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A protocol designer’s point of view

v

Let G1, G2, and G35 be finite abelian groups.

v

A pairing is a bilinear, nondegenerate map
e: G1 X GQ — Gg

DLP should be hard in G1, G52, and G3
Sometimes required: G1 = G2 (type-1 pairing)
Sometimes requires: Efficient isomorphism Go2 — G; (type-2)

vV v v v

Sometimes required: No efficient isomorphism Gy — G; (type-3)
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A mathematical/algorithmic point of view

Let E be an elliptic curve over I,

Let » € N be prime with 7 | |E(F,)| and r* { |E(F,)|

Let ged(r,q) =1 and rt (¢ — 1)

Let k be the smallest positive integer such that r | ¢¥ — 1

vV v.v. v Yy

k is called embedding degree of E with respect to r

The Tate pairing is a map

T, : Elr] x E(Fy)/rE(Fy) — Fi/(Fh)".
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A mathematical/algorithmic point of view

Representing elements of E(F.)/rE(F )

> Let's assume there is no element of order 7% in E(F )
» Then it holds that E(F«)/rE(F ) = Elr]
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A mathematical/algorithmic point of view

Representing elements of E(F.)/rE(F )

> Let's assume there is no element of order 7% in E(F )
» Then it holds that E(F«)/rE(F ) = Elr]

Consider the Tate pairing as a map

T, : Elr] x E[r] = Fi/(F5)".
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A mathematical/algorithmic point of view
Finding unique representatives in 7, /(F7,)".
» Results of the Tate pairing are equivalence classes

» In order to compare: Need unique representative
F?w/(Fy)" and p, == {z € Fye | 27 = 1} are isomorphic

v

k
. . . . .. . q"—1
Group isomorphism is given by exponentiation with <—

v

v

Apply group isomorphism in the end, obtain unique representative
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A mathematical/algorithmic point of view

Finding unique representatives in 7, /(F7,)".

v

Results of the Tate pairing are equivalence classes

v

In order to compare: Need unique representative
F?w/(Fy)" and p, == {z € Fye | 27 = 1} are isomorphic

v

v

k
. . . . .. . q"—1
Group isomorphism is given by exponentiation with <—

v

Apply group isomorphism in the end, obtain unique representative

Reduced Tate pairing:

e, : E[r] x Elr] = u,

qk—l

(P,Q) = T.(P,Q)~
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. on prime-order subgroups of E[r]

» The Frobenius endomorphism
ﬂ-q : E[T] - E[T‘], (xvy) = (xquq)

has eigenvalues 1 and ¢

» Eigenspace corresponding to eigenvalue 1 is ker(m, — [1]) = E(F,)[r]
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. on prime-order subgroups of E[r]

» The Frobenius endomorphism
ﬂ-q : E[T] - E[T‘], (xvy) = (xquq)

has eigenvalues 1 and ¢
» Eigenspace corresponding to eigenvalue 1 is ker(m, — [1]) = E(F,)[r]
» Considering pairing on E(F,)[r] x E(F,)[r] always yields 1
» But: ker(m, — [g]) also has order r
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. on prime-order subgroups of E[r]

» The Frobenius endomorphism
ﬂ-q : E[Ir] - E[T‘], ('xvy) = (xquq)

has eigenvalues 1 and ¢

Eigenspace corresponding to eigenvalue 1 is ker(m, — [1]) = E(F,)[r]
Considering pairing on E(F,)[r] x E(F,)[r] always yields 1

But: ker(my — [¢]) also has order r

Denote ker(m, — [1]) = E(F,)[r] by G1

Denote ker(m, — [q]) C E(Fy) by G2

vV v.v. v .Yy

Reduced Tate pairing for cryptography:

G1XG2—>MT
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TU/ TE?E::I;;:: Universiteit
Towards computation of pairings € It orecmoon

| still have not said how the Tate pairing 7). is defined
General definition requires a lot of background
Much easier for the special case we will consider

vV v .vv

For the whole story read, e.g., Michael Naehrig's Ph.D. thesis
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| still have not said how the Tate pairing 7). is defined
General definition requires a lot of background

>
| 4

» Much easier for the special case we will consider

» For the whole story read, e.g., Michael Naehrig's Ph.D. thesis
>

No big surprise: Computation involves arithmetic in ]F;k and in
E(F,)

> Only feasible for “small enough” k&

> DLP in F, only hard for “large enough” ¢*
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Towards computation of pairings € It orecmoon

| still have not said how the Tate pairing 7). is defined
General definition requires a lot of background

>
| 4

» Much easier for the special case we will consider

» For the whole story read, e.g., Michael Naehrig's Ph.D. thesis
>

No big surprise: Computation involves arithmetic in ]F;k and in
E(F,)

> Only feasible for “small enough” k&

> DLP in F, only hard for “large enough” ¢*

> Balance hardness of DLP in E(F,) and I},

» But: Random curves have huge &
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Barreto-Naehrig curves

Let us consider pairings on the 128-bit security level
r should have 256 bits, ideally n = |E(F,)| is prime and has 256
bits, then take r = n

[« should have about 3072 bits (NIST), or about 3248 bits
(ECRYPT 1)

Embedding degree should be 12 or 13 (12 x 256 = 3072)

v

v

v

v

New software speed records for cryptographic pairings 8



T U/ TE?E::I;;:: Universiteit
Ba rreto- N a eh r|g curves e University of Technology

v

Let us consider pairings on the 128-bit security level

r should have 256 bits, ideally n = |E(F,)| is prime and has 256
bits, then take r = n

[« should have about 3072 bits (NIST), or about 3248 bits
(ECRYPT 1)

Embedding degree should be 12 or 13 (12 x 256 = 3072)

Barreto-Naehrig curves (BN curves) are curves over [F,, with prime
n = |E(F,)| and k = 12.
Polynomial parametrization, u € Z:

v

v

v

v

v

p = p(u) = 36u* + 36u® 4 24u* + 6u + 1

n = n(u) = 36u* 4+ 36u> + 18u? + 6u + 1
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TU/ TE?E::I;;:: Universiteit
Computing pairings over BN curves € Siaiorrecmonn

The reduced Tate pairing

Input: P <€ G1,Q € Go,n= (1, Mg—T1y -« TLQ)Q
Output: e,(P, Q)
R+ P
f+1
for (i« m—1;i>0;i——) do
Compute tangent line [ at R
R+ [2]R
[ Q)
if (n; =1) then
Compute line [ through P and R
R+~ R+P
f < FQ)
end if
end for
return fp'ir_l
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TU/ TE?E::I;;:: Universiteit
Computing pairings over BN curves € Siaiorrecmonn

The reduced Tate pairing

Input: P <€ G1,Q € Go,n= (1, Mg—1y -« TLQ)Q
Output: ¢,.(P,Q)
R+ P
f+1
for (i < m—1;i>0;i——) do
Compute tangent line [ at R, compute [(Q), R < [2]R
[ Q)
if (n; =1) then
Compute line [ through P and R, compute I(Q), R+ R+ P
f e fl(Q)
end if
end for

pr—1
return
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> “Miller loop” goes over bits of n

» n has about 256 bits, can we use shorter loop?
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“Miller loop” goes over bits of n

n has about 256 bits, can we use shorter loop?

Many ideas, leading to eta, ate, r-ate, optimal ate pairing
Shortest loop: optimal ate and r-ate pairing

Looplength for BN-curves: 6u + 2, about 66 bits

In the following: consider optimal ate aqp:
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“Miller loop” goes over bits of n

n has about 256 bits, can we use shorter loop?

Many ideas, leading to eta, ate, r-ate, optimal ate pairing

Shortest loop: optimal ate and r-ate pairing

Looplength for BN-curves: 6u + 2, about 66 bits

In the following: consider optimal ate aqp:

Downside: Requires swapping arguments, curve arithmetic in E(F )

vV V.V Vv v v Y

Reason: Shortening based on Frobenius endomorphism, no effect in
E(Fp)
» Two additional line-function computations after the loop
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Arithmetic in E(FF x) is very much effort (recall: k£ = 12!)
BN curve E has twist E’ defined over F2

E'(F,2) has a subgroup of order n, call it Gf

There is an efficient isomorphism from G, to G2

Idea: Perform curve arithmetic on G}

Compute line-function coefficients from points on G/,

vV V. v vV v v .Y

Requires arithmetic only on F,»
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Technische Universiteit
. . Eindhoven
Resultlng algorlthm TU/e University of Technology

Input: Q/ S G/Q,P €eG,l=6u+2= (1,lm_1, . ,lo)g
Output: a,p(Q, P)
R+ Q'
f+1
for (i« m—1;i>0;i——) do
Compute tangent line [ at R, compute [(P), R’ < [2]R’
£ f(P)
if (I =1) then
Compute line [ through @ and R, compute [(P), R' + R’ + @’
f e f1(P)
end if
end for
Two final linefunction additions modifying f

p—1
return [+

New software speed records for cryptographic pairings 12



. TU / Tychnische Universitelt
Computing the final exponentiation € e

The easy part

Decompose exponent # in (p° — 1)(p? + 1)((p* —p® +1)/n)
Exponentiation with p® — 1 is p® Frobenius and one inversion
Exponentiation with p? 4 1 is p? Frobenius and one multiplication
(p® — 1)(p? + 1) is called the “easy part”

After the easy part: Inversion is conjugation, squaring also faster

vV v v v Y
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. TU / Tychnische Universitelt
Computing the final exponentiation € e

The hard part

Remaining part: (p* — p? +1)/n

Algorithm by Scott, Benger, Charlemagne, Perez and Kachisa
Idea: Exploit polynomial parametrization of p

Requires 3 exponentiations with u

vV v .v. v vy

Some more work: 13 multiplications, 4 squarings in F
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The H a m m | ng—Welght Of /u e University of Technology

> In the Miller loop, number of additions depends on Hamming-weight
of 6u + 2

» We can use NAF representation for the exponent
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v

In the Miller loop, number of additions depends on Hamming-weight
of 6u + 2

We can use NAF representation for the exponent

v

v

Hard part of final exponentiation: 3 exponentiations with u

Can use addition-subtraction chain

v
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The H a m m | ng—Welght Of /LL e University of Technology

> In the Miller loop, number of additions depends on Hamming-weight
of 6u + 2

» We can use NAF representation for the exponent
» Hard part of final exponentiation: 3 exponentiations with

» Can use addition-subtraction chain

= Choice of u has huge impact on performance

New software speed records for cryptographic pairings 15
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An implementor's view Endrowen

All elliptic-curve arithmetic is on E'(F2)
Evaluating line functions at P yields elements of I,

Evaluation means multiplication [F,» x IF,,

vV v vvY

F 12 is extension of 2
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An |mp|ementor S view e University of Technology

All elliptic-curve arithmetic is on E'(F2)
Evaluating line functions at P yields elements of I,

Evaluation means multiplication [F,» x IF,,

vV v vvY

F 12 is extension of 2

= We can see the whole computation as sequence of operations in [,z
Let’s make FF)> arithmetic as fast as possible
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. . . TU/e T;rc‘:?‘l;‘f:: Universiteit
Modular arithmetic in [, priverstyoffecnelosy

» Recall that p has a special shape
p = p(u) = 36u” + 36u> + 24u* + 6u + 1

» Can we exploit this special shape for efficient modular arithmetic?

» Fan, Vercauteren, Verbauwhede (2009) demonstrate that the answer
is “yes” for hardware implementations

» More efficient because it uses specially sized multipliers
» How about software implementations?

New software speed records for cryptographic pairings 17



TU/ TE?E:?\E\S:: Universiteit
Polynomial representation € T o rennoton

(Inspired by Bernstein’s curve25519 paper)

Consider the ring R = Z[x] N Z[/6ux] and the element

P = 36u*z* + 36ud2® + 24u?2® + 6ur + 1
= (V6uz)! + V6(V6uz)® + 4(vV6uz)? + V6(vV6uz) + 1.

Then P(1) =p.
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TU/e TE?EZEI;;:: Universiteit
Polynomlal representatlon University of Technology
(Inspired by Bernstein’s curve25519 paper)

Consider the ring R = Z[x] N Z[/6ux] and the element

P = 36u*z* + 36ul2® + 24u%2® + 6ux + 1
= (V6uz)! + V6(V6uz)® + 4(vV6uz)? + V6(vV6uz) + 1.

Then P(1) = p. Represent f € F), by a polynomial F' € R as

F = fo+ fi - V6(V6uzx)+ fo- (V6uz)? + f3- V6(v/6uz)?
= fo+ fi-(6u)z+ fo- (6u®)z? + f3- (36u)z>

such that F(1) = f, or

f=fo+6ufl +6u’fo+36ufs, fi €Z
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TU/ TE?E::‘;;:: Universiteit
Multiplication and degree reduction € It orecmoon

Polynomial multiplication of f and ¢ yields 7 coefficients tq, ..., tg
Reduction mod p to rq,...,7r3:

ro < to — ty + 6t5 — 2tg

ry 11 —t4+5t5—t6

ro  to — 4ty + 18t5 — 3tg

rg 4— to — g + 2t5 + 3tg

New software speed records for cryptographic pairings 19



. TU/ TEeI;:?‘los‘f:: Universiteit
Four coefficients are not enough € I rreamton

256-bit numbers in 4 coefficients: Each coefficient 64 bits
Coefficients do not have exactly the same size
Small multiples in the reduction are larger than 128 bits

Easy to realize in hardware, not in software

vV v.v. vy

For software we need more coefficients
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Four coefficients are not enough € I rreamton

256-bit numbers in 4 coefficients: Each coefficient 64 bits
Coefficients do not have exactly the same size

Small multiples in the reduction are larger than 128 bits
Easy to realize in hardware, not in software

For software we need more coefficients
3

vV v.v v v Yy

Idea: Consider u = v°, use 12 coefficients fo, ..., fi1

[ =fo+6vf1 + 602 fo + 603 f3 4+ 60 f1 + 60° f5 + 605 f+
3607 f7 + 3608 fs + 36v° fo + 36010 f10 + 360 f11

» v has about 21 bits, products have about 42 bits
» Double-precision floats have 53-bit mantissa

» Use double-precision floats, still some space to add up coefficients
and compute small multiples
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Technische Universiteit
. P Eindhoven
Red uC'ng CoethlentS TU/e University of Technology

» At some point the coefficients will overflow (become larger than 53
bits)
Need to do coefficient reduction (carry)

v

v

Carry from fy to f1
¢ < round( fy/6v)
f() — fo —c-6v
fifh+ec
Carry from f; to fo
¢ < round(f1/v)
fis-fi—cv
faefate
fo € [-3v,30], f1 € [-v/2,v/2]
Carry from fy11 goes to fo, f3, fs, and fo

v

v

v
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TU/ TE?E::‘;;:: Universiteit
Implementation on a Core 2 processor € It orecmoon

» Use fast SIMD instructions mulpd and addpd
» 2 multiplications/ 2 additions in one instruction
» 1 mulpd and 1 addpd (and one mov) per cycle
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Use fast SIMD instructions mulpd and addpd
2 multiplications/ 2 additions in one instruction

1 mulpd and 1 addpd (and one mov) per cycle

vV v . vvY

Problem: F), arithmetic requires a lot of shuffeling, combining etc.
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Implementation on a Core 2 processor € It orecmoon

Use fast SIMD instructions mulpd and addpd

2 multiplications/ 2 additions in one instruction

1 mulpd and 1 addpd (and one mov) per cycle

Problem: F), arithmetic requires a lot of shuffeling, combining etc.
Solution: Implement arithmetic in 2

Use schoolbook multiplication in I, yielding 4 multiplications in F,,

vV V. v vV v Vv .Y

Perform 2 multiplications in parallel using SIMD instructions
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Implementation on a Core 2 processor € It orecmoon

vV V.V VvV vV vV Vv VY

Use fast SIMD instructions mulpd and addpd

2 multiplications/ 2 additions in one instruction

1 mulpd and 1 addpd (and one mov) per cycle

Problem: F), arithmetic requires a lot of shuffeling, combining etc.
Solution: Implement arithmetic in 2

Use schoolbook multiplication in I, yielding 4 multiplications in F,,
Perform 2 multiplications in parallel using SIMD instructions

IF,, polynomial reduction after IF,,> polynomial reduction

Only two F,, polynomial reduction and two coefficient reduction per
multiplication in IF 2

Those reductions also done in SIMD way

New software speed records for cryptographic pairings 22



TU/ TE?E::I;;:: Universiteit
Detecting and avoiding overflows € St arreamaon

After each multiplication we need to reduce coefficients
Sometimes also before a multiplication after several additions
Problem: How to detect where?

vV v .vvY

Need to detect overflow in the worst case
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Detecting and avoiding overflows € S orrcmonn

After each multiplication we need to reduce coefficients
Sometimes also before a multiplication after several additions
Problem: How to detect where?

Need to detect overflow in the worst case

Implement software in C

Replace double with C++ class CheckDouble

Perform arithmetic on values and in parallel on worst-case values

vV V. vV vV vV v VvY

Abort at overflow (allows backtrace in debugger)

New software speed records for cryptographic pairings 23



- o TU/ TE?EZEE;::Universiteit
Detecting and avoiding overflows € S orrcmonn

After each multiplication we need to reduce coefficients
Sometimes also before a multiplication after several additions
Problem: How to detect where?

Need to detect overflow in the worst case

Implement software in C

Replace double with C++ class CheckDouble

Perform arithmetic on values and in parallel on worst-case values
Abort at overflow (allows backtrace in debugger)

Re-implement algorithms in assembly (ghasm)

vV vV vV vV vV vV VvV VvV VY%

Would be good to have overflow checks in assembly
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TU/ TE?E::I;;:: Universiteit
Parameters of our implementation € Siaiorrecmonn

We use v = 1868033, u = v = 6518589491078791937
18 addition/subtraction steps in the Miller loop
12 multiplications for exponentiation with u

vV v v v

p is congruent 3 mod 4, construct F2 as F,[X]/(X? + 1)
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ReSU |tS University of Technology

Performance of dclxvi software

» Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
» Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles
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Performance of dclxvi software

Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles
Cycles on an Intel Xeon E5504: 4,448,504 cycles

| 4
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» Cycles on an AMD Phenom Il X4 955: 4,774,059 cycles
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Technische Universiteit
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ReSU |tS University of Technology

Performance of dclxvi software

Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,387,491 cycles
Cycles on an Intel Core 2 Quad Q9550 (45 nm): 4,390,004 cycles
Cycles on an Intel Xeon E5504: 4,448,504 cycles

Cycles on an AMD Phenom Il X4 955: 4,774,059 cycles

Comparison: Fastest published pairing benchmark before:
10,000,000 cycles on a Core 2 by Hankerson, Menezes, Scott, 2008

» Unpublished: 7,850,000 cycles on a Core 2 T5500 (Scott 2010)

vV v v v Y
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Technische Universiteit
[ Eindhoven
Even faster palrlngs TU/e University of Technology

New paper by Jean-Luc Beuchat, Jorge Enrique Gonzélez Diaz, Shigeo
Mitsunari, Eiji Okamoto, Francisco Rodriguez-Henriquez, and Tadanori
Teruya:

"High-Speed Software Implementation of the Optimal Ate Pairing over
Barreto-Naehrig Curves”

Claims: 2,630,000 cycles on a Core i7, 3,320,000 cycles on a Core 2
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Even faster palrlngs TU/e University of Technology

New paper by Jean-Luc Beuchat, Jorge Enrique Gonzélez Diaz, Shigeo
Mitsunari, Eiji Okamoto, Francisco Rodriguez-Henriquez, and Tadanori
Teruya:

“High-Speed Software Implementation of the Optimal Ate Pairing over
Barreto-Naehrig Curves”

Claims: 2,630,000 cycles on a Core i7, 3,320,000 cycles on a Core 2

Cycle counts on a Core 2 Q6600

dclxvi | [BGM+10]
multiplication in IF,» ~ 656 ~ 590
squaring in [F 2 ~ 386 ~ 481
optimal ate pairing ~ 4,390,000 | ~ 3512000

New software speed records for cryptographic pairings 26



TU/ TE?E::‘;;:: Universiteit
Why is our software slower? € T reamnton

[BGM+10] uses Montgomery arithmetic in IF,, and fast 64 x 64-bit
integer multiplier.
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Why is our software slower? € T reamnton

[BGM+10] uses Montgomery arithmetic in IF,, and fast 64 x 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: More addition steps in Miller loop and
exponentiation with u more expensive
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Why is our software slower? € T reamnton

[BGM+10] uses Montgomery arithmetic in IF,, and fast 64 x 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: More addition steps in Miller loop and
exponentiation with u more expensive

2. Coefficient reductions take quite a bit of time (~ 450,000 cycles)
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TU/ TE?E::I;;:: Universiteit
Why is our software slower? € T reamnton

[BGM+10] uses Montgomery arithmetic in IF,, and fast 64 x 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: More addition steps in Miller loop and
exponentiation with u more expensive

2. Coefficient reductions take quite a bit of time (~ 450,000 cycles)

3. Multiplication in Fa2 is slower (squaring is faster)

New software speed records for cryptographic pairings 27



TU/ TE?E::‘;;:: Universiteit
Which approach is better? € T o rennoton

Highly depends on the architecture

» On the Core i7: Very clearly Montgomery arithmetic [BGM+10]
» On the AMD K11: again [BGM+10]
> On the Core 2: currently [BGM+10], but ... let’s see
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- | T U/e Iechnische Universiteit
V\/h ICh a pproaCh IS better? University of Technology

Highly depends on the architecture

On the Core i7: Very clearly Montgomery arithmetic [BGM+10]
On the AMD K11: again [BGM+10]
On the Core 2: currently [BGM+10], but ... let’s see

Other microarchitectures or architectures?
Mainly depends on performance of double-precision floating-point
multiplication/addition vs. integer multiplication/addition

vV v v v

» Our approach is the fastest approach using double-precision
floating-point arithmetic
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I U e Eindhoven
References University of Technology

Paper: http://cryptojedi.org/users/peter/#dclxvi
(has an error, will be updated soon)

Software: http://cryptojedi.org/crypto/#dclxvi
(public domain)
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