput
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How about MQ?

• Most important operation: evaluate system of quadratic equations

• Massively parallel, efficiently vectorizable

• Distinguish 3 (or 4) different cases, depending on the field

• F31: 16-bit-word vector elements, use integer arithmetic

• F2/F4: Use bitslicing (see Joost’s talk)

• F16/F256: Use vector-permute instructions for table lookups

• For F256 use tower-field arithmetic on top of F16
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Recent MQ results

• Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016:
64 eqns in 64 vars over F31: 6616 Haswell cycles

• Chen, Li, Peng, Yang, Cheng, 2017:
• 256 eqns in 256 vars over F2: 92800 Haswell cycles
• 128 eqns in 128 vars over F4: 32300 Haswell cycles
• 64 eqns in 64 vars over F16: 9600 Haswell cycles
• 64 eqns in 64 vars over F31: 8700 Haswell cycles
• 64 eqns in 64 vars over F256: 16200 Haswell cycles
• In particular for F2 speedups for public inputs

• Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2017:
128 eqns in 128 vars over F4: 17 558 Haswell cycles (batched)
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Vectorizing hash-based signatures

• I said earlier that hashes are hard to vectorize

• How about hash-based signatures?

• Most speed-critical operation is Winternitz public-key computation

• Compute 67 independent hash chains of length 15 each

• All hashes have the same (short) input length

• This is trivially vectorizable!

• Examples:
• Oliveira, López, Cabral, 2017: Optimize LMS and XMSS
• ≈ 10ms for XMSS signing (h = 20) on Skylake

• Bernstein, Hopwood, Hülsing, Lange, Niederhagen,
Papachristodoulou, Schneider, Schwabe, Wilcox-O’Hearn, 2015:
Optimize SPHINCS

• Vectorize also Merkle-tree hashes inside HORST computation
• ≈ 52Mio cycles for signing on Haswell
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Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

v ← (m[i ],m[j ],m[k],m[`])

2. Branches

v ← (c[0]?a : b, c[1]?c : d , c[2]?e : f , c[3]?g : h)

Rethink algorithms

• Consequence: rethink algorithms without those constructs

• Different approach to thinking algorithms: a lot of fun!

• More importantly: eliminates most notorious timing side channels!

• Efficient vectorized implementations are often also “constant-time”
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