


“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it'll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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Forward-secure post-quantum crypto

» Threatening today:

» Attacker records encrypted messages now
» Uses quantum computer in 1-2 decades to break encryption

> “Perfect forward secrecy” (PFS) does not help
» Countermeasure against key compromise
» Not a countermeasure against cryptographic break

» Consequence: Want post-quantum PFS crypto today



Ring-Learning-with-errors (RLWE)

Let Ry = Zy[X]/(X™ + 1)

Let x be an error distribution on R,
Let s € Ry be secret

Attacker is given pairs (a,as + e) with

> a uniformly random from R,
> e sampled from x

Task for the attacker: find s
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Let Ry = Zy[X]/(X™ + 1)

Let x be an error distribution on R,
Let s € Ry be secret

Attacker is given pairs (a,as + e) with

> a uniformly random from R,
> e sampled from x

Task for the attacker: find s
Common choice for y: discrete Gaussian

Common optimization for protocols: fix a
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> Regev, 2005: Introduce LWE-based encryption

» Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

» Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange
> Peikert, 2014: Improved RLWE-based key exchange

» Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert's key exchange in TLS:



A bit of (R)LWE history

» Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem
> Regev, 2005: Introduce LWE-based encryption

» Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption
» Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange
> Peikert, 2014: Improved RLWE-based key exchange
» Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert's key exchange in TLS:
> Rq = Zg[X]/(X™ +1)
» n=1024
»g=2%_1
> x = Dz, (Discrete Gaussian) with ¢ = 8/+/27 ~ 3.192



A bit of (R)LWE history

» Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem

> Regev, 2005: Introduce LWE-based encryption

» Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

» Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange

> Peikert, 2014: Improved RLWE-based key exchange

» Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert's key exchange in TLS:

Rq = Zq[X]/(X™ +1)

v

» n=1024

. g=22 1

> x = Dz, (Discrete Gaussian) with ¢ = 8/+/27 ~ 3.192
» Claimed security level: 128 bits pre-quantum

> Failure probability: ~ 27131072



BCNS key exchange

Parameters: ¢ = 232 — 1,n = 1024

Error distribution: x = Dz ,,0 = 8/\2m

Global system parameter: a & R,

Alice (server) Bob (client)
s,e &y s e e &y
b«as+e b, u+as’ + €

v«bs' +€”
v & dbl(v)
AV = (@)
pé—rec(2us, v') ap

Alice has  2us = 2ass’ + 2¢€'s
Bob has v~ 2v=2(bs'+¢€")=2((as + e)s’ + €’) = 2ass’ + 2es’ + 2¢”
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A new hope

Our contributions

Improve failure analysis and error reconciliation

Choose parameters for failure probability ~= 2760

Keep dimension n = 1024

Drastically reduce ¢ to 12289 < 214

Higher security, shorter messages, and speedups

Analysis of post-quantum security

Use centered binomial noise ¢, (HW(a)—HW(b) for k-bit a, b)
Choose a fresh parameter a for every protocol run

Encode polynomials in NTT domain

vV V. vV vV V. Y V. vV VvY

Multiple implementations



A new hope — protocol

Parameters: ¢ = 12289 < 214, n = 1024
Error distribution: 116

Alice (server)
seed & {0,1}?%¢
a+Parse(SHAKE-128(seed))

k< Rec(v',r)
114~ SHA3-256(k)

$
5,€e — ’(:b{l()
(b,seed)
b+as +e —_—
u,r
v/« us (u,r)

Bob (client)

s’ e e &yl
a+Parse(SHAKE-128(seed))
u<as’ + e’

v«bs' +e”

r & HelpRec(v)
k<Rec(v,r)

114~ SHA3-256 k)

Alice has v/ =us = ass’ +€’s

Bobhas v=bs'+e" =(as+e)s’+e& =ass’+es' +¢€"
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After running the protocol
> Alice has x4 = ass’ + €'s
» Bob has xp = ass’ + es’ + ¢e”

Those elements are similar, but not the same
Problem: How to agree on the same key from these noisy vectors?
Known: extract one bit from each coefficient

Also known: extract multiple bits from each coefficient
(decrease security)

NewHope: extract one bit from multiple coefficients
(increase security)

Specifically: 1 bit from 4 coefficients — 256-bit key from 1024
coefficients; method inspired by analog error-correcting codes

Generalize Peikert's approach to obtain unbiased keys
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Consider RLWE instance as LWE instance
Attack using BKZ
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Post-quantum security

vV v vvY

v

v

Consider RLWE instance as LWE instance
Attack using BKZ
BKZ uses SVP oracle in smaller dimension

Consider only the cost of one call to that oracle
(“core-SVP hardness”)

Consider quantum sieve as SVP oracle
. 20.26511
. 20.207577,

» Best-known quantum cost (BKC)
» Best-plausible quantum cost (BPC)

Obtain lower bounds on the bit security:

Known Classical Known Quantum

Best Plausible

BCNS 86 78

61

NewHope 281 255

199

10



Against all authority

Remember the optimization of fixed a?
What if a is backdoored?

Parameter-generating authority can break key exchange
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Remember the optimization of fixed a?

What if a is backdoored?

Parameter-generating authority can break key exchange
“Solution”: Nothing-up-my-sleeves (involves endless discussion!)

Even without backdoor:

» Perform massive precomputation based on a

» Use precomputation to break all key exchanges
> Infeasible today, but who knows. ..

» Attack in the spirit of Logjam

Solution in NewHope: Choose a fresh a every time
Use SHAKE-128 to expand a 32-byte seed

Server can cache a for some time (e.g., 1h)

Must not reuse keys/noise!

11



Implementation
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Implementation

v

Multiplication in R, using number-theoretic transform (NTT)

v

Message format:

» Send polynomials in NTT domain
» Eliminate two of the required NTTs

v

C reference implementation:

» Arithmetic on 16-bit and 32-bit integers
No division (/) or modulo (%) operator
Use Montgomery reductions inside NTT
Use ChaCha20 for noise sampling

vYyyvy

v

AVX2 implementation:

Speed up NTT using vectorized double arithmetic
Use AVX2 for centered binomial

Use AVX2 for error reconciliation

Use AES-256 for noise sampling

vVYyVvVYlyYy



Performance

BCNS Cref | AVX2
Key generation (server) /A 2477958 | 258246 | 88920
Key gen + shared key (client) | =~ 3995977 | 384994 | 110986
Shared key (server) ~ 481937 | 86280 | 19422

Cycle counts from one core of an Intel i7-4770K (Haswell)
BCNS benchmarks are derived from openssl speed
Includes around = 37000 cycles for generation of a on each side

vV v.v v

Compare to X25519 elliptic-curve scalar mult: 156 092 cycles



NewHope in the real world

» July 7, Google announces 2-year post-quantum experiment
» NewHope+X25519 (CECPQ1) in BoringSSL for Chrome Canary
» Used in access to select Google services
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NewHope online
Paper:

Software:

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/crypto/#newhope
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NewHope online
Paper: https://cryptojedi.org/papers/#newhope
Software: https://cryptojedi.org/crypto/#newhope
Newhope for ARM:  https://github.com/newhopearm/newhopearm.git
(by Erdem Alkim, Philipp Jakubeit, and Peter Schwabe)
Newhope in Go: https://github.com/Yawning/newhope
(by Yawning Angel)
Newhope in Rust: https://code.ciph.re/isis/newhopers
(by Isis Lovecruft)
Newhope in Java: https://github.com/rweather/newhope-java
(by Rhys Weatherley)
Newhope in Erlang: https://github.com/ahf/luke
(by Alexander Feergy)

newhope@cryptojedi.org
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