
The transition to post-quantum cryptography

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org

October 15, 2018

mailto:peter@cryptojedi.org
https://cryptojedi.org


Crypto today
5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)
• Authenticator (e.g., HMAC, GMAC, Poly1305)
• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



Crypto today
5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)
• Authenticator (e.g., HMAC, GMAC, Poly1305)
• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



Crypto today
5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)
• Authenticator (e.g., HMAC, GMAC, Poly1305)
• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



2



“In the past, people have said, maybe its 50 years away, its a dream,
maybe itll happen sometime. I used to think it was 50. Now Im thinking
like its 15 or a little more. Its within reach. Its within our lifetime. Its
going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

3



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)
• Code-based crypto (mainly PKE)
• Multivariate-based crypto (mainly Sigs)
• Hash-based signatures (only Sigs)
• Isogeny-based crypto (so far, mainly PKE)

4



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)
• Code-based crypto (mainly PKE)
• Multivariate-based crypto (mainly Sigs)
• Hash-based signatures (only Sigs)
• Isogeny-based crypto (so far, mainly PKE)

4



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST

• Widely successful in the past, but also some criticism:
• Small tweaks are typically allowed, but standardized scheme

represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities

• SHA-3 criterion of 512-bit preimage security unnecessary
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition” ctd.

Submission categories
• Cryptographic signatures (only stateless)

• Security for at least 264 signatures per key

• Public-key encryption / key encapsulation
• Passive or active security (CPA or CCA2)

Security categories
• Level 1: Equivalent to AES-128 (pre- and post-quantum)
• Level 2: Equivalent to SHA-256 (pre- and post-quantum)
• Level 3: Equivalent to AES-192 (pre- and post-quantum)
• Level 4: Equivalent to SHA-512 (pre- and post-quantum)
• Level 5: Equivalent to AES-256 (pre- and post-quantum)

6



The NIST PQC “not-a-competition” ctd.

Submission categories
• Cryptographic signatures (only stateless)

• Security for at least 264 signatures per key

• Public-key encryption / key encapsulation
• Passive or active security (CPA or CCA2)

Security categories
• Level 1: Equivalent to AES-128 (pre- and post-quantum)
• Level 2: Equivalent to SHA-256 (pre- and post-quantum)
• Level 3: Equivalent to AES-192 (pre- and post-quantum)
• Level 4: Equivalent to SHA-512 (pre- and post-quantum)
• Level 5: Equivalent to AES-256 (pre- and post-quantum)

6



The NIST competition, initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

7



The NIST competition (ctd.)

“Key exchange”
• What is meant is key encapsulation mechanisms (KEMs)

• (pk, sk)← KeyGen()
• (c, k)← Encaps(pk)
• k ← Decaps(c, sk)

Status of the NIST competition
• In total 69 submissions accepted as “complete and proper”
• Several broken, 5 withdrawn
• Jan 2019: NIST announces 26 round-2 candidates

• 17 KEMs and PKEs
• 9 signature schemes

8



The NIST competition (ctd.)

“Key exchange”
• What is meant is key encapsulation mechanisms (KEMs)

• (pk, sk)← KeyGen()
• (c, k)← Encaps(pk)
• k ← Decaps(c, sk)

Status of the NIST competition
• In total 69 submissions accepted as “complete and proper”
• Several broken, 5 withdrawn
• Jan 2019: NIST announces 26 round-2 candidates

• 17 KEMs and PKEs
• 9 signature schemes

8



Round-2 overview

Signature schemes
• 3 lattice-based
• 2 symmetric-crypto based
• 4 MQ-based

KEMs/PKE
• 9 lattice-based
• 7 code-based
• 1 isogeny-based

9



Round-2 overview

Signature schemes
• 3 lattice-based
• 2 symmetric-crypto based
• 4 MQ-based

KEMs/PKE
• 9 lattice-based
• 7 code-based
• 1 isogeny-based

9



Challenges part 1: Performance

We care about 10% difference in performance

The baseline: ECC
• Today: build asymmetric crypto from elliptic-curve arithmetic
• Given P on a curve, s ∈ Z, compute Q = sP
• ECDLP: hard to compute s, given P and Q

• Use for ECDH for key encapsulation and encryption
• Use for ECDSA or Schnorr signatures
• Use same curves, same parameters
• Performance (64-bit Intel CPU):

• All operations between 50 000 and 200 000 cycles
• Keys and ciphertexts: 32 bytes
• Signatures: 64 bytes

10



Challenges part 1: Performance

We care about 10% difference in performance

The baseline: ECC
• Today: build asymmetric crypto from elliptic-curve arithmetic
• Given P on a curve, s ∈ Z, compute Q = sP
• ECDLP: hard to compute s, given P and Q
• Use for ECDH for key encapsulation and encryption
• Use for ECDSA or Schnorr signatures
• Use same curves, same parameters

• Performance (64-bit Intel CPU):
• All operations between 50 000 and 200 000 cycles
• Keys and ciphertexts: 32 bytes
• Signatures: 64 bytes

10



Challenges part 1: Performance

We care about 10% difference in performance

The baseline: ECC
• Today: build asymmetric crypto from elliptic-curve arithmetic
• Given P on a curve, s ∈ Z, compute Q = sP
• ECDLP: hard to compute s, given P and Q
• Use for ECDH for key encapsulation and encryption
• Use for ECDSA or Schnorr signatures
• Use same curves, same parameters
• Performance (64-bit Intel CPU):

• All operations between 50 000 and 200 000 cycles
• Keys and ciphertexts: 32 bytes
• Signatures: 64 bytes

10



Challenges part 1: Performance (ctd.)
PQ performance, some examples
• Supersingular-isogeny-based key agreement:

• Public key/ciphertext: < 500 bytes each

• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles

• McEliece code-based key agreement:
• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes

• Public key: ≈ 0.5 MB

• MQ-based signatures (e.g., GeMSS):
• Signature: ≈ 50 bytes
• Verification: ≈ 580 000 cycles

• Signing: ≈ 2.7 billion cycles
• Public key: ≈ 1.2 MB

11



Challenges part 1: Performance (ctd.)
PQ performance, some examples
• Supersingular-isogeny-based key agreement:

• Public key/ciphertext: < 500 bytes each
• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles

• McEliece code-based key agreement:
• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes

• Public key: ≈ 0.5 MB

• MQ-based signatures (e.g., GeMSS):
• Signature: ≈ 50 bytes
• Verification: ≈ 580 000 cycles

• Signing: ≈ 2.7 billion cycles
• Public key: ≈ 1.2 MB

11



Challenges part 1: Performance (ctd.)
PQ performance, some examples
• Supersingular-isogeny-based key agreement:

• Public key/ciphertext: < 500 bytes each
• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles

• McEliece code-based key agreement:
• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes

• Public key: ≈ 0.5 MB

• MQ-based signatures (e.g., GeMSS):
• Signature: ≈ 50 bytes
• Verification: ≈ 580 000 cycles

• Signing: ≈ 2.7 billion cycles
• Public key: ≈ 1.2 MB

11



Challenges part 1: Performance (ctd.)
PQ performance, some examples
• Supersingular-isogeny-based key agreement:

• Public key/ciphertext: < 500 bytes each
• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles

• McEliece code-based key agreement:
• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes
• Public key: ≈ 0.5 MB

• MQ-based signatures (e.g., GeMSS):
• Signature: ≈ 50 bytes
• Verification: ≈ 580 000 cycles

• Signing: ≈ 2.7 billion cycles
• Public key: ≈ 1.2 MB

11



Challenges part 1: Performance (ctd.)
PQ performance, some examples
• Supersingular-isogeny-based key agreement:

• Public key/ciphertext: < 500 bytes each
• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles

• McEliece code-based key agreement:
• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes
• Public key: ≈ 0.5 MB

• MQ-based signatures (e.g., GeMSS):
• Signature: ≈ 50 bytes
• Verification: ≈ 580 000 cycles

• Signing: ≈ 2.7 billion cycles
• Public key: ≈ 1.2 MB

11



Challenges part 1: Performance (ctd.)
PQ performance, some examples
• Supersingular-isogeny-based key agreement:

• Public key/ciphertext: < 500 bytes each
• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles

• McEliece code-based key agreement:
• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes
• Public key: ≈ 0.5 MB

• MQ-based signatures (e.g., GeMSS):
• Signature: ≈ 50 bytes
• Verification: ≈ 580 000 cycles
• Signing: ≈ 2.7 billion cycles
• Public key: ≈ 1.2 MB

11



Challenges part 2: (implementation) security

Cryptographic hardness and proofs
• Need better understanding of attacks and their complexity
• Security reductions (“proofs”) help

, but
• they are almost never tight
• they are too often wrong

• Try to break schemes and check proofs!

Secure implementations
• Implementations of secure schemes are not necessarily secure:

• Subtle mistakes/bugs in implementations
• Side-channel attacks
• Fault attacks

12



Challenges part 2: (implementation) security

Cryptographic hardness and proofs
• Need better understanding of attacks and their complexity
• Security reductions (“proofs”) help, but

• they are almost never tight

• they are too often wrong

• Try to break schemes and check proofs!

Secure implementations
• Implementations of secure schemes are not necessarily secure:

• Subtle mistakes/bugs in implementations
• Side-channel attacks
• Fault attacks

12



Challenges part 2: (implementation) security

Cryptographic hardness and proofs
• Need better understanding of attacks and their complexity
• Security reductions (“proofs”) help, but

• they are almost never tight
• they are too often wrong

• Try to break schemes and check proofs!

Secure implementations
• Implementations of secure schemes are not necessarily secure:

• Subtle mistakes/bugs in implementations
• Side-channel attacks
• Fault attacks

12



Challenges part 2: (implementation) security

Cryptographic hardness and proofs
• Need better understanding of attacks and their complexity
• Security reductions (“proofs”) help, but

• they are almost never tight
• they are too often wrong

• Try to break schemes and check proofs!

Secure implementations
• Implementations of secure schemes are not necessarily secure:

• Subtle mistakes/bugs in implementations
• Side-channel attacks
• Fault attacks

12



Challenges part 2: (implementation) security

Cryptographic hardness and proofs
• Need better understanding of attacks and their complexity
• Security reductions (“proofs”) help, but

• they are almost never tight
• they are too often wrong

• Try to break schemes and check proofs!

Secure implementations
• Implementations of secure schemes are not necessarily secure:

• Subtle mistakes/bugs in implementations
• Side-channel attacks
• Fault attacks

12



Challenges part 2: (implementation) security

“the implementation security aspect of lattice-based cryptography is still
a vastly unexplored and open topic”

Primas, Pessl, Mangard, 2017.

12



Challenges part 2: (implementation) security

“. . . this isn’t very different for any of the other areas of post-quantum
crypto” Schwabe, 2019.

12



Challenges part 3: The case of DH

• Diffie-Hellman is extremely versatile:
• Can use it, for example, for non-interactive key exchange (NIKE)

• Bob knows Alice’ long-term public key A
• Alice knows Bob’s long-term public key B
• They can each compute k = h(A,B, aB) = h(A,B, bA)
• Used in various protocols, e.g., WireGuard

• Only one practical post-quantum proposal for NIKE: CSIDH
(Wouter Castryck, Tanja Lange, Chloe Martindale, Joost Renes,
Lorenz Panny. Asiacrypt 2018)
• Very new and not well studied
• Heavy debates about post-quantum security of proposed parameters
• Small public keys, but rather slow (≈ 300Mio. cycles)

• Think protocols in KEMs, not in DHs/NIKEs!

13



Challenges part 3: The case of DH

• Diffie-Hellman is extremely versatile:
• Can use it, for example, for non-interactive key exchange (NIKE)

• Bob knows Alice’ long-term public key A
• Alice knows Bob’s long-term public key B
• They can each compute k = h(A,B, aB) = h(A,B, bA)
• Used in various protocols, e.g., WireGuard

• Only one practical post-quantum proposal for NIKE: CSIDH
(Wouter Castryck, Tanja Lange, Chloe Martindale, Joost Renes,
Lorenz Panny. Asiacrypt 2018)
• Very new and not well studied
• Heavy debates about post-quantum security of proposed parameters
• Small public keys, but rather slow (≈ 300Mio. cycles)

• Think protocols in KEMs, not in DHs/NIKEs!

13



Challenges part 3: The case of DH

• Diffie-Hellman is extremely versatile:
• Can use it, for example, for non-interactive key exchange (NIKE)

• Bob knows Alice’ long-term public key A
• Alice knows Bob’s long-term public key B
• They can each compute k = h(A,B, aB) = h(A,B, bA)
• Used in various protocols, e.g., WireGuard

• Only one practical post-quantum proposal for NIKE: CSIDH
(Wouter Castryck, Tanja Lange, Chloe Martindale, Joost Renes,
Lorenz Panny. Asiacrypt 2018)
• Very new and not well studied
• Heavy debates about post-quantum security of proposed parameters
• Small public keys, but rather slow (≈ 300Mio. cycles)

• Think protocols in KEMs, not in DHs/NIKEs!

13



Challenges part 4: stateful signatures

• Hash-based signatures are already in RFCs:
• XMSS: RFC8391
• LMS: RFC8554

• Also highly parametrizable, for example:
• Signing: ≈ 12.5 Mio cycles
• Verification: ≈ 1 Mio cycles
• Signature: ≈ 2.8 KB
• Public key: 64 bytes
• Up to 220 signatures

• Issue with XMSS/LMS: it’s stateful
• Security demands that secret key is updated for every signature
• Major problem, for examples, with backups
• Stateful sigs are required for forward security
• XMSS gives forward security for free
• Start thinking systems with stateful signatures

14



Challenges part 4: stateful signatures

• Hash-based signatures are already in RFCs:
• XMSS: RFC8391
• LMS: RFC8554

• Also highly parametrizable, for example:
• Signing: ≈ 12.5 Mio cycles
• Verification: ≈ 1 Mio cycles
• Signature: ≈ 2.8 KB
• Public key: 64 bytes
• Up to 220 signatures

• Issue with XMSS/LMS: it’s stateful
• Security demands that secret key is updated for every signature
• Major problem, for examples, with backups

• Stateful sigs are required for forward security
• XMSS gives forward security for free
• Start thinking systems with stateful signatures

14



Challenges part 4: stateful signatures

• Hash-based signatures are already in RFCs:
• XMSS: RFC8391
• LMS: RFC8554

• Also highly parametrizable, for example:
• Signing: ≈ 12.5 Mio cycles
• Verification: ≈ 1 Mio cycles
• Signature: ≈ 2.8 KB
• Public key: 64 bytes
• Up to 220 signatures

• Issue with XMSS/LMS: it’s stateful
• Security demands that secret key is updated for every signature
• Major problem, for examples, with backups
• Stateful sigs are required for forward security
• XMSS gives forward security for free

• Start thinking systems with stateful signatures

14



Challenges part 4: stateful signatures

• Hash-based signatures are already in RFCs:
• XMSS: RFC8391
• LMS: RFC8554

• Also highly parametrizable, for example:
• Signing: ≈ 12.5 Mio cycles
• Verification: ≈ 1 Mio cycles
• Signature: ≈ 2.8 KB
• Public key: 64 bytes
• Up to 220 signatures

• Issue with XMSS/LMS: it’s stateful
• Security demands that secret key is updated for every signature
• Major problem, for examples, with backups
• Stateful sigs are required for forward security
• XMSS gives forward security for free
• Start thinking systems with stateful signatures

14



Some pointers

NIST resources
• NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST mailing list:
https://www.safecrypto.eu/pqclounge/

Third-party resources about NIST PQC
• Open Quantum Safe https://openquantumsafe.org/

• PQC Lounge: https://www.safecrypto.eu/pqclounge/

• PQC Wiki: https://pqc-wiki.fau.edu

Shameless advertising
• pqm4: https://github.com/mupq/pqm4

• PQClean: https://github.com/PQClean/PQClean

15

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.safecrypto.eu/pqclounge/
https://openquantumsafe.org/
https://www.safecrypto.eu/pqclounge/
https://pqc-wiki.fau.edu
https://github.com/mupq/pqm4
https://github.com/PQClean/PQClean


Some pointers

NIST resources
• NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST mailing list:
https://www.safecrypto.eu/pqclounge/

Third-party resources about NIST PQC
• Open Quantum Safe https://openquantumsafe.org/

• PQC Lounge: https://www.safecrypto.eu/pqclounge/

• PQC Wiki: https://pqc-wiki.fau.edu

Shameless advertising
• pqm4: https://github.com/mupq/pqm4

• PQClean: https://github.com/PQClean/PQClean

15

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.safecrypto.eu/pqclounge/
https://openquantumsafe.org/
https://www.safecrypto.eu/pqclounge/
https://pqc-wiki.fau.edu
https://github.com/mupq/pqm4
https://github.com/PQClean/PQClean


Some pointers

NIST resources
• NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST mailing list:
https://www.safecrypto.eu/pqclounge/

Third-party resources about NIST PQC
• Open Quantum Safe https://openquantumsafe.org/

• PQC Lounge: https://www.safecrypto.eu/pqclounge/

• PQC Wiki: https://pqc-wiki.fau.edu

Shameless advertising
• pqm4: https://github.com/mupq/pqm4

• PQClean: https://github.com/PQClean/PQClean

15

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.safecrypto.eu/pqclounge/
https://openquantumsafe.org/
https://www.safecrypto.eu/pqclounge/
https://pqc-wiki.fau.edu
https://github.com/mupq/pqm4
https://github.com/PQClean/PQClean

