
How to use the negation map in the Pollard rho
method

Peter Schwabe
joint work with Daniel J. Bernstein and Tanja Lange

National Taiwan University

June 16, 2011

Crypto Séminaire
Université de Versailles Saint-Quentin-en-Yvelines

A few words about Taiwan and NTU

I Taiwan (台灣) is an island south of China
I About 36,200 km2 large
I Territory of the Republic of China (not to be confused with the

People’s Republic of China)
I Capital is Taipei (台北)
I Marine tropical climate

I 99 summits over 3000 meters (highest peak: 3952 m)
I Wildlife includes black bears, salmon, monkeys. . .
I National Taiwan University (NTU, 台大) was founded in 1928
I Has almost 3000 faculties
I About 18,000 undergrads, and 10,000 grad students
I If you are curious: We host PQCrypto in November this year

(submission deadline is June 24)

How to use the negation map in the Pollard rho method 2

A few words about Taiwan and NTU

I Taiwan (台灣) is an island south of China
I About 36,200 km2 large
I Territory of the Republic of China (not to be confused with the

People’s Republic of China)
I Capital is Taipei (台北)
I Marine tropical climate
I 99 summits over 3000 meters (highest peak: 3952 m)
I Wildlife includes black bears, salmon, monkeys. . .

I National Taiwan University (NTU, 台大) was founded in 1928
I Has almost 3000 faculties
I About 18,000 undergrads, and 10,000 grad students
I If you are curious: We host PQCrypto in November this year

(submission deadline is June 24)

How to use the negation map in the Pollard rho method 2

A few words about Taiwan and NTU

I Taiwan (台灣) is an island south of China
I About 36,200 km2 large
I Territory of the Republic of China (not to be confused with the

People’s Republic of China)
I Capital is Taipei (台北)
I Marine tropical climate
I 99 summits over 3000 meters (highest peak: 3952 m)
I Wildlife includes black bears, salmon, monkeys. . .
I National Taiwan University (NTU, 台大) was founded in 1928
I Has almost 3000 faculties
I About 18,000 undergrads, and 10,000 grad students

I If you are curious: We host PQCrypto in November this year
(submission deadline is June 24)

How to use the negation map in the Pollard rho method 2

A few words about Taiwan and NTU

I Taiwan (台灣) is an island south of China
I About 36,200 km2 large
I Territory of the Republic of China (not to be confused with the

People’s Republic of China)
I Capital is Taipei (台北)
I Marine tropical climate
I 99 summits over 3000 meters (highest peak: 3952 m)
I Wildlife includes black bears, salmon, monkeys. . .
I National Taiwan University (NTU, 台大) was founded in 1928
I Has almost 3000 faculties
I About 18,000 undergrads, and 10,000 grad students
I If you are curious: We host PQCrypto in November this year

(submission deadline is June 24)

How to use the negation map in the Pollard rho method 2

A picture from Taiwan � Sun-Moon Lake (日月潭)

For more pictures check out http://cryptojedi.org/gallery/
How to use the negation map in the Pollard rho method 3

How to use the negation map in the Pollard rho
method

Peter Schwabe
joint work with Daniel J. Bernstein and Tanja Lange

National Taiwan University

June 16, 2011

Crypto Séminaire
Université de Versailles Saint-Quentin-en-Yvelines

The discrete-logarithm problem

I Let G = 〈P 〉 be a finite cyclic group with generator P
I In the following: G is written additively

I Given Q ∈ G, the discrete-logarithm problem (DLP) is to find
k ∈ Z, such that

k · P = Q

I For certain groups G this problem is the basis of many asymmetric
cryptographic protocols

I Most importantly: Z/nZ and elliptic-curve groups

How to use the negation map in the Pollard rho method 5

The discrete-logarithm problem

I Let G = 〈P 〉 be a finite cyclic group with generator P
I In the following: G is written additively
I Given Q ∈ G, the discrete-logarithm problem (DLP) is to find
k ∈ Z, such that

k · P = Q

I For certain groups G this problem is the basis of many asymmetric
cryptographic protocols

I Most importantly: Z/nZ and elliptic-curve groups

How to use the negation map in the Pollard rho method 5

The discrete-logarithm problem

I Let G = 〈P 〉 be a finite cyclic group with generator P
I In the following: G is written additively
I Given Q ∈ G, the discrete-logarithm problem (DLP) is to find
k ∈ Z, such that

k · P = Q

I For certain groups G this problem is the basis of many asymmetric
cryptographic protocols

I Most importantly: Z/nZ and elliptic-curve groups

How to use the negation map in the Pollard rho method 5

Pollard's rho algorithm

I Does not use any additional structure (aside from the group
structure)

I Best known algorithm to solve the DLP in generic groups of prime
order

I Uses a pseudorandom iteration function f : G→ G

I Start with W0 = n0P +m0Q

I Iteratively apply f to obtain Wi+1 = f(Wi)

I Update ni+1,mi+1 from ni,mi (compute modulo |G|)
I f needs to preserve knowledge about the linear combination in P

and Q
I If Wi = Wj for i 6= j, then

niP +miQ = njP +mjQ⇒
k = (nj − ni)/(mi −mj) mod |G|

How to use the negation map in the Pollard rho method 6

Pollard's rho algorithm

I Does not use any additional structure (aside from the group
structure)

I Best known algorithm to solve the DLP in generic groups of prime
order

I Uses a pseudorandom iteration function f : G→ G

I Start with W0 = n0P +m0Q

I Iteratively apply f to obtain Wi+1 = f(Wi)

I Update ni+1,mi+1 from ni,mi (compute modulo |G|)
I f needs to preserve knowledge about the linear combination in P

and Q
I If Wi = Wj for i 6= j, then

niP +miQ = njP +mjQ⇒
k = (nj − ni)/(mi −mj) mod |G|

How to use the negation map in the Pollard rho method 6

Pollard's rho algorithm

I Does not use any additional structure (aside from the group
structure)

I Best known algorithm to solve the DLP in generic groups of prime
order

I Uses a pseudorandom iteration function f : G→ G

I Start with W0 = n0P +m0Q

I Iteratively apply f to obtain Wi+1 = f(Wi)

I Update ni+1,mi+1 from ni,mi (compute modulo |G|)
I f needs to preserve knowledge about the linear combination in P

and Q

I If Wi = Wj for i 6= j, then

niP +miQ = njP +mjQ⇒
k = (nj − ni)/(mi −mj) mod |G|

How to use the negation map in the Pollard rho method 6

Pollard's rho algorithm

I Does not use any additional structure (aside from the group
structure)

I Best known algorithm to solve the DLP in generic groups of prime
order

I Uses a pseudorandom iteration function f : G→ G

I Start with W0 = n0P +m0Q

I Iteratively apply f to obtain Wi+1 = f(Wi)

I Update ni+1,mi+1 from ni,mi (compute modulo |G|)
I f needs to preserve knowledge about the linear combination in P

and Q
I If Wi = Wj for i 6= j, then

niP +miQ = njP +mjQ⇒
k = (nj − ni)/(mi −mj) mod |G|

How to use the negation map in the Pollard rho method 6

Pollard's rho algorithm II

•

•

•

•

•
•

•

•

•

W0

W1

W2

Wi−1

Wi

Wi+1

Wi+2

Wj−2

Wj−1

Wj

I Easy way to define f :

f(W) = n(W)P +m(W)Q,

with pseudorandom functions
n,m : G→ Z/|G|Z

I Expected number of iterations

until entering a cycle:
√

π|G|
2

I Detect cycles without storing
all Wi: Floyd, Brent

How to use the negation map in the Pollard rho method 7

Pollard's rho algorithm II

•

•

•

•

•
•

•

•

•

W0

W1

W2

Wi−1

Wi

Wi+1

Wi+2

Wj−2

Wj−1

Wj

I Easy way to define f :

f(W) = n(W)P +m(W)Q,

with pseudorandom functions
n,m : G→ Z/|G|Z

I Expected number of iterations

until entering a cycle:
√

π|G|
2

I Detect cycles without storing
all Wi: Floyd, Brent

How to use the negation map in the Pollard rho method 7

Pollard's rho algorithm II

•

•

•

•

•
•

•

•

•

W0

W1

W2

Wi−1

Wi

Wi+1

Wi+2

Wj−2

Wj−1

Wj

I Easy way to define f :

f(W) = n(W)P +m(W)Q,

with pseudorandom functions
n,m : G→ Z/|G|Z

I Expected number of iterations

until entering a cycle:
√

π|G|
2

I Detect cycles without storing
all Wi: Floyd, Brent

How to use the negation map in the Pollard rho method 7

Pollard's rho algorithm II

•

•

•

•

•
•

•

•

•

W0

W1

W2

Wi−1

Wi

Wi+1

Wi+2

Wj−2

Wj−1

Wj

I Easy way to define f :

f(W) = n(W)P +m(W)Q,

with pseudorandom functions
n,m : G→ Z/|G|Z

I Expected number of iterations

until entering a cycle:
√

π|G|
2

I Detect cycles without storing
all Wi: Floyd, Brent

How to use the negation map in the Pollard rho method 7

Parallel Pollard

I Large instances of the DLP call for parallel computing
I Trivial parallelization of Pollard’s rho algorithm on t computers gives

speedup of
√
t

I Much better: Use parallel approach by van Oorschot and Wiener:
I Client-Server approach, computation done on many clients
I Uses the notion of distinguished points (DPs), easy-to-determine

property, such as “last k bits of the element’s encoding are 0”
I Clients start from random points and iterate until they reach a DP
I Send starting point and DP to the server, restart from new random

point
I Server searches in incoming points for collisions (same DP, different

starting point)

How to use the negation map in the Pollard rho method 8

Parallel Pollard

I Large instances of the DLP call for parallel computing
I Trivial parallelization of Pollard’s rho algorithm on t computers gives

speedup of
√
t

I Much better: Use parallel approach by van Oorschot and Wiener:
I Client-Server approach, computation done on many clients
I Uses the notion of distinguished points (DPs), easy-to-determine

property, such as “last k bits of the element’s encoding are 0”

I Clients start from random points and iterate until they reach a DP
I Send starting point and DP to the server, restart from new random

point
I Server searches in incoming points for collisions (same DP, different

starting point)

How to use the negation map in the Pollard rho method 8

Parallel Pollard

I Large instances of the DLP call for parallel computing
I Trivial parallelization of Pollard’s rho algorithm on t computers gives

speedup of
√
t

I Much better: Use parallel approach by van Oorschot and Wiener:
I Client-Server approach, computation done on many clients
I Uses the notion of distinguished points (DPs), easy-to-determine

property, such as “last k bits of the element’s encoding are 0”
I Clients start from random points and iterate until they reach a DP
I Send starting point and DP to the server, restart from new random

point

I Server searches in incoming points for collisions (same DP, different
starting point)

How to use the negation map in the Pollard rho method 8

Parallel Pollard

I Large instances of the DLP call for parallel computing
I Trivial parallelization of Pollard’s rho algorithm on t computers gives

speedup of
√
t

I Much better: Use parallel approach by van Oorschot and Wiener:
I Client-Server approach, computation done on many clients
I Uses the notion of distinguished points (DPs), easy-to-determine

property, such as “last k bits of the element’s encoding are 0”
I Clients start from random points and iterate until they reach a DP
I Send starting point and DP to the server, restart from new random

point
I Server searches in incoming points for collisions (same DP, different

starting point)

How to use the negation map in the Pollard rho method 8

Some notes on parallel Pollard

I Walks do not enter a cycle, shape is more like a λ

I Choice of DP-property influences length of separate walks
I Fewer DPs: longer walks (on average), less storage, less

communication
I More DPs: Less overhead after a collision
I Clients do not have to update ni and mi, simply do successful walks

again to find coefficients

How to use the negation map in the Pollard rho method 9

Some notes on parallel Pollard

I Walks do not enter a cycle, shape is more like a λ
I Choice of DP-property influences length of separate walks
I Fewer DPs: longer walks (on average), less storage, less

communication
I More DPs: Less overhead after a collision

I Clients do not have to update ni and mi, simply do successful walks
again to find coefficients

How to use the negation map in the Pollard rho method 9

Some notes on parallel Pollard

I Walks do not enter a cycle, shape is more like a λ
I Choice of DP-property influences length of separate walks
I Fewer DPs: longer walks (on average), less storage, less

communication
I More DPs: Less overhead after a collision
I Clients do not have to update ni and mi, simply do successful walks

again to find coefficients

How to use the negation map in the Pollard rho method 9

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 10

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 10

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition

I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 10

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations

I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 10

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 10

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 10

Application to elliptic-curve groups

I So far, everything worked in the generic-group model
I Now consider groups of points on elliptic curves
I Group elements are points (x, y)

I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

How to use the negation map in the Pollard rho method 11

Application to elliptic-curve groups

I So far, everything worked in the generic-group model
I Now consider groups of points on elliptic curves
I Group elements are points (x, y)

I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

How to use the negation map in the Pollard rho method 11

Application to elliptic-curve groups

I So far, everything worked in the generic-group model
I Now consider groups of points on elliptic curves
I Group elements are points (x, y)

I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

How to use the negation map in the Pollard rho method 11

Application to elliptic-curve groups

I So far, everything worked in the generic-group model
I Now consider groups of points on elliptic curves
I Group elements are points (x, y)

I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

How to use the negation map in the Pollard rho method 11

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}

I Problem: fruitless cycles
If t = h(Wi) = h(Wi+1)

, and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 12

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1)

, and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 12

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 12

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 12

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 12

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 12

Dealing with fruitless cycles
I Avoid frequent cycles by choosing large r
I Problem: Lookups become more expensive (cache issues)

I Avoid larger cycles by frequent distinguished points
I Early-abort walks after a certain number of iterations
I Problem: Large communication cost and storage

Cycle detection

I For 2-cycles: Compare h(Wi) and h(Wi+1)

I Compare points

Escape strategies

I Retroactively adjust h(Wi)

I Determine unique point in cycle, add “special point” to escape
I Determine unique point in cycle, double this point
I Important: Escape point must be independent from entrance point

How to use the negation map in the Pollard rho method 13

Dealing with fruitless cycles
I Avoid frequent cycles by choosing large r
I Problem: Lookups become more expensive (cache issues)
I Avoid larger cycles by frequent distinguished points
I Early-abort walks after a certain number of iterations
I Problem: Large communication cost and storage

Cycle detection

I For 2-cycles: Compare h(Wi) and h(Wi+1)

I Compare points

Escape strategies

I Retroactively adjust h(Wi)

I Determine unique point in cycle, add “special point” to escape
I Determine unique point in cycle, double this point
I Important: Escape point must be independent from entrance point

How to use the negation map in the Pollard rho method 13

Dealing with fruitless cycles
I Avoid frequent cycles by choosing large r
I Problem: Lookups become more expensive (cache issues)
I Avoid larger cycles by frequent distinguished points
I Early-abort walks after a certain number of iterations
I Problem: Large communication cost and storage

Cycle detection

I For 2-cycles: Compare h(Wi) and h(Wi+1)

I Compare points

Escape strategies

I Retroactively adjust h(Wi)

I Determine unique point in cycle, add “special point” to escape
I Determine unique point in cycle, double this point
I Important: Escape point must be independent from entrance point

How to use the negation map in the Pollard rho method 13

Dealing with fruitless cycles
I Avoid frequent cycles by choosing large r
I Problem: Lookups become more expensive (cache issues)
I Avoid larger cycles by frequent distinguished points
I Early-abort walks after a certain number of iterations
I Problem: Large communication cost and storage

Cycle detection

I For 2-cycles: Compare h(Wi) and h(Wi+1)

I Compare points

Escape strategies

I Retroactively adjust h(Wi)

I Determine unique point in cycle, add “special point” to escape
I Determine unique point in cycle, double this point
I Important: Escape point must be independent from entrance point

How to use the negation map in the Pollard rho method 13

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles

I Iteration function did not use the negation map:
“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

How to use the negation map in the Pollard rho method 14

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

How to use the negation map in the Pollard rho method 14

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

How to use the negation map in the Pollard rho method 14

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

How to use the negation map in the Pollard rho method 14

What's the problem with SIMD?

I SIMD stands for single instruction stream, multiple data streams
I Same sequence of instructions carried out on different data
I Most commonly implemented through vector registers
I Branching means (in the worst case): Sequentially execute both

branches

I Computing power of the Cell processor in the PlayStation 3 is in the
Synergistic Processor Elements (SPEs)

I Instruction set of the SPEs is purely SIMD
I SIMD becomes more and more important on all modern

microprocessors
I Question: Can we really not get the factor-

√
2 speedup with SIMD?

How to use the negation map in the Pollard rho method 15

What's the problem with SIMD?

I SIMD stands for single instruction stream, multiple data streams
I Same sequence of instructions carried out on different data
I Most commonly implemented through vector registers
I Branching means (in the worst case): Sequentially execute both

branches
I Computing power of the Cell processor in the PlayStation 3 is in the

Synergistic Processor Elements (SPEs)
I Instruction set of the SPEs is purely SIMD

I SIMD becomes more and more important on all modern
microprocessors

I Question: Can we really not get the factor-
√

2 speedup with SIMD?

How to use the negation map in the Pollard rho method 15

What's the problem with SIMD?

I SIMD stands for single instruction stream, multiple data streams
I Same sequence of instructions carried out on different data
I Most commonly implemented through vector registers
I Branching means (in the worst case): Sequentially execute both

branches
I Computing power of the Cell processor in the PlayStation 3 is in the

Synergistic Processor Elements (SPEs)
I Instruction set of the SPEs is purely SIMD
I SIMD becomes more and more important on all modern

microprocessors

I Question: Can we really not get the factor-
√

2 speedup with SIMD?

How to use the negation map in the Pollard rho method 15

What's the problem with SIMD?

I SIMD stands for single instruction stream, multiple data streams
I Same sequence of instructions carried out on different data
I Most commonly implemented through vector registers
I Branching means (in the worst case): Sequentially execute both

branches
I Computing power of the Cell processor in the PlayStation 3 is in the

Synergistic Processor Elements (SPEs)
I Instruction set of the SPEs is purely SIMD
I SIMD becomes more and more important on all modern

microprocessors
I Question: Can we really not get the factor-

√
2 speedup with SIMD?

How to use the negation map in the Pollard rho method 15

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P

I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 16

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)

I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 16

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise

I Occasionally check for 2-cycles:
I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 16

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 16

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 16

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotalically negligible compared to finite-field multiplications in
EC arithmetic

How to use the negation map in the Pollard rho method 17

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotalically negligible compared to finite-field multiplications in
EC arithmetic

How to use the negation map in the Pollard rho method 17

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotalically negligible compared to finite-field multiplications in
EC arithmetic

How to use the negation map in the Pollard rho method 17

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotalically negligible compared to finite-field multiplications in
EC arithmetic

How to use the negation map in the Pollard rho method 17

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2

I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 18

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration

I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 18

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations

I Minimize 1/w + w/4r: Take w ≈ 2
√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 18

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 18

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 18

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 18

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP

I (very-close-to) factor-
√

2 speedup through negation map
I Faster iterations

I Faster arithmetic in Z/(2128 − 3)Z (prime �eld has order
(2128 − 3)/76439)

I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

How to use the negation map in the Pollard rho method 19

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations

I Faster arithmetic in Z/(2128 − 3)Z (prime �eld has order
(2128 − 3)/76439)

I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

How to use the negation map in the Pollard rho method 19

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations
I Faster arithmetic in Z/(2128 − 3)Z (prime �eld has order

(2128 − 3)/76439)
I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

How to use the negation map in the Pollard rho method 19

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations
I Faster arithmetic in Z/(2128 − 3)Z (prime �eld has order

(2128 − 3)/76439)
I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

How to use the negation map in the Pollard rho method 19

Solving smaller DLPs

I We have a faster implementation to solve the DLP
I But we don’t have a cluster of > 200 PlayStations
I How can we demonstrate that the implementation indeed works?

I Implementation solves ECDLPs on elliptic curves
E : y2 = x3 − 3x+ b

I Repeatedly solve DLP on curves with smaller subgroups (choose
different b), specifically:

I 32237 experiments in a subgroup of order ≈ 250

I 257241 experiments in a subgroup of order ≈ 255

I 33791 experiments in a subgroup of order ≈ 260

I Rate of DPs per hour matches expectations
I Median number of DPs required to solve DLP matches expectations
I Confident performance extrapolation to 112-bit DLP

How to use the negation map in the Pollard rho method 20

Solving smaller DLPs

I We have a faster implementation to solve the DLP
I But we don’t have a cluster of > 200 PlayStations
I How can we demonstrate that the implementation indeed works?
I Implementation solves ECDLPs on elliptic curves
E : y2 = x3 − 3x+ b

I Repeatedly solve DLP on curves with smaller subgroups (choose
different b), specifically:

I 32237 experiments in a subgroup of order ≈ 250

I 257241 experiments in a subgroup of order ≈ 255

I 33791 experiments in a subgroup of order ≈ 260

I Rate of DPs per hour matches expectations
I Median number of DPs required to solve DLP matches expectations
I Confident performance extrapolation to 112-bit DLP

How to use the negation map in the Pollard rho method 20

Solving smaller DLPs

I We have a faster implementation to solve the DLP
I But we don’t have a cluster of > 200 PlayStations
I How can we demonstrate that the implementation indeed works?
I Implementation solves ECDLPs on elliptic curves
E : y2 = x3 − 3x+ b

I Repeatedly solve DLP on curves with smaller subgroups (choose
different b), specifically:

I 32237 experiments in a subgroup of order ≈ 250

I 257241 experiments in a subgroup of order ≈ 255

I 33791 experiments in a subgroup of order ≈ 260

I Rate of DPs per hour matches expectations
I Median number of DPs required to solve DLP matches expectations

I Confident performance extrapolation to 112-bit DLP

How to use the negation map in the Pollard rho method 20

Solving smaller DLPs

I We have a faster implementation to solve the DLP
I But we don’t have a cluster of > 200 PlayStations
I How can we demonstrate that the implementation indeed works?
I Implementation solves ECDLPs on elliptic curves
E : y2 = x3 − 3x+ b

I Repeatedly solve DLP on curves with smaller subgroups (choose
different b), specifically:

I 32237 experiments in a subgroup of order ≈ 250

I 257241 experiments in a subgroup of order ≈ 255

I 33791 experiments in a subgroup of order ≈ 260

I Rate of DPs per hour matches expectations
I Median number of DPs required to solve DLP matches expectations
I Confident performance extrapolation to 112-bit DLP

How to use the negation map in the Pollard rho method 20

Left-out details

I Paper has way more details on the implementation

I Hand-optimized assembly implementation (not online yet)
I Various tricks in the design of the iteration function
I Entertaining history on “How not to use negation in Pollard’s rho

method”
I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 21

Left-out details

I Paper has way more details on the implementation
I Hand-optimized assembly implementation (not online yet)

I Various tricks in the design of the iteration function
I Entertaining history on “How not to use negation in Pollard’s rho

method”
I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 21

Left-out details

I Paper has way more details on the implementation
I Hand-optimized assembly implementation (not online yet)
I Various tricks in the design of the iteration function

I Entertaining history on “How not to use negation in Pollard’s rho
method”

I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 21

Left-out details

I Paper has way more details on the implementation
I Hand-optimized assembly implementation (not online yet)
I Various tricks in the design of the iteration function
I Entertaining history on “How not to use negation in Pollard’s rho

method”

I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 21

Left-out details

I Paper has way more details on the implementation
I Hand-optimized assembly implementation (not online yet)
I Various tricks in the design of the iteration function
I Entertaining history on “How not to use negation in Pollard’s rho

method”
I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 21

