
How to use the negation map in the Pollard rho
method

Peter Schwabe

Joint work with Daniel J. Bernstein and Tanja Lange

March 09, 2012

EiPSI Crypto Working Group, Utrecht

A few words about Taiwan and Academia Sinica

I Taiwan (台灣) is an island south of China
I About 36,200 km2 large
I Territory of the Republic of China (not to be confused with the

People’s Republic of China)
I Capital is Taipei (台北)
I Marine tropical climate

I 99 summits over 3000 meters (highest peak: 3952 m)
I Wildlife includes black bears, salmon, monkeys. . .
I Academia Sinica is a research facility funded by ROC
I About 30 institutes
I More than 800 principal investigators, about 900 postdocs and more

than 2200 students

How to use the negation map in the Pollard rho method 2

A few words about Taiwan and Academia Sinica

I Taiwan (台灣) is an island south of China
I About 36,200 km2 large
I Territory of the Republic of China (not to be confused with the

People’s Republic of China)
I Capital is Taipei (台北)
I Marine tropical climate
I 99 summits over 3000 meters (highest peak: 3952 m)
I Wildlife includes black bears, salmon, monkeys. . .

I Academia Sinica is a research facility funded by ROC
I About 30 institutes
I More than 800 principal investigators, about 900 postdocs and more

than 2200 students

How to use the negation map in the Pollard rho method 2

A few words about Taiwan and Academia Sinica

I Taiwan (台灣) is an island south of China
I About 36,200 km2 large
I Territory of the Republic of China (not to be confused with the

People’s Republic of China)
I Capital is Taipei (台北)
I Marine tropical climate
I 99 summits over 3000 meters (highest peak: 3952 m)
I Wildlife includes black bears, salmon, monkeys. . .
I Academia Sinica is a research facility funded by ROC
I About 30 institutes
I More than 800 principal investigators, about 900 postdocs and more

than 2200 students

How to use the negation map in the Pollard rho method 2

A picture from Taiwan – Sun-Moon Lake (日月潭)

For more pictures check out http://cryptojedi.org/gallery/
How to use the negation map in the Pollard rho method 3

The discrete-logarithm problem

I Let G = 〈P 〉 be a finite cyclic group with generator P
I In the following: G is written additively

I Given Q ∈ G, the discrete-logarithm problem (DLP) is to find
k ∈ Z, such that

k · P = Q

I For certain groups G this problem is the basis of many asymmetric
cryptographic protocols

I Most importantly: Z/nZ and elliptic-curve groups

How to use the negation map in the Pollard rho method 4

The discrete-logarithm problem

I Let G = 〈P 〉 be a finite cyclic group with generator P
I In the following: G is written additively
I Given Q ∈ G, the discrete-logarithm problem (DLP) is to find
k ∈ Z, such that

k · P = Q

I For certain groups G this problem is the basis of many asymmetric
cryptographic protocols

I Most importantly: Z/nZ and elliptic-curve groups

How to use the negation map in the Pollard rho method 4

The discrete-logarithm problem

I Let G = 〈P 〉 be a finite cyclic group with generator P
I In the following: G is written additively
I Given Q ∈ G, the discrete-logarithm problem (DLP) is to find
k ∈ Z, such that

k · P = Q

I For certain groups G this problem is the basis of many asymmetric
cryptographic protocols

I Most importantly: Z/nZ and elliptic-curve groups

How to use the negation map in the Pollard rho method 4

Pollard’s rho algorithm

I Does not use any additional structure (aside from the group
structure)

I Best known algorithm to solve the DLP in generic groups of prime
order

I Uses a pseudorandom iteration function f : G→ G

I Start with W0 = n0P +m0Q

I Iteratively apply f to obtain Wi+1 = f(Wi)

I Update ni+1,mi+1 from ni,mi (compute modulo |G|)
I f needs to preserve knowledge about the linear combination in P

and Q
I If Wi = Wj for i 6= j, then

niP +miQ = njP +mjQ⇒
k = (nj − ni)/(mi −mj) mod |G|

How to use the negation map in the Pollard rho method 5

Pollard’s rho algorithm

I Does not use any additional structure (aside from the group
structure)

I Best known algorithm to solve the DLP in generic groups of prime
order

I Uses a pseudorandom iteration function f : G→ G

I Start with W0 = n0P +m0Q

I Iteratively apply f to obtain Wi+1 = f(Wi)

I Update ni+1,mi+1 from ni,mi (compute modulo |G|)
I f needs to preserve knowledge about the linear combination in P

and Q
I If Wi = Wj for i 6= j, then

niP +miQ = njP +mjQ⇒
k = (nj − ni)/(mi −mj) mod |G|

How to use the negation map in the Pollard rho method 5

Pollard’s rho algorithm

I Does not use any additional structure (aside from the group
structure)

I Best known algorithm to solve the DLP in generic groups of prime
order

I Uses a pseudorandom iteration function f : G→ G

I Start with W0 = n0P +m0Q

I Iteratively apply f to obtain Wi+1 = f(Wi)

I Update ni+1,mi+1 from ni,mi (compute modulo |G|)
I f needs to preserve knowledge about the linear combination in P

and Q

I If Wi = Wj for i 6= j, then

niP +miQ = njP +mjQ⇒
k = (nj − ni)/(mi −mj) mod |G|

How to use the negation map in the Pollard rho method 5

Pollard’s rho algorithm

I Does not use any additional structure (aside from the group
structure)

I Best known algorithm to solve the DLP in generic groups of prime
order

I Uses a pseudorandom iteration function f : G→ G

I Start with W0 = n0P +m0Q

I Iteratively apply f to obtain Wi+1 = f(Wi)

I Update ni+1,mi+1 from ni,mi (compute modulo |G|)
I f needs to preserve knowledge about the linear combination in P

and Q
I If Wi = Wj for i 6= j, then

niP +miQ = njP +mjQ⇒
k = (nj − ni)/(mi −mj) mod |G|

How to use the negation map in the Pollard rho method 5

Pollard’s rho algorithm II

•

•

•

•

•
•

•

•

•

W0

W1

W2

Wt−1

Wt

Wt+1

Wt+2

Wt+s−2

Wt+s−1

Wt+s

I Easy way to define f :

f(W) = n(W)P +m(W)Q,

with pseudorandom functions
n,m : G→ Z/|G|Z

I Expected number of iterations

until entering a cycle:
√

π|G|
2

I Detect cycles without storing
all Wi: Floyd, Brent

How to use the negation map in the Pollard rho method 6

Pollard’s rho algorithm II

•

•

•

•

•
•

•

•

•

W0

W1

W2

Wt−1

Wt

Wt+1

Wt+2

Wt+s−2

Wt+s−1

Wt+s

I Easy way to define f :

f(W) = n(W)P +m(W)Q,

with pseudorandom functions
n,m : G→ Z/|G|Z

I Expected number of iterations

until entering a cycle:
√

π|G|
2

I Detect cycles without storing
all Wi: Floyd, Brent

How to use the negation map in the Pollard rho method 6

Pollard’s rho algorithm II

•

•

•

•

•
•

•

•

•

W0

W1

W2

Wt−1

Wt

Wt+1

Wt+2

Wt+s−2

Wt+s−1

Wt+s

I Easy way to define f :

f(W) = n(W)P +m(W)Q,

with pseudorandom functions
n,m : G→ Z/|G|Z

I Expected number of iterations

until entering a cycle:
√

π|G|
2

I Detect cycles without storing
all Wi: Floyd, Brent

How to use the negation map in the Pollard rho method 6

Pollard’s rho algorithm II

•

•

•

•

•
•

•

•

•

W0

W1

W2

Wt−1

Wt

Wt+1

Wt+2

Wt+s−2

Wt+s−1

Wt+s

I Easy way to define f :

f(W) = n(W)P +m(W)Q,

with pseudorandom functions
n,m : G→ Z/|G|Z

I Expected number of iterations

until entering a cycle:
√

π|G|
2

I Detect cycles without storing
all Wi: Floyd, Brent

How to use the negation map in the Pollard rho method 6

Parallel Pollard

I Large instances of the DLP call for parallel computing
I Trivial parallelization of Pollard’s rho algorithm on t computers gives

speedup of
√
t

I Much better: Use parallel approach by van Oorschot and Wiener:
I Client-Server approach, computation done on many clients
I Uses the notion of distinguished points (DPs), easy-to-determine

property, such as “last d bits of the element’s encoding are 0”
I Clients start from random points and iterate until they reach a DP
I Send starting point and DP to the server, restart from new random

point
I Server searches in incoming points for collisions (same DP, different

starting point)

How to use the negation map in the Pollard rho method 7

Parallel Pollard

I Large instances of the DLP call for parallel computing
I Trivial parallelization of Pollard’s rho algorithm on t computers gives

speedup of
√
t

I Much better: Use parallel approach by van Oorschot and Wiener:
I Client-Server approach, computation done on many clients
I Uses the notion of distinguished points (DPs), easy-to-determine

property, such as “last d bits of the element’s encoding are 0”

I Clients start from random points and iterate until they reach a DP
I Send starting point and DP to the server, restart from new random

point
I Server searches in incoming points for collisions (same DP, different

starting point)

How to use the negation map in the Pollard rho method 7

Parallel Pollard

I Large instances of the DLP call for parallel computing
I Trivial parallelization of Pollard’s rho algorithm on t computers gives

speedup of
√
t

I Much better: Use parallel approach by van Oorschot and Wiener:
I Client-Server approach, computation done on many clients
I Uses the notion of distinguished points (DPs), easy-to-determine

property, such as “last d bits of the element’s encoding are 0”
I Clients start from random points and iterate until they reach a DP
I Send starting point and DP to the server, restart from new random

point

I Server searches in incoming points for collisions (same DP, different
starting point)

How to use the negation map in the Pollard rho method 7

Parallel Pollard

I Large instances of the DLP call for parallel computing
I Trivial parallelization of Pollard’s rho algorithm on t computers gives

speedup of
√
t

I Much better: Use parallel approach by van Oorschot and Wiener:
I Client-Server approach, computation done on many clients
I Uses the notion of distinguished points (DPs), easy-to-determine

property, such as “last d bits of the element’s encoding are 0”
I Clients start from random points and iterate until they reach a DP
I Send starting point and DP to the server, restart from new random

point
I Server searches in incoming points for collisions (same DP, different

starting point)

How to use the negation map in the Pollard rho method 7

Some notes on parallel Pollard

I Walks do not enter a cycle, shape is more like a λ

I Choice of DP-property influences length of separate walks
I Fewer DPs: longer walks (on average), less storage, less

communication
I More DPs: Less overhead after a collision
I Clients do not have to update ni and mi, simply do successful walks

again to find coefficients

How to use the negation map in the Pollard rho method 8

Some notes on parallel Pollard

I Walks do not enter a cycle, shape is more like a λ
I Choice of DP-property influences length of separate walks
I Fewer DPs: longer walks (on average), less storage, less

communication
I More DPs: Less overhead after a collision

I Clients do not have to update ni and mi, simply do successful walks
again to find coefficients

How to use the negation map in the Pollard rho method 8

Some notes on parallel Pollard

I Walks do not enter a cycle, shape is more like a λ
I Choice of DP-property influences length of separate walks
I Fewer DPs: longer walks (on average), less storage, less

communication
I More DPs: Less overhead after a collision
I Clients do not have to update ni and mi, simply do successful walks

again to find coefficients

How to use the negation map in the Pollard rho method 8

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 9

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 9

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition

I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 9

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations

I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 9

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 9

Additive walks

I Main cost of (parallalized) Pollard’s rho algorithm: calls to the
iteration function

I With f(W) = n(W)P +m(W)Q: two hash-function calls, one
double-scalar multiplication

I Much more efficient: Additive walks
I Precompute r pseudorandom elements R0, . . . , Rr−1 with known

linear combination in P and Q
I Use hash function h : G→ {0, r − 1}
I Define f(W) = W +Rh(W)

I Now: only one hash-function call, one group addition
I Additive walks are noticably nonrandom, they require more iterations
I Teske showed that large r provides close-to-random behaviour (e.g.
r = 20)

I Summary: additive walks provide much better performance in
practice

How to use the negation map in the Pollard rho method 9

Application to elliptic-curve groups

I So far, everything worked in the generic-group model
I Now consider groups of points on elliptic curves
I Group elements are points (x, y)

I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

How to use the negation map in the Pollard rho method 10

Application to elliptic-curve groups

I So far, everything worked in the generic-group model
I Now consider groups of points on elliptic curves
I Group elements are points (x, y)

I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

How to use the negation map in the Pollard rho method 10

Application to elliptic-curve groups

I So far, everything worked in the generic-group model
I Now consider groups of points on elliptic curves
I Group elements are points (x, y)

I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

How to use the negation map in the Pollard rho method 10

Application to elliptic-curve groups

I So far, everything worked in the generic-group model
I Now consider groups of points on elliptic curves
I Group elements are points (x, y)

I Efficient operation aside from group addition: negation
I For Weierstrass curves: (x, y) 7→ (x,−y)

I Some curves have more efficiently computable endomorphisms,
examples are Koblitz curves and BN curves

I Idea: Define iterations on equivalence classes modulo negation
I For example: always take the lexicographic minimum of (x,−y) and

(x, y)

I This halves the size of the search space, expected number of
iterations drops by a factor of

√
2

How to use the negation map in the Pollard rho method 10

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}

I Problem: fruitless cycles
If t = h(Wi) = h(Wi+1)

, and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 11

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1)

, and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 11

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 11

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 11

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 11

Putting it together

I Precompute R0, . . . , Rr−1
I Clients start at some random W0

I Iteratively compute Wi+1 = |Wi +Rh(Wi)|
I |W | chooses a well-defined representative in {−W,W}
I Problem: fruitless cycles

If t = h(Wi) = h(Wi+1), and |Wi +Rt| = −(Wi +Rt) we obtain
the following sequence:

Wi+1 = f(Wi) = −(Wi +Rt)

Wi+2 = f(Wi+1) = | − (Wi +Rt) +Rt| = | −Wi| = Wi

I Probability for such fruitless cycles: 1/2r

I Similar observations hold for longer fruitless cycles (length 4,6,. . .)
I Probability of a cycle of length 2c is ≈ 1/rc

How to use the negation map in the Pollard rho method 11

Dealing with fruitless cycles
I Avoid frequent cycles by choosing large r
I Problem: Lookups become more expensive (cache issues)

I Avoid larger cycles by frequent distinguished points
I Early-abort walks after a certain number of iterations
I Problem: Large communication cost and storage

Cycle detection
I For 2-cycles: Compare h(Wi) and h(Wi+1)

I Compare points

Escape strategies
I Retroactively adjust h(Wi)

I Determine unique point in cycle, add “special point” to escape
I Determine unique point in cycle, double this point
I Important: Escape point must be independent of the entrance point

How to use the negation map in the Pollard rho method 12

Dealing with fruitless cycles
I Avoid frequent cycles by choosing large r
I Problem: Lookups become more expensive (cache issues)
I Avoid larger cycles by frequent distinguished points
I Early-abort walks after a certain number of iterations
I Problem: Large communication cost and storage

Cycle detection
I For 2-cycles: Compare h(Wi) and h(Wi+1)

I Compare points

Escape strategies
I Retroactively adjust h(Wi)

I Determine unique point in cycle, add “special point” to escape
I Determine unique point in cycle, double this point
I Important: Escape point must be independent of the entrance point

How to use the negation map in the Pollard rho method 12

Dealing with fruitless cycles
I Avoid frequent cycles by choosing large r
I Problem: Lookups become more expensive (cache issues)
I Avoid larger cycles by frequent distinguished points
I Early-abort walks after a certain number of iterations
I Problem: Large communication cost and storage

Cycle detection
I For 2-cycles: Compare h(Wi) and h(Wi+1)

I Compare points

Escape strategies
I Retroactively adjust h(Wi)

I Determine unique point in cycle, add “special point” to escape
I Determine unique point in cycle, double this point
I Important: Escape point must be independent of the entrance point

How to use the negation map in the Pollard rho method 12

Dealing with fruitless cycles
I Avoid frequent cycles by choosing large r
I Problem: Lookups become more expensive (cache issues)
I Avoid larger cycles by frequent distinguished points
I Early-abort walks after a certain number of iterations
I Problem: Large communication cost and storage

Cycle detection
I For 2-cycles: Compare h(Wi) and h(Wi+1)

I Compare points

Escape strategies
I Retroactively adjust h(Wi)

I Determine unique point in cycle, add “special point” to escape
I Determine unique point in cycle, double this point
I Important: Escape point must be independent of the entrance point

How to use the negation map in the Pollard rho method 12

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles

I Iteration function did not use the negation map:
“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

How to use the negation map in the Pollard rho method 13

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

How to use the negation map in the Pollard rho method 13

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

How to use the negation map in the Pollard rho method 13

How expensive are fruitless cycles
I In July 2009: Break of ECDLP on 112-bit curve over a prime field by

Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
I Computation carried out on a cluster of 214 Sony PlayStation 3

gaming consoles
I Iteration function did not use the negation map:

“We did not use the common negation map since it
requires branching and results in code that runs slower in a
SIMD environment”

I Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many
ways of dealing with fruitless cycles best speedup is 1.29, but

“If the Pollard rho method is parallelized in SIMD fashion,
it is a challenge to achieve any speedup at all. . . . Dealing
with cycles entails administrative overhead and branching,
which cause a non-negligible slowdown when running
multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD
environments.”

How to use the negation map in the Pollard rho method 13

What’s the problem with SIMD?

I SIMD stands for single instruction stream, multiple data streams
I Same sequence of instructions carried out on different data
I Most commonly implemented through vector registers
I Branching means (in the worst case): Sequentially execute both

branches

I Computing power of the Cell processor in the PlayStation 3 is in the
Synergistic Processor Elements (SPEs)

I Instruction set of the SPEs is purely SIMD
I SIMD becomes more and more important on all modern

microprocessors
I Question: Can we really not get the factor-

√
2 speedup with SIMD?

How to use the negation map in the Pollard rho method 14

What’s the problem with SIMD?

I SIMD stands for single instruction stream, multiple data streams
I Same sequence of instructions carried out on different data
I Most commonly implemented through vector registers
I Branching means (in the worst case): Sequentially execute both

branches
I Computing power of the Cell processor in the PlayStation 3 is in the

Synergistic Processor Elements (SPEs)
I Instruction set of the SPEs is purely SIMD

I SIMD becomes more and more important on all modern
microprocessors

I Question: Can we really not get the factor-
√

2 speedup with SIMD?

How to use the negation map in the Pollard rho method 14

What’s the problem with SIMD?

I SIMD stands for single instruction stream, multiple data streams
I Same sequence of instructions carried out on different data
I Most commonly implemented through vector registers
I Branching means (in the worst case): Sequentially execute both

branches
I Computing power of the Cell processor in the PlayStation 3 is in the

Synergistic Processor Elements (SPEs)
I Instruction set of the SPEs is purely SIMD
I SIMD becomes more and more important on all modern

microprocessors

I Question: Can we really not get the factor-
√

2 speedup with SIMD?

How to use the negation map in the Pollard rho method 14

What’s the problem with SIMD?

I SIMD stands for single instruction stream, multiple data streams
I Same sequence of instructions carried out on different data
I Most commonly implemented through vector registers
I Branching means (in the worst case): Sequentially execute both

branches
I Computing power of the Cell processor in the PlayStation 3 is in the

Synergistic Processor Elements (SPEs)
I Instruction set of the SPEs is purely SIMD
I SIMD becomes more and more important on all modern

microprocessors
I Question: Can we really not get the factor-

√
2 speedup with SIMD?

How to use the negation map in the Pollard rho method 14

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P

I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2 ·min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 15

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)

I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2 ·min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 15

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise

I Occasionally check for 2-cycles:
I If Wi−1 = Wi−3, set Wi = |2 ·min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 15

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2 ·min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 15

Our approach

I Solve ECDLP on elliptic curve over Fp
I Begin with simplest type of negating additive walk
I Starting points W0 are known multiples of Q
I Precomputed table contains r known multiples of P
I Use (relatively) large r (in our implementation: 2048)
I |(x, y)| is (x, y) if y ∈ {0, 2, 4, . . . , p− 1}, (x,−y) otherwise
I Occasionally check for 2-cycles:

I If Wi−1 = Wi−3, set Wi = |2 ·min{Wi−1,Wi−2}|
I Otherwise set Wi = Wi−1

I With even lower frequency check for 4-cycles, 6-cycles etc.
I Implementation actually checks for 12-cycles (with very low

frequency)

How to use the negation map in the Pollard rho method 15

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotalically negligible compared to finite-field multiplications in
EC arithmetic

How to use the negation map in the Pollard rho method 16

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotalically negligible compared to finite-field multiplications in
EC arithmetic

How to use the negation map in the Pollard rho method 16

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotalically negligible compared to finite-field multiplications in
EC arithmetic

How to use the negation map in the Pollard rho method 16

Eliminating branches

I Compute |(x, y)| as (x, y + ε(p− 2y)), with ε = y mod 2

I Amortize min computations across relevant iterations, update min
while computing iterations

I Always compute doublings, even if they are not used
I Select Wi from Wi−1 and 2Wmin without branch
I Selection bit is output of branchfree comparison between Wi−1 and
Wi−1−c when detecting c-cycles

I All selections, subtractions, additions and comparisons are
linear-time

I Asymptotalically negligible compared to finite-field multiplications in
EC arithmetic

How to use the negation map in the Pollard rho method 16

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2

I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 17

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration

I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 17

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations

I Minimize 1/w + w/4r: Take w ≈ 2
√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 17

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 17

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 17

Optimization and analysis

I Checking for fruitless cycles every w iterations
I Probability for fruitless cycle: w/2r
I Average wasted iterations if fruitless cycle occured: w/2
I Checking without finding a fruitless cycle wastes one iteration
I Overall loss: 1 + w2/4r per w iterations
I Minimize 1/w + w/4r: Take w ≈ 2

√
r

I Slowdown from fruitless cycles by a factor of 1 + Θ(1/
√
r)

I Negligible if r →∞ as p→∞

How to use the negation map in the Pollard rho method 17

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP

I (very-close-to) factor-
√

2 speedup through negation map
I Faster iterations

I Faster arithmetic in Z/(2128 − 3)Z (prime field has order
(2128 − 3)/76439)

I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic, and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

How to use the negation map in the Pollard rho method 18

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations

I Faster arithmetic in Z/(2128 − 3)Z (prime field has order
(2128 − 3)/76439)

I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic, and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

How to use the negation map in the Pollard rho method 18

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations
I Faster arithmetic in Z/(2128 − 3)Z (prime field has order

(2128 − 3)/76439)
I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic, and handling of

fruitless cycles

I Negligible overhead (in practice!) from fruitless cycles

How to use the negation map in the Pollard rho method 18

Solving the 112-bit ECDLP faster

I Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
I Our software takes expected 35.6 PS3 years for the same DLP
I (very-close-to) factor-

√
2 speedup through negation map

I Faster iterations
I Faster arithmetic in Z/(2128 − 3)Z (prime field has order

(2128 − 3)/76439)
I Non-standard radix 212.8 to represent elements of (2128 − 3)/76439
I Careful design of iteration function, arithmetic, and handling of

fruitless cycles
I Negligible overhead (in practice!) from fruitless cycles

How to use the negation map in the Pollard rho method 18

Solving smaller DLPs

I We have a faster implementation to solve the DLP
I But we don’t have a cluster of > 200 PlayStations
I How can we demonstrate that the implementation indeed works?

I Implementation solves ECDLPs on elliptic curves
E : y2 = x3 − 3x+ b

I Repeatedly solve DLP on curves with smaller subgroups (choose
different b), specifically:

I 32237 experiments in a subgroup of order ≈ 250

I 257241 experiments in a subgroup of order ≈ 255

I 33791 experiments in a subgroup of order ≈ 260

I Rate of DPs per hour matches expectations
I Median number of DPs required to solve DLP matches expectations
I Confident performance extrapolation to 112-bit DLP

How to use the negation map in the Pollard rho method 19

Solving smaller DLPs

I We have a faster implementation to solve the DLP
I But we don’t have a cluster of > 200 PlayStations
I How can we demonstrate that the implementation indeed works?
I Implementation solves ECDLPs on elliptic curves
E : y2 = x3 − 3x+ b

I Repeatedly solve DLP on curves with smaller subgroups (choose
different b), specifically:

I 32237 experiments in a subgroup of order ≈ 250

I 257241 experiments in a subgroup of order ≈ 255

I 33791 experiments in a subgroup of order ≈ 260

I Rate of DPs per hour matches expectations
I Median number of DPs required to solve DLP matches expectations
I Confident performance extrapolation to 112-bit DLP

How to use the negation map in the Pollard rho method 19

Solving smaller DLPs

I We have a faster implementation to solve the DLP
I But we don’t have a cluster of > 200 PlayStations
I How can we demonstrate that the implementation indeed works?
I Implementation solves ECDLPs on elliptic curves
E : y2 = x3 − 3x+ b

I Repeatedly solve DLP on curves with smaller subgroups (choose
different b), specifically:

I 32237 experiments in a subgroup of order ≈ 250

I 257241 experiments in a subgroup of order ≈ 255

I 33791 experiments in a subgroup of order ≈ 260

I Rate of DPs per hour matches expectations
I Median number of DPs required to solve DLP matches expectations

I Confident performance extrapolation to 112-bit DLP

How to use the negation map in the Pollard rho method 19

Solving smaller DLPs

I We have a faster implementation to solve the DLP
I But we don’t have a cluster of > 200 PlayStations
I How can we demonstrate that the implementation indeed works?
I Implementation solves ECDLPs on elliptic curves
E : y2 = x3 − 3x+ b

I Repeatedly solve DLP on curves with smaller subgroups (choose
different b), specifically:

I 32237 experiments in a subgroup of order ≈ 250

I 257241 experiments in a subgroup of order ≈ 255

I 33791 experiments in a subgroup of order ≈ 260

I Rate of DPs per hour matches expectations
I Median number of DPs required to solve DLP matches expectations
I Confident performance extrapolation to 112-bit DLP

How to use the negation map in the Pollard rho method 19

Left-out details

I Paper has way more details on the implementation

I Hand-optimized assembly implementation (not online yet)
I Various tricks in the design of the iteration function
I Entertaining history on “How not to use negation in Pollard’s rho

method”
I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 20

Left-out details

I Paper has way more details on the implementation
I Hand-optimized assembly implementation (not online yet)

I Various tricks in the design of the iteration function
I Entertaining history on “How not to use negation in Pollard’s rho

method”
I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 20

Left-out details

I Paper has way more details on the implementation
I Hand-optimized assembly implementation (not online yet)
I Various tricks in the design of the iteration function

I Entertaining history on “How not to use negation in Pollard’s rho
method”

I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 20

Left-out details

I Paper has way more details on the implementation
I Hand-optimized assembly implementation (not online yet)
I Various tricks in the design of the iteration function
I Entertaining history on “How not to use negation in Pollard’s rho

method”

I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 20

Left-out details

I Paper has way more details on the implementation
I Hand-optimized assembly implementation (not online yet)
I Various tricks in the design of the iteration function
I Entertaining history on “How not to use negation in Pollard’s rho

method”
I Paper is online, e.g. at http://cryptojedi.org/papers/#negation

How to use the negation map in the Pollard rho method 20

