

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it'll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

The end of crypto as we know it

Shor's algorithm (1994)

» Factor integers in polynomial time
» Compute discrete logarithms in polynomial time
» Complete break of RSA, ElGamal, DSA, Diffie-Hellman

» Complete break of elliptic-curve variants (ECSDA, ECDH, ...

The end of crypto as we know it

Shor's algorithm (1994)

Factor integers in polynomial time

Compute discrete logarithms in polynomial time

Complete break of RSA, ElGamal, DSA, Diffie-Hellman
Complete break of elliptic-curve variants (ECSDA, ECDH, ...)

>
>
>
>

Forward-secure post-quantum crypto

» Threatening today:

» Attacker records encrypted messages now
» Uses quantum computer in 1-2 decades to break encryption

The end of crypto as we know it

Shor's algorithm (1994)

Factor integers in polynomial time

Compute discrete logarithms in polynomial time

Complete break of RSA, ElGamal, DSA, Diffie-Hellman
Complete break of elliptic-curve variants (ECSDA, ECDH, ...)

S
>
>
S

Forward-secure post-quantum crypto

» Threatening today:

» Attacker records encrypted messages now
» Uses quantum computer in 1-2 decades to break encryption

> “Perfect forward secrecy” (PFS) does not help

» Countermeasure against key compromise
» Not a countermeasure against cryptographic break

The end of crypto as we know it

Shor's algorithm (1994)

Factor integers in polynomial time

Compute discrete logarithms in polynomial time

Complete break of RSA, ElGamal, DSA, Diffie-Hellman
Complete break of elliptic-curve variants (ECSDA, ECDH, ...)

S
>
>
S

Forward-secure post-quantum crypto

» Threatening today:

» Attacker records encrypted messages now
» Uses quantum computer in 1-2 decades to break encryption

> “Perfect forward secrecy” (PFS) does not help
» Countermeasure against key compromise
» Not a countermeasure against cryptographic break

» Consequence: Want post-quantum PFS crypto today

Ring-Learning-with-errors (RLWE)

Let Ry = Zy[X]/(X™ + 1)

Let x be an error distribution on R,
Let s € Ry be secret

Attacker is given pairs (a,as + e) with

> a uniformly random from R,
> e sampled from x

Task for the attacker: find s

vV v v Y

v

Ring-Learning-with-errors (RLWE)

vV v v Y

Let Ry = Zy[X]/(X™ + 1)

Let x be an error distribution on R,
Let s € Ry be secret

Attacker is given pairs (a,as + e) with

> a uniformly random from R,
> e sampled from x

Task for the attacker: find s
Common choice for y: discrete Gaussian

Common optimization for protocols: fix a

A bit of (R)LWE history

» Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem
> Regev, 2005: Introduce LWE-based encryption

» Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

» Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange
> Peikert, 2014: Improved RLWE-based key exchange

» Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert's key exchange in TLS:

A bit of (R)LWE history

» Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem
> Regev, 2005: Introduce LWE-based encryption

» Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption
» Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange
> Peikert, 2014: Improved RLWE-based key exchange
» Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert's key exchange in TLS:
> Rq = Zg[X]/(X™ +1)
» n=1024
»g=2%_1
> x = Dz, (Discrete Gaussian) with ¢ = 8/+/27 ~ 3.192

A bit of (R)LWE history

» Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem

> Regev, 2005: Introduce LWE-based encryption

» Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

» Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange

> Peikert, 2014: Improved RLWE-based key exchange

» Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert's key exchange in TLS:

Rq = Zq[X]/(X™ +1)

v

» n=1024

. g=22 1

> x = Dz, (Discrete Gaussian) with ¢ = 8/+/27 ~ 3.192
» Claimed security level: 128 bits pre-quantum

> Failure probability: ~ 27131072

BCNS key exchange

Parameters: ¢ = 232 — 1,n = 1024

Error distribution: x = Dz ,,0 = 8/\2m

Global system parameter: a & R,

Alice (server) Bob (client)
s,e &y s e e &y
b«as+e b, u+as’ + €

v«bs' +€”
v & dbl(v)
AV = (@)
pé—rec(2us, v') ap

Alice has 2us = 2ass’ + 2¢€'s
Bob has v~ 2v=2(bs'+¢€")=2((as + e)s’ + €’) = 2ass’ + 2es’ + 2¢”

A new hope

Our contributions

» Improve failure analysis and error reconciliation

» Choose parameters for failure probability ~= 260

A new hope

Our contributions

Improve failure analysis and error reconciliation

Choose parameters for failure probability ~= 2760

>

>

» Keep dimension n = 1024

» Drastically reduce ¢ to 12289 < 214
>

Higher security, shorter messages, and speedups

A new hope

Our contributions
» Improve failure analysis and error reconciliation
» Choose parameters for failure probability ~= 260
» Keep dimension n = 1024
» Drastically reduce ¢ to 12289 < 214
» Higher security, shorter messages, and speedups
>

Analysis of post-quantum security

A new hope

Our contributions

» Improve failure analysis and error reconciliation

» Choose parameters for failure probability ~= 260

» Keep dimension n = 1024

» Drastically reduce ¢ to 12289 < 214

» Higher security, shorter messages, and speedups

» Analysis of post-quantum security

» Use centered binomial noise ¢, (HW(a)—HW(b) for k-bit a,b)

A new hope

Our contributions

Improve failure analysis and error reconciliation

Choose parameters for failure probability ~= 2760

Keep dimension n = 1024

Drastically reduce ¢ to 12289 < 214

Higher security, shorter messages, and speedups

Analysis of post-quantum security

Use centered binomial noise ¢, (HW(a)—HW(b) for k-bit a, b)

>
>
>
>
>
>
>
» Choose a fresh parameter a for every protocol run

A new hope

Our contributions

Improve failure analysis and error reconciliation

Choose parameters for failure probability ~= 2760

Keep dimension n = 1024

Drastically reduce ¢ to 12289 < 214

Higher security, shorter messages, and speedups

Analysis of post-quantum security

Use centered binomial noise ¢, (HW(a)—HW(b) for k-bit a, b)
Choose a fresh parameter a for every protocol run

vV V. vV V. vV V. VvV vY%

Encode polynomials in NTT domain

A new hope

Our contributions

Improve failure analysis and error reconciliation

Choose parameters for failure probability ~= 2760

Keep dimension n = 1024

Drastically reduce ¢ to 12289 < 214

Higher security, shorter messages, and speedups

Analysis of post-quantum security

Use centered binomial noise ¢, (HW(a)—HW(b) for k-bit a, b)
Choose a fresh parameter a for every protocol run

Encode polynomials in NTT domain

vV V. vV vV V. Y V. vV VvY

Multiple implementations

A new hope — protocol

Parameters: ¢ = 12289 < 214, n = 1024
Error distribution: 116

Alice (server)
seed & {0,1}?%¢
a+Parse(SHAKE-128(seed))

k< Rec(v',r)
114~ SHA3-256(k)

$
5,€e — ’(:b{l()
(b,seed)
b+as +e —_—
u,r
v/« us (u,r)

Bob (client)

s’ e e &yl
a+Parse(SHAKE-128(seed))
u<as’ + e’

v«bs' +e”

r & HelpRec(v)
k<Rec(v,r)

114~ SHA3-256 k)

Alice has v/ =us = ass’ +€’s

Bobhas v=bs'+e" =(as+e)s’+e& =ass’+es' +¢€"

Error reconciliation

» After running the protocol
> Alice has x4 = ass’ +€'s
» Bob has xp = ass’ + es’ + ¢e”

» Those elements are similar, but not the same

» Problem: How to agree on the same key from these noisy vectors?

Error reconciliation

v

After running the protocol
> Alice has x4 = ass’ + €'s
» Bob has xp = ass’ + es’ + ¢e”

Those elements are similar, but not the same
Problem: How to agree on the same key from these noisy vectors?
Known: extract one bit from each coefficient

vV v vvY

Also known: extract multiple bits from each coefficient
(decrease security)

Error reconciliation

v

vV v vvY

After running the protocol
> Alice has x4 = ass’ + €'s
» Bob has xp = ass’ + es’ + ¢e”

Those elements are similar, but not the same
Problem: How to agree on the same key from these noisy vectors?
Known: extract one bit from each coefficient

Also known: extract multiple bits from each coefficient
(decrease security)

NewHope: extract one bit from multiple coefficients

(increase security)

Specifically: 1 bit from 4 coefficients — 256-bit key from 1024
coefficients; method inspired by analog error-correcting codes

Error reconciliation

v

vV v vvY

After running the protocol
> Alice has x4 = ass’ + €'s
» Bob has xp = ass’ + es’ + ¢e”

Those elements are similar, but not the same
Problem: How to agree on the same key from these noisy vectors?
Known: extract one bit from each coefficient

Also known: extract multiple bits from each coefficient
(decrease security)

NewHope: extract one bit from multiple coefficients
(increase security)

Specifically: 1 bit from 4 coefficients — 256-bit key from 1024
coefficients; method inspired by analog error-correcting codes

Generalize Peikert's approach to obtain unbiased keys

Post-quantum security

Consider RLWE instance as LWE instance
Attack using BKZ
BKZ uses SVP oracle in smaller dimension

vV v vvY

Consider only the cost of one call to that oracle
(“core-SVP hardness”)

10

Post-quantum security

Consider RLWE instance as LWE instance
Attack using BKZ
BKZ uses SVP oracle in smaller dimension

vV v vvY

Consider only the cost of one call to that oracle
(“core-SVP hardness”)
Consider quantum sieve as SVP oracle

» Best-known quantum cost (BKC): 20-265"
» Best-plausible quantum cost (BPC): 2°0-2075"

v

10

Post-quantum security

vV v vvY

v

v

Consider RLWE instance as LWE instance
Attack using BKZ
BKZ uses SVP oracle in smaller dimension

Consider only the cost of one call to that oracle
(“core-SVP hardness”)

Consider quantum sieve as SVP oracle
. 20.26511
. 20.207577,

» Best-known quantum cost (BKC)
» Best-plausible quantum cost (BPC)

Obtain lower bounds on the bit security:

Known Classical Known Quantum

Best Plausible

BCNS 86 78

61

NewHope 281 255

199

10

Against all authority

Remember the optimization of fixed a?
What if a is backdoored?

Parameter-generating authority can break key exchange

vV v v v

“Solution”: Nothing-up-my-sleeves (involves endless discussion!)

11

Against all authority

Remember the optimization of fixed a?

What if a is backdoored?

Parameter-generating authority can break key exchange
“Solution”: Nothing-up-my-sleeves (involves endless discussion!)

vV v v v .Y

Even without backdoor:

v

Perform massive precomputation based on a
Use precomputation to break all key exchanges
Infeasible today, but who knows. ..

Attack in the spirit of Logjam

vy vy

11

Against all authority

Remember the optimization of fixed a?

What if a is backdoored?

Parameter-generating authority can break key exchange
“Solution”: Nothing-up-my-sleeves (involves endless discussion!)

vV v v v .Y

Even without backdoor:

» Perform massive precomputation based on a

» Use precomputation to break all key exchanges
> Infeasible today, but who knows. ..

» Attack in the spirit of Logjam

v

Solution in NewHope: Choose a fresh a every time
Use SHAKE-128 to expand a 32-byte seed

v

11

Against all authority

Remember the optimization of fixed a?

What if a is backdoored?

Parameter-generating authority can break key exchange
“Solution”: Nothing-up-my-sleeves (involves endless discussion!)

Even without backdoor:

» Perform massive precomputation based on a

» Use precomputation to break all key exchanges
> Infeasible today, but who knows. ..

» Attack in the spirit of Logjam

Solution in NewHope: Choose a fresh a every time
Use SHAKE-128 to expand a 32-byte seed
Server can cache a for some time (e.g., 1h)

11

Against all authority

vV v v v

Remember the optimization of fixed a?

What if a is backdoored?

Parameter-generating authority can break key exchange
“Solution”: Nothing-up-my-sleeves (involves endless discussion!)

Even without backdoor:

» Perform massive precomputation based on a

» Use precomputation to break all key exchanges
> Infeasible today, but who knows. ..

» Attack in the spirit of Logjam

Solution in NewHope: Choose a fresh a every time
Use SHAKE-128 to expand a 32-byte seed

Server can cache a for some time (e.g., 1h)

Must not reuse keys/noise!

11

Implementation

» Multiplication in R, using number-theoretic transform (NTT)
> Message format:

» Send polynomials in NTT domain
» Eliminate two of the required NTTs

12

Implementation

» Multiplication in R, using number-theoretic transform (NTT)
» Message format:

» Send polynomials in NTT domain

» Eliminate two of the required NTTs
» C reference implementation:

» Arithmetic on 16-bit and 32-bit integers
> No division (/) or modulo (%) operator
» Use Montgomery reductions inside NTT
» Use ChaCha20 for noise sampling

Implementation

v

Multiplication in R, using number-theoretic transform (NTT)

v

Message format:

» Send polynomials in NTT domain
» Eliminate two of the required NTTs

v

C reference implementation:

» Arithmetic on 16-bit and 32-bit integers
No division (/) or modulo (%) operator
Use Montgomery reductions inside NTT
Use ChaCha20 for noise sampling

vYyyvy

v

AVX2 implementation:

Speed up NTT using vectorized double arithmetic
Use AVX2 for centered binomial

Use AVX2 for error reconciliation

Use AES-256 for noise sampling

vVYyVvVYlyYy

Performance

BCNS Cref | AVX2
Key generation (server) /A 2477958 | 258246 | 88920
Key gen + shared key (client) | =~ 3995977 | 384994 | 110986
Shared key (server) ~ 481937 | 86280 | 19422

Cycle counts from one core of an Intel i7-4770K (Haswell)
BCNS benchmarks are derived from openssl speed
Includes around = 37000 cycles for generation of a on each side

vV v.v v

Compare to X25519 elliptic-curve scalar mult: 156 092 cycles

NewHope in the real world

» July 7, Google announces 2-year post-quantum experiment
» NewHope+X25519 (CECPQ1) in BoringSSL for Chrome Canary
» Used in access to select Google services

& 4] Elements Console Sources MNetwork Timeline Profiles Applicstion Security Audits

B overview

Main Origin
@ https://play.coogle.com
Secure Origins

® hitps://www.gstatic.com

@ https://Ihi.googleuserconts
@ https://lhd.googleuserconte
® https://IhS.googleusercont
@ https://Ih6.googleusercontt
@ hitps//Ih3.ggpht.com

@ httpsi//Ihd.ggpht.com

@ https://Ihs.ggpht.com

@ https;//books.google.com
® https://ajax.googleapis.com
® hitpe//www.goagle.com

@ https:f/www.google-analyti ™

Image source: https://security.googleblog.com /2016 /07 /experi i ith

® https://play.google.com
View requiests in Network Panal

Connection

TLS1.2
CECPQ1_ECDSA
AES_256_GCM

Certificate

ot *.google.com
*.gocgle.com

*.android.com

Show more (52 total)
Valid From Thu, 23 Jun 2016 08:33:56 GMT
Thu, 15 Sep 2016 08:31:00 GMT
lssuer Google Internet Authority G2

html

14

NewHope online
Paper:

Software:

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/crypto/#newhope

15

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/crypto/#newhope

NewHope online
Paper: https://cryptojedi.org/papers/#newhope
Software: https://cryptojedi.org/crypto/#newhope
Newhope for ARM: https://github.com/newhopearm/newhopearm.git
(by Erdem Alkim, Philipp Jakubeit, and Peter Schwabe)
Newhope in Go: https://github.com/Yawning/newhope
(by Yawning Angel)
Newhope in Rust: https://code.ciph.re/isis/newhopers
(by Isis Lovecruft)
Newhope in Java: https://github.com/rweather/newhope-java
(by Rhys Weatherley)
Newhope in Erlang: https://github.com/ahf/luke
(by Alexander Feergy)

newhope@cryptojedi.org

15

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/crypto/#newhope
https://github.com/newhopearm/newhopearm.git
https://github.com/Yawning/newhope
https://code.ciph.re/isis/newhopers
https://github.com/rweather/newhope-java
https://github.com/ahf/luke
mailto:newhope@cryptojedi.org

