Constructive and destructive implementations of elliptic-curve arithmetic

Peter Schwabe

Research Center for Information Technology Innovation

Academia Sinica

October 30, 2012

ECC 2012, Querétaro, Mexico

The Problem

Given:

- an elliptic curve E over a finite field K,
- a prime order subgroup *E*(K) with *r* elements,
- a (variable) point $P \in E(K)$, and
- an integer $k \in [1, r-1]$

How to compute point multiplication [k]P at high speeds?

(Part of) Patrick Longa's first slide at ECC 2011 "Elliptic Curve Cryptography at High Speeds"

- ► Three recent updates (all for Intel Sandy Bridge):
 - Aranha, Faz-Hernández, López, and Rodríguez-Henríquez: Faster implementation of scalar multiplication on Koblitz curves, Latincrypt 2012.

Result: 99200 cycles on the NIST-K283 curve.

Code will be available

Longa and Sica: Four-Dimensional Gallant-Lambert-Vanstone
 Scalar Multiplication, Asiacrypt 2012.

Result: 91000 cycles on a 256-bit curve over a prime field.

Code not available

 Oliveira, Rodríguez-Henríquez, and López: New timings for scalar multiplication using a new set of coordinates, ECC 2012 rump session.

Result: 75000 cycles on a 254-bit curve over a binary field.

Code will be available

Outline of this talk

中央研究院

▶ In all ECC software I wrote I never answered the question "How fast can we do variable-basepoint scalar multiplication?"

Outline of this talk

- ▶ In all ECC software I wrote I never answered the question "How fast can we do variable-basepoint scalar multiplication?"
- ► Maybe I'm not doing my job properly, or maybe it is (often) the wrong question to ask in the first place?
- ► Certainly there is a lot more to do for ECC software performance

Outline of this talk

- ▶ In all ECC software I wrote I never answered the question "How fast can we do variable-basepoint scalar multiplication?"
- ► Maybe I'm not doing my job properly, or maybe it is (often) the wrong question to ask in the first place?
- ► Certainly there is a lot more to do for ECC software performance
- ► Example 1: Elliptic-curve Diffie-Hellman key exchange
- ► Example 2: Elliptic-curve signatures
- ► Example 3: Solving the ECDLP with Pollard's rho algorithm

Elliptic-curve Diffie-Hellman key exchange 中央研究院

- ▶ Alice and Bob each pick random secret scalar, compute scalar product with a fixed base point
- ▶ Alice and Bob each receive point from the other one, multiply by their secret scalar

Elliptic-curve Diffie-Hellman key exchange

- Alice and Bob each pick random secret scalar, compute scalar product with a fixed base point
- Alice and Bob each receive point from the other one, multiply by their secret scalar
- Second step sounds exactly like variable basepoint scalar multiplication

Elliptic-curve Diffie-Hellman key exchange

- ▶ Alice and Bob each pick random secret scalar, compute scalar product with a *fixed base point*
- Alice and Bob each receive point from the other one, multiply by their secret scalar
- Second step sounds exactly like variable basepoint scalar multiplication
- ▶ Usual way to make this fast:
 - ► High level: reduce number of EC additions and doublings
 - Mid level: reduce number of field operations per EC addition and doubling
 - ► Low level: reduce number of CPU cycles taken by field operations

Sliding-window scalar multiplication

- ightharpoonup Choose window size w
- ▶ Precompute $P, 3P, 5P, \ldots, (2^w 1)P$
- ▶ Rewrite scalar k as $k = \sum k_i 2^i$ with k_i in $\{0, 1, 3, 5, \dots, 2^w 1\}$ with at most one non-zero entry in each window of length w
- ▶ Double for each coefficient, add for nonzero coefficients
- ▶ Expected number of additions: $\approx \text{len}(k)/(w+1) + 2^{w-1}$

Sliding-window scalar multiplication

- ► Choose window size w
- ▶ Precompute $P, 3P, 5P, \ldots, (2^w 1)P$
- ▶ Rewrite scalar k as $k = \sum k_i 2^i$ with k_i in $\{0, 1, 3, 5, \dots, 2^w 1\}$ with at most one non-zero entry in each window of length w
- ▶ Double for each coefficient, add for nonzero coefficients
- ▶ Expected number of additions: $\approx \text{len}(k)/(w+1) + 2^{w-1}$
- ► Standard optimization: Use signed representation

Sliding-window scalar multiplication

- Choose window size w
- ▶ Precompute $P, 3P, 5P, \ldots, (2^w 1)P$
- ▶ Rewrite scalar k as $k = \sum k_i 2^i$ with k_i in $\{0, 1, 3, 5, \dots, 2^w 1\}$ with at most one non-zero entry in each window of length w
- ▶ Double for each coefficient, add for nonzero coefficients
- ▶ Expected number of additions: $\approx \text{len}(k)/(w+1) + 2^{w-1}$
- ► Standard optimization: Use signed representation
- ▶ For curves with efficiently computable endomorphism φ :
 - ▶ Split scalar k in k_1, k_2 , s.t. $kP = k_1P + k_2\varphi(P)$
 - Perform double-scalar multiplication with half-size scalars
 - Halves the number of doublings
 - ▶ Estimate by Galbraith, Lin, Scott (2009): speedup of 30% to 40%

Problem: timing attacks

- ▶ Branch conditions depend on secret data (scalar)
- ► Code takes different amount of time depending on the scalar
- ► This is true even if the code in both possible branches takes the same amount of time (reason: branch prediction)
- ▶ Attacker can measure time and deduce information about the scalar

Problem: timing attacks

- ▶ Branch conditions depend on secret data (scalar)
- ► Code takes different amount of time depending on the scalar
- ► This is true even if the code in both possible branches takes the same amount of time (reason: branch prediction)
- ▶ Attacker can measure time and deduce information about the scalar
- You don't think this is scary? Wait for Billy Bob Brumley's talk tomorrow.

- Choose window size w
- ▶ Represent scalar k in base 2^w : $k = \sum k_i 2^{iw}$
- Precompute $0P, 1P, 2P, 3P, \dots, (2^w 1)P$
- ▶ For each k_i : add k_iP into result; do w point doublings

- Choose window size w
- ▶ Represent scalar k in base 2^w : $k = \sum k_i 2^{iw}$
- Precompute $0P, 1P, 2P, 3P, \dots, (2^w 1)P$
- ▶ For each k_i : add k_iP into result; do w point doublings
- ► Standard optimization: Use signed representation

- ightharpoonup Choose window size w
- ▶ Represent scalar k in base 2^w : $k = \sum k_i 2^{iw}$
- Precompute $0P, 1P, 2P, 3P, \dots, (2^w 1)P$
- ▶ For each k_i : add k_iP into result; do w point doublings
- Standard optimization: Use signed representation
- ▶ Number of additions: $\lceil \operatorname{len}(k)/w \rceil + 2^w$
- Penalty from more additions is relatively more serious for curves with endomorphisms

中央研究院

- Choose window size w
- ▶ Represent scalar k in base 2^w : $k = \sum k_i 2^{iw}$
- Precompute $0P, 1P, 2P, 3P, \dots, (2^w 1)P$
- ▶ For each k_i : add k_iP into result; do w point doublings
- Standard optimization: Use signed representation
- ▶ Number of additions: $\lceil \operatorname{len}(k)/w \rceil + 2^w$
- Penalty from more additions is relatively more serious for curves with endomorphisms

Dragons ahead!

- Requires constant-time EC addition, e.g., use complete Edwards addition formulas
- Requires constant-time lookups of precomputed points (more later)
- ► Requires constant-time finite-field arithmetic

- Use Montgomery curve $By^2 = x^3 + Ax^2 + x$
- \blacktriangleright Given the x-coordinate of P, compute the x-coordinate of kP
- ► For each bit of the scalar k perform a "ladder step":
 - From (x_{Q-P}, x_P, x_Q) compute $(x_{Q-P}, x_{2P}, x_{P+Q})$ (one addition, one doubling)
 - ▶ If the current bit is different from the next bit: swap x_{2P} and x_{P+Q}

Montgomery Ladder

- Use Montgomery curve $By^2 = x^3 + Ax^2 + x$
- \blacktriangleright Given the x-coordinate of P, compute the x-coordinate of kP
- ► For each bit of the scalar *k* perform a "ladder step":
 - From (x_{Q-P}, x_P, x_Q) compute $(x_{Q-P}, x_{2P}, x_{P+Q})$ (one addition, one doubling)
 - ▶ If the current bit is different from the next bit: swap x_{2P} and x_{P+Q}
- Advantage: Very regular structure, no table lookups
- Advantage: Point compression for free

Montgomery Ladder

- Use Montgomery curve $By^2 = x^3 + Ax^2 + x$
- ▶ Given the x-coordinate of P, compute the x-coordinate of kP
- ► For each bit of the scalar *k* perform a "ladder step":
 - From (x_{Q-P}, x_P, x_Q) compute $(x_{Q-P}, x_{2P}, x_{P+Q})$ (one addition, one doubling)
 - ▶ If the current bit is different from the next bit: swap x_{2P} and x_{P+Q}
- Advantage: Very regular structure, no table lookups
- Advantage: Point compression for free
- Dragons ahead!
 - ► Requires constant-time conditional swap
 - Requires constant-time finite-field arithmetic

Constant-time field arithmetic

- ▶ Typical operation for reduction: If $a \ge p$ then $a \leftarrow (a p)$
- \blacktriangleright Same problem as before if a depends on secret data

- ▶ Typical operation for reduction: If $a \ge p$ then $a \leftarrow (a p)$
- Same problem as before if a depends on secret data
- ▶ One way around this: Always subtract *p*:

$$b \leftarrow (a \ge p)$$

$$t \leftarrow (a - p)$$

$$a \leftarrow b \cdot t + (1 - b) \cdot a$$

Constant-time field arithmetic

- ▶ Typical operation for reduction: If $a \ge p$ then $a \leftarrow (a p)$
- Same problem as before if a depends on secret data
- ▶ One way around this: Always subtract *p*:

$$b \leftarrow (a \ge p)$$

$$t \leftarrow (a - p)$$

$$a \leftarrow b \cdot t + (1 - b) \cdot a$$

- ▶ Better way around this: Never subtract *p*:
 - lacktriangle Choose a representation that leaves room for values $\geq p$
 - ▶ For example: 5 64-bit registers, radix 2^{51} to represent elements of $\mathbb{F}_{2^{255}-19}$
 - ► Another advantage of such a redundant representation: fewer carries

Constant-time field arithmetic

- ▶ Typical operation for reduction: If $a \ge p$ then $a \leftarrow (a p)$
- lacktriangle Same problem as before if a depends on secret data
- ▶ One way around this: Always subtract *p*:

$$b \leftarrow (a \ge p)$$

$$t \leftarrow (a - p)$$

$$a \leftarrow b \cdot t + (1 - b) \cdot a$$

- ▶ Better way around this: Never subtract *p*:
 - lacktriangle Choose a representation that leaves room for values $\geq p$
 - ▶ For example: 5 64-bit registers, radix 2^{51} to represent elements of $\mathbb{F}_{2^{255}-19}$
 - ► Another advantage of such a redundant representation: fewer carries
- Optimal choice of representation highly depends on the field and the target microarchitecture
- ► Very often redundant-representation software outperforms non-redundant software (and is constant time!)

Performance on Nehalem/Westmere

Bernstein, Duif, Lange, Schwabe, Yang (2011): 227348 cycles, no endomorphisms, including point compression.
Included as crypto_scalarmult/curve25519/amd64-51/ in SUPERCOP, http://bench.cr.yp.to/supercop.html

Performance on Sandy Bridge

- ▶ Hamburg (2012): 153000 cycles, no endomorphisms, including point compression. Code not available.
- ► Longa, Sica (2012): 137000 cycles (or is it 145000?), endomorphisms, not including point compression. Code not available.

Performance on Sandy Bridge

- ► Hamburg (2012): 153000 cycles, no endomorphisms, including point compression. Code not available.
- ► Longa, Sica (2012): 137000 cycles (or is it 145000?), endomorphisms, not including point compression. Code not available.

Performance on Ivy Bridge

▶ Bos, Costello, Hisil, Lauter (2012): ≪ 140000 cycles, genus 2, no endomorphisms, some compression. Code will be available in 13 days.

Some recent results, Intel processors

中央研究院

Performance on Sandy Bridge

- Hamburg (2012): 153000 cycles, no endomorphisms, including point compression. Code not available.
- ► Longa, Sica (2012): 137000 cycles (or is it 145000?), endomorphisms, not including point compression. Code not available.
- ➤ Schwabe (2012): 567000 cycles for 4 independent scalar multiplications (141750 cycles per scalar multiplication), no endomorphisms, including point compression. Code online soon at http://cryptojedi.org/crypto/#curve25519avx.

Performance on Ivy Bridge

▶ Bos, Costello, Hisil, Lauter (2012): ≪ 140000 cycles, genus 2, no endomorphisms, some compression. Code will be available in 13 days.

Some recent results, Intel processors

中央研究院

Performance on Sandy Bridge

- Hamburg (2012): 153000 cycles, no endomorphisms, including point compression. Code not available.
- ► Longa, Sica (2012): 137000 cycles (or is it 145000?), endomorphisms, not including point compression. Code not available.
- Schwabe (2012): 567000 cycles for 4 independent scalar multiplications (≪ 142000 cycles per scalar multiplication), no endomorphisms, including point compression. Code online soon at http://cryptojedi.org/crypto/#curve25519avx.

Performance on Ivy Bridge

▶ Bos, Costello, Hisil, Lauter (2012): ≪ 140000 cycles, genus 2, no endomorphisms, some compression. Code will be available in 13 days.

Some recent results, ARM processors

中央研究院

Performance on ARM Cortex A8

▶ Bernstein, Schwabe (2012): 460200 cycles, no endomorphisms, including point compression.
Included as crypto_scalarmult/curve25519/neon2/ in SUPERCOP, http://bench.cr.yp.to/supercop.html

Performance on ARM Cortex A9

- ▶ Bernstein, Schwabe (2012): 577997 cycles, no endomorphisms, including point compression. Same code as above.
- ► Hamburg (2012): 619000 cycles, no endomorphisms, including point compression. Code not available.

Performance on Qualcomm Snapdragon S3

▶ Bernstein, Schwabe (2012): 425582 cycles, no endomorphisms, including point compression. Same code as above.

Ed25519 elliptic-curve signatures

- ▶ Joint work with Bernstein, Duif, Lange, and Yang
- ▶ Signature scheme (variant of Schnorr signatures) based on arithmetic on twisted Edwards curve $\mathbb{F}_{2^{255}-19}$
- Curve is birationally equivalent to the Montgomery curve used in Curve25519
- ▶ B is a fixed base point on the curve
- ℓ is a 253-bit prime, s.t. $\ell B = (0,1)$
- ► ECC secret key: random scalar a
- ▶ Public key: 32-byte encoding \underline{A} of A = aB (y and one bit of x)

- ▶ Compute R = rB for pseudorandom per-message secret r
- ▶ Define $S = (r + \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)a) \mod \ell$
- ▶ Signature on message M: $(\underline{R},\underline{S})$, with \underline{S} the 256-bit little-endian encoding of S

中央研究院

- lacktriangle Compute R=rB for pseudorandom per-message secret r
- ▶ Define $S = (r + \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)a) \mod \ell$
- ▶ Signature on message M: $(\underline{R},\underline{S})$, with \underline{S} the 256-bit little-endian encoding of S
- ▶ Main operation: Compute rB:
 - ▶ First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

▶ Precompute $16^i | r_i | B$ for $i = 0, \ldots, 63$ and $| r_i | \in \{1, \ldots, 8\}$, in a lookup table at compile time

- lacktriangle Compute R=rB for pseudorandom per-message secret r
- ▶ Define $S = (r + \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)a) \mod \ell$
- ▶ Signature on message M: $(\underline{R},\underline{S})$, with \underline{S} the 256-bit little-endian encoding of S
- ▶ Main operation: Compute rB:
 - ▶ First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

- ▶ Precompute $16^i |r_i|B$ for i = 0, ..., 63 and $|r_i| \in \{1, ..., 8\}$, in a lookup table at compile time
- Compute

$$R = \sum_{i=0}^{63} 16^i r_i B$$

中央研究院

- lacktriangle Compute R=rB for pseudorandom per-message secret r
- ▶ Define $S = (r + \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)a) \mod \ell$
- ▶ Signature on message M: $(\underline{R},\underline{S})$, with \underline{S} the 256-bit little-endian encoding of S
- ▶ Main operation: Compute rB:
 - ▶ First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

- ▶ Precompute $16^i |r_i|B$ for i = 0, ..., 63 and $|r_i| \in \{1, ..., 8\}$, in a lookup table at compile time
- Compute

$$R = \sum_{i=0}^{63} 16^i r_i B$$

▶ 64 table lookups, 64 conditional point negations, 63 point additions

- ▶ Compute R = rB for pseudorandom per-message secret r
- ▶ Define $S = (r + \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)a) \mod \ell$
- ▶ Signature on message M: $(\underline{R},\underline{S})$, with \underline{S} the 256-bit little-endian encoding of S
- ▶ Main operation: Compute *rB*:
 - ▶ First compute $r \mod \ell$, write it as $r_0 + 16r_1 + \cdots + 16^{63}r_{63}$, with

$$r_i \in \{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

- ▶ Precompute $16^i |r_i|B$ for i = 0, ..., 63 and $|r_i| \in \{1, ..., 8\}$, in a lookup table at compile time
- Compute

$$R = \sum_{i=0}^{63} 16^i r_i B$$

- ▶ 64 table lookups, 64 conditional point negations, 63 point additions
- ightharpoonup R is represented in extended coordinates (X,Y,Z,T) (Hisil, Wong, Carter, Dawson, 2008)
- ▶ Table entries (x, y) are stored as (y x, y + x, 2dxy)

Timing attacks strike again

- Lookup addresses depend on secret scalar
- ▶ Lookups are fast if data is in cache, slow otherwise
- Attacker measures time, deduces information about the key

Timing attacks strike again

- Lookup addresses depend on secret scalar
- Lookups are fast if data is in cache, slow otherwise
- Attacker measures time, deduces information about the key
- ▶ Example for a cache-timing attack: In 2006 Osvik, Shamir, and Tromer showed how to steal the 256-bit AES key of the Linux dmcrypt harddisk encryption in just 65 ms.

- ▶ Lookup addresses depend on secret scalar
- ▶ Lookups are fast if data is in cache, slow otherwise
- ► Attacker measures time, deduces information about the key
- ► Example for a cache-timing attack: In 2006 Osvik, Shamir, and Tromer showed how to steal the 256-bit AES key of the Linux dmcrypt harddisk encryption in just 65 ms.
- ▶ Countermeasure used in Ed25519: Always load all 8 table entries, use arithmetic to choose the right one, e.g. at position r_0 :

$$\begin{split} &D \leftarrow (1,1,0) \\ &b \leftarrow (|r_0|=1) \\ &D \leftarrow b \cdot \mathsf{Table}[1] + (1-b) \cdot D \\ &b \leftarrow (|r_0|=2) \\ &D \leftarrow b \cdot \mathsf{Table}[2] + (1-b) \cdot D \\ &\dots \end{split}$$

Timing attacks strike again

中央研究院

- Lookup addresses depend on secret scalar
- Lookups are fast if data is in cache, slow otherwise
- ► Attacker measures time, deduces information about the key
- ► Example for a cache-timing attack: In 2006 Osvik, Shamir, and Tromer showed how to steal the 256-bit AES key of the Linux dmcrypt harddisk encryption in just 65 ms.
- ▶ Countermeasure used in Ed25519: Always load all 8 table entries, use arithmetic to choose the right one, e.g. at position r_0 :

$$\begin{split} &D \leftarrow (1,1,0) \\ &b \leftarrow (|r_0| = 1) \\ &D \leftarrow b \cdot \mathsf{Table}[1] + (1-b) \cdot D \\ &b \leftarrow (|r_0| = 2) \\ &D \leftarrow b \cdot \mathsf{Table}[2] + (1-b) \cdot D \end{split}$$

. . .

lacktriangle Always compute negation, use arithmetic to choose D or -D

EdDSA verification

- lacktriangle Verify signature $(\underline{R},\underline{S})$ on message M with public key \underline{A}
- ► Check equation

$$SB - \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A = R$$

- lacktriangle Verify signature $(\underline{R},\underline{S})$ on message M with public key \underline{A}
- Check equation

$$SB - \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A = R$$

▶ Actually: Compare encoding of $SB - \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A$ with \underline{R}

- lacktriangle Verify signature $(\underline{R},\underline{S})$ on message M with public key \underline{A}
- ► Check equation

$$SB - \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A = R$$

- ▶ Actually: Compare encoding of $SB \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A$ with \underline{R}
- ► Two main parts:
 - ightharpoonup Decompression of A
 - ▶ Computation of $SB \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A$

- lacktriangle Verify signature $(\underline{R},\underline{S})$ on message M with public key \underline{A}
- Check equation

$$SB - \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A = R$$

- ▶ Actually: Compare encoding of $SB \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A$ with \underline{R}
- ► Two main parts:
 - ightharpoonup Decompression of A
 - ► Computation of $SB \mathsf{SHA}\text{-}512(\underline{R}, \underline{A}, M)A$
- ► For second part do the following:
 - Double-scalar multiplication using signed sliding windows
 - ightharpoonup Different window sizes for B (compile time) and A (run time)

lacktriangleright Before double-scalar multiplication: compute x coordinate x_A of A as

$$x_A = \pm \sqrt{(y_A^2 - 1)/(dy_A^2 + 1)}$$

▶ Looks like a square root and an inversion is required

lacktriangle Before double-scalar multiplication: compute x coordinate x_A of A as

$$x_A = \pm \sqrt{(y_A^2 - 1)/(dy_A^2 + 1)}$$

- Looks like a square root and an inversion is required
- As $2^{255} 19 \equiv 5 \pmod{8}$, for each square α we have $\alpha^2 = \beta^4$, with $\beta = \alpha^{(q+3)/8}$
- ▶ Standard: Compute β , conditionally multiply by $\sqrt{-1}$ if $\beta^2 = -\alpha$

中央研究院

lacktriangleright Before double-scalar multiplication: compute x coordinate x_A of A as

$$x_A = \pm \sqrt{(y_A^2 - 1)/(dy_A^2 + 1)}$$

- Looks like a square root and an inversion is required
- As $2^{255}-19\equiv 5\pmod 8$, for each square α we have $\alpha^2=\beta^4$, with $\beta=\alpha^{(q+3)/8}$
- ▶ Standard: Compute β , conditionally multiply by $\sqrt{-1}$ if $\beta^2 = -\alpha$
- lacktriangle Decompression has $\alpha=u/v$, merge square root with inversion:

$$\beta = (u/v)^{(q+3)/8}$$

中央研究院

lacktriangle Before double-scalar multiplication: compute x coordinate x_A of A as

$$x_A = \pm \sqrt{(y_A^2 - 1)/(dy_A^2 + 1)}$$

- Looks like a square root and an inversion is required
- As $2^{255}-19\equiv 5\pmod 8$, for each square α we have $\alpha^2=\beta^4$, with $\beta=\alpha^{(q+3)/8}$
- ▶ Standard: Compute β , conditionally multiply by $\sqrt{-1}$ if $\beta^2 = -\alpha$
- ▶ Decompression has $\alpha = u/v$, merge square root with inversion:

$$\beta = (u/v)^{(q+3)/8} = u^{(q+3)/8}v^{q-1-(q+3)/8}$$
$$= u^{(q+3)/8}v^{(7q-11)/8} = uv^3(uv^7)^{(q-5)/8}.$$

 Only one big exponentiation, cost similar to just inversion with Fermat

▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- ightharpoonup Choose independent uniform random 128-bit integers z_i
- ▶ Compute $H_i = \mathsf{SHA}\text{-}512(\underline{R_i}, \underline{A_i}, M_i)$

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- ightharpoonup Choose independent uniform random 128-bit integers z_i
- ▶ Compute $H_i = \mathsf{SHA}\text{-}512(\underline{R_i},\underline{A_i},M_i)$
- ▶ Verify the equation

$$\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B + \sum_{i} z_{i} R_{i} + \sum_{i} (z_{i} H_{i} \bmod \ell) A_{i} = 0$$

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- ightharpoonup Choose independent uniform random 128-bit integers z_i
- ▶ Compute $H_i = \mathsf{SHA}\text{-}512(R_i, A_i, M_i)$
- ▶ Verify the equation

$$\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B + \sum_{i} z_{i} R_{i} + \sum_{i} (z_{i} H_{i} \bmod \ell) A_{i} = 0$$

Use Bos-Coster algorithm for multi-scalar multiplication

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- ightharpoonup Choose independent uniform random 128-bit integers z_i
- ▶ Compute $H_i = \mathsf{SHA}\text{-}512(R_i, A_i, M_i)$
- ▶ Verify the equation

$$\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B + \sum_{i} z_{i} R_{i} + \sum_{i} (z_{i} H_{i} \bmod \ell) A_{i} = 0$$

- ▶ Use Bos-Coster algorithm for multi-scalar multiplication
- ► Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Lyer at Africacrypt 2012: Batch verification without randomizers; **broken** by Bernstein, Doumen, Lange, and Oosterwijk (Indocrypt 2012)

- ▶ Verify a batch of (M_i, A_i, R_i, S_i) , where (R_i, S_i) is the alleged signature of M_i under key A_i
- ightharpoonup Choose independent uniform random 128-bit integers z_i
- ▶ Compute $H_i = \mathsf{SHA}\text{-}512(R_i, A_i, M_i)$
- Verify the equation

$$\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B + \sum_{i} z_{i} R_{i} + \sum_{i} (z_{i} H_{i} \bmod \ell) A_{i} = 0$$

- ▶ Use Bos-Coster algorithm for multi-scalar multiplication
- ► Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Lyer at Africacrypt 2012: Batch verification without randomizers; **broken** by Bernstein, Doumen, Lange, and Oosterwijk (Indocrypt 2012)
- ▶ Same Indocrypt 2012 paper: faster batch forgery identification

▶ Computation of $Q = \sum_{i=1}^{n} s_i P_i$

- ▶ Computation of $Q = \sum_{1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1 > s_2 > \cdots > s_n$. Recursively compute $Q = (s_1 s_2)P_1 + s_2(P_1 + P_2) + s_3P_3 \cdots + s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- lacktriangle Each step "eliminates" expected $\log n$ scalar bits

- ► Computation of $Q = \sum_{1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1 > s_2 > \cdots > s_n$. Recursively compute $Q = (s_1 s_2)P_1 + s_2(P_1 + P_2) + s_3P_3 \cdots + s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- \blacktriangleright Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- ▶ Data structure is stored as a simple array, positions in the array determine positions in the tree
- ▶ Root is at position 0, left child node at position 1, right child node at position 2 etc.
- ▶ For node at position i, child nodes are at position $2 \cdot i + 1$ and $2 \cdot i + 2$, parent node is at position $\lfloor (i-1)/2 \rfloor$

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- ▶ Data structure is stored as a simple array, positions in the array determine positions in the tree
- ▶ Root is at position 0, left child node at position 1, right child node at position 2 etc.
- ▶ For node at position i, child nodes are at position $2 \cdot i + 1$ and $2 \cdot i + 2$, parent node is at position $\lfloor (i-1)/2 \rfloor$
- ► Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times

A fast heap

- Heap is a binary tree, each parent node is larger than the two child nodes
- ▶ Data structure is stored as a simple array, positions in the array determine positions in the tree
- ▶ Root is at position 0, left child node at position 1, right child node at position 2 etc.
- ▶ For node at position i, child nodes are at position $2 \cdot i + 1$ and $2 \cdot i + 2$, parent node is at position $\lfloor (i-1)/2 \rfloor$
- ► Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times
- Floyd's heap: swap down to the bottom, swap up for a variable amount of times, advantages:
 - ► Each swap-down step needs only one comparison (instead of two)
 - Swap-down loop is more friendly to branch predictors

- Computation of $Q = \sum_{1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1 > s_2 > \cdots > s_n$. Recursively compute $Q = (s_1 s_2)P_1 + s_2(P_1 + P_2) + s_3P_3 \cdots + s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- ightharpoonup Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation

- Computation of $Q = \sum_{1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1 > s_2 > \cdots > s_n$. Recursively compute $Q = (s_1 s_2)P_1 + s_2(P_1 + P_2) + s_3P_3 \cdots + s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- \blacktriangleright Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation
- ▶ Further optimization: Start with heap without the z_i until largest scalar has ≤ 128 bits
- ▶ Then: extend heap with the z_i

- Computation of $Q = \sum_{1}^{n} s_i P_i$
- ▶ Idea: Assume $s_1 > s_2 > \cdots > s_n$. Recursively compute $Q = (s_1 s_2)P_1 + s_2(P_1 + P_2) + s_3P_3 \cdots + s_nP_n$
- ► Each step requires the two largest scalars, one scalar subtraction and one point addition
- \blacktriangleright Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation
- ▶ Further optimization: Start with heap without the z_i until largest scalar has ≤ 128 bits
- ightharpoonup Then: extend heap with the z_i
- ▶ Optimize the heap on the assembly level

Ed25519 performance

中央研究院

Performance on Intel Nehalem/Westmere

- ▶ 87548 cycles for signing
- ▶ 273364 cycles for verification
- ▶ 8550000 cycles to verify a batch of 64 valid signatures ($\ll 134000$ cycles per signature)

Performance on ARM Cortex A8

- ▶ Bernstein, Schwabe (2012): 244655 cycles for signing
- ▶ Bernstein, Schwabe (2012): 624846 cycles for verification

Ed25519 performance

中央研究院

Performance on Intel Nehalem/Westmere

- ▶ 87548 cycles for signing
- ▶ 273364 cycles for verification
- ▶ 8550000 cycles to verify a batch of 64 valid signatures ($\ll 134000$ cycles per signature)

Performance on ARM Cortex A8

- ▶ Bernstein, Schwabe (2012): 244655 cycles for signing
- ▶ Bernstein, Schwabe (2012): 624846 cycles for verification

Followup results by Hamburg

- ► 52000/170000 cycles for signing/verification on Sandy Bridge
- ► 256000/624000 cycles for signing/verification on Cortex A9

Pollard rho for the ECDLP

- ▶ So far: Branches and table lookups were bad with secret scalars
- ▶ They should be no problem at all in cryptanalysis
- ▶ Consider the parallel Pollard rho algorithm to find k, given P and Q = kP in $G \subseteq E(\mathbb{F}_q)$

Parallel Pollard rho (clients)

- ► Use pseudorandom function *f*
- ▶ Start with $W_0 = n_0 P + m_0 Q$ for random n_0, m_0
- ▶ Iteratively apply f to obtain $W_{i+1} = f(W_i)$
- At each step, check whether W_i is a distinguished point (DP), e.g., "last k bits of W_i 's encoding are 0"
- ▶ When finding a DP W_d : send (n_0, m_0, W_d) to the server, start with new W_0

Parallel Pollard rho (server)

中央研究院

- Server searches in incoming data for collisions (n_0, m_0, W_d) , (n'_0, m'_0, W_d)
- ▶ Recomputes the two walks to W_d , updates n_i, m_i and n_i', m_i' to obtain n_d, m_d, n_d', m_d' with

$$n_d P + m_d Q = n_d' P + m_d' Q = W_d$$

Computes discrete log

$$k = (n_d - n'_d)/(m'_d - m_d) \pmod{|G|}$$

Note that f needs to preserve knowledge about the linear combination in P and Q

$$f(W) = n(W)P + m(W)Q$$

with pseudorandom functions n, m

▶ Cost: two hash-function calls, one double-scalar multiplication

$$f(W) = n(W)P + m(W)Q$$

with pseudorandom functions n, m

- ► Cost: two hash-function calls, one double-scalar multiplication
- ► Much more efficient: Additive walks
- ▶ Precompute r pseudorandom elements R_0, \ldots, R_{r-1} with known linear combination in P and Q
- ▶ Use hash function $h: G \to \{0, \dots, r-1\}$
- ▶ Define $f(W) = W + R_{h(W)}$

$$f(W) = n(W)P + m(W)Q$$

with pseudorandom functions n, m

- ► Cost: two hash-function calls, one double-scalar multiplication
- ► Much more efficient: Additive walks
- ▶ Precompute r pseudorandom elements R_0, \ldots, R_{r-1} with known linear combination in P and Q
- ▶ Use hash function $h: G \to \{0, \dots, r-1\}$
- ▶ Define $f(W) = W + R_{h(W)}$
- Now: only one hash-function call, one group addition

$$f(W) = n(W)P + m(W)Q$$

with pseudorandom functions n, m

- ► Cost: two hash-function calls, one double-scalar multiplication
- ▶ Much more efficient: Additive walks
- ▶ Precompute r pseudorandom elements R_0, \ldots, R_{r-1} with known linear combination in P and Q
- ▶ Use hash function $h: G \to \{0, \dots, r-1\}$
- ▶ Define $f(W) = W + R_{h(W)}$
- Now: only one hash-function call, one group addition
- Additive walks are noticeably nonrandom, they require more iterations

Additive walks

中央研究院

► Easy way to define *f*:

$$f(W) = n(W)P + m(W)Q$$

with pseudorandom functions n, m

- ► Cost: two hash-function calls, one double-scalar multiplication
- ▶ Much more efficient: Additive walks
- ▶ Precompute r pseudorandom elements R_0, \ldots, R_{r-1} with known linear combination in P and Q
- ▶ Use hash function $h: G \to \{0, \dots, r-1\}$
- ▶ Define $f(W) = W + R_{h(W)}$
- ▶ Now: only one hash-function call, one group addition
- Additive walks are noticeably nonrandom, they require more iterations
- ▶ Teske showed that large r provides close-to-random behavior (e.g. r=20)

► Easy way to define *f*:

$$f(W) = n(W)P + m(W)Q$$

with pseudorandom functions n, m

- ► Cost: two hash-function calls, one double-scalar multiplication
- ▶ Much more efficient: Additive walks
- ▶ Precompute r pseudorandom elements R_0, \ldots, R_{r-1} with known linear combination in P and Q
- ▶ Use hash function $h: G \to \{0, \dots, r-1\}$
- ▶ Define $f(W) = W + R_{h(W)}$
- ▶ Now: only one hash-function call, one group addition
- Additive walks are noticeably nonrandom, they require more iterations
- ▶ Teske showed that large r provides close-to-random behavior (e.g. r=20)
- Summary: additive walks provide much better performance in practice

- ► So far, everything worked with any group G
- Now consider groups of points on elliptic curves
- ▶ Efficient operation aside from group addition: negation
- ▶ For Weierstrass curves: $(x,y) \mapsto (x,-y)$

- ► So far, everything worked with any group G
- Now consider groups of points on elliptic curves
- ▶ Efficient operation aside from group addition: negation
- ▶ For Weierstrass curves: $(x,y) \mapsto (x,-y)$
- ► Some curves have more efficiently computable endomorphisms, examples are Koblitz curves, GLS curves, and BN curves

- lacktriangle So far, everything worked with any group G
- Now consider groups of points on elliptic curves
- ▶ Efficient operation aside from group addition: negation
- ▶ For Weierstrass curves: $(x,y) \mapsto (x,-y)$
- ► Some curves have more efficiently computable endomorphisms, examples are Koblitz curves, GLS curves, and BN curves
- ▶ Idea: Define iterations on equivalence classes modulo negation
- \blacktriangleright For example: always take the lexicographic minimum of (x,-y) and (x,y)

- ► So far, everything worked with any group *G*
- Now consider groups of points on elliptic curves
- ▶ Efficient operation aside from group addition: negation
- ▶ For Weierstrass curves: $(x,y) \mapsto (x,-y)$
- ► Some curves have more efficiently computable endomorphisms, examples are Koblitz curves, GLS curves, and BN curves
- ▶ Idea: Define iterations on equivalence classes modulo negation
- For example: always take the lexicographic minimum of (x,-y) and (x,y)
- ▶ This halves the size of the search space, expected number of iterations drops by a factor of $\sqrt{2}$

Putting it together

- ▶ Precompute R_0, \ldots, R_{r-1}
- ightharpoonup Clients start at some random W_0
- Iteratively compute $W_{i+1} = |W_i + R_{h(W_i)}|$
- $\blacktriangleright \ |W|$ chooses a well-defined representative in $\{-W,W\}$

- ▶ Precompute R_0, \ldots, R_{r-1}
- lacktriangle Clients start at some random W_0
- Iteratively compute $W_{i+1} = |W_i + R_{h(W_i)}|$
- $lackbox{|}W|$ chooses a well-defined representative in $\{-W,W\}$
- ▶ Problem: fruitless cycles If $t = h(W_i) = h(W_{i+1})$

- ▶ Precompute R_0, \ldots, R_{r-1}
- ightharpoonup Clients start at some random W_0
- ▶ Iteratively compute $W_{i+1} = |W_i + R_{h(W_i)}|$
- $lackbox{ } |W|$ chooses a well-defined representative in $\{-W,W\}$
- ▶ Problem: fruitless cycles If $t = h(W_i) = h(W_{i+1})$, and $|W_i + R_t| = -(W_i + R_t)$ we obtain the following sequence:

- ▶ Precompute R_0, \ldots, R_{r-1}
- ightharpoonup Clients start at some random W_0
- Iteratively compute $W_{i+1} = |W_i + R_{h(W_i)}|$
- lacktriangleq |W| chooses a well-defined representative in $\{-W,W\}$
- ▶ Problem: fruitless cycles If $t = h(W_i) = h(W_{i+1})$, and $|W_i + R_t| = -(W_i + R_t)$ we obtain the following sequence:

$$W_{i+1} = f(W_i) = -(W_i + R_t)$$

$$W_{i+2} = f(W_{i+1}) = |-(W_i + R_t) + R_t| = |-W_i| = W_i$$

- ▶ Precompute R_0, \ldots, R_{r-1}
- ightharpoonup Clients start at some random W_0
- Iteratively compute $W_{i+1} = |W_i + R_{h(W_i)}|$
- $lackbox{ } |W|$ chooses a well-defined representative in $\{-W,W\}$
- ▶ Problem: fruitless cycles If $t = h(W_i) = h(W_{i+1})$, and $|W_i + R_t| = -(W_i + R_t)$ we obtain the following sequence:

$$W_{i+1} = f(W_i) = -(W_i + R_t)$$

$$W_{i+2} = f(W_{i+1}) = |-(W_i + R_t) + R_t| = |-W_i| = W_i$$

▶ Probability for such fruitless cycles: 1/2r

Putting it together

- ▶ Precompute R_0, \ldots, R_{r-1}
- lacktriangle Clients start at some random W_0
- Iteratively compute $W_{i+1} = |W_i + R_{h(W_i)}|$
- lacktriangleq |W| chooses a well-defined representative in $\{-W,W\}$
- ▶ Problem: fruitless cycles If $t = h(W_i) = h(W_{i+1})$, and $|W_i + R_t| = -(W_i + R_t)$ we obtain the following sequence:

$$W_{i+1} = f(W_i) = -(W_i + R_t)$$

$$W_{i+2} = f(W_{i+1}) = |-(W_i + R_t) + R_t| = |-W_i| = W_i$$

- ▶ Probability for such fruitless cycles: 1/2r
- \triangleright Similar observations hold for longer fruitless cycles (length $4, 6, \dots$)
- ▶ Probability of a cycle of length 2c is $\approx 1/r^c$

- ▶ In July 2009: Break of ECDLP on 112-bit curve over a prime field by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
- ► Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles

- ▶ In July 2009: Break of ECDLP on 112-bit curve over a prime field by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
- ► Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
- Iteration function did not use the negation map:

"We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment"

中央研究院

- ▶ In July 2009: Break of ECDLP on 112-bit curve over a prime field by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
- ► Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
- ▶ Iteration function did not use the negation map:

"We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment"

▶ Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many ways of dealing with fruitless cycles best speedup is 1.29, but

中央研究院

- ▶ In July 2009: Break of ECDLP on 112-bit curve over a prime field by Bos, Kaihara, Kleinjung, Lenstra, and Montgomery
- ► Computation carried out on a cluster of 214 Sony PlayStation 3 gaming consoles
- Iteration function did not use the negation map:

"We did not use the common negation map since it requires branching and results in code that runs slower in a SIMD environment"

▶ Paper at ANTS 2010 by Bos, Kleinjung, and Lenstra: Among many ways of dealing with fruitless cycles best speedup is 1.29, but

"If the Pollard rho method is parallelized in SIMD fashion, it is a challenge to achieve any speedup at all. . . . Dealing with cycles entails administrative overhead and branching, which cause a non-negligible slowdown when running multiple walks in SIMD-parallel fashion. . . . [This] is a major obstacle to the negation map in SIMD environments."

The problem with large tables

- lacktriangle Probability of fruitless cycles gets smaller with larger r
- lackbox Using a huge r seems like an obvious fix

The problem with large tables

- lacktriangle Probability of fruitless cycles gets smaller with larger r
- ▶ Using a huge *r* seems like an obvious fix, but:
- lacktriangle precomputed points won't fit into cache ightarrow performance penalty from slow loads

The problem with large tables

- Probability of fruitless cycles gets smaller with larger r
- ▶ Using a huge *r* seems like an obvious fix, but:
- ▶ precomputed points won't fit into cache → performance penalty from slow loads

SIMD computations

- ▶ SIMD: Same sequence of instructions carried out on different data
- Branching means (in the worst case): Sequentially execute both branches

The problem with large tables

- Probability of fruitless cycles gets smaller with larger r
- ▶ Using a huge *r* seems like an obvious fix, but:
- ▶ precomputed points won't fit into cache → performance penalty from slow loads

SIMD computations

- ▶ SIMD: Same sequence of instructions carried out on different data
- Branching means (in the worst case): Sequentially execute both branches
- Computing power of the PlayStation 3 is entirely based on SIMD computations
- SIMD becomes more and more important on all modern microprocessors

- ▶ Joint work with Bernstein and Lange: Get the $\sqrt{2}$ -speedup with SIMD
- lacktriangle Consider ECDLP on elliptic curve over \mathbb{F}_p
- Begin with simplest type of negating additive walk
- Starting points W_0 are known multiples of Q
- lacktriangle Precomputed table contains r known multiples of P

- ▶ Joint work with Bernstein and Lange: Get the $\sqrt{2}$ -speedup with SIMD
- lacktriangle Consider ECDLP on elliptic curve over \mathbb{F}_p
- Begin with simplest type of negating additive walk
- Starting points W_0 are known multiples of Q
- Precomputed table contains r known multiples of P
- ▶ Use (relatively) large r (in our implementation: 2048)

- \blacktriangleright Joint work with Bernstein and Lange: Get the $\sqrt{2}\text{-speedup}$ with SIMD
- ▶ Consider ECDLP on elliptic curve over \mathbb{F}_p
- Begin with simplest type of negating additive walk
- Starting points W_0 are known multiples of Q
- lacktriangle Precomputed table contains r known multiples of P
- Use (relatively) large r (in our implementation: 2048)
- ▶ |(x,y)| is (x,y) if $y \in \{0,2,4,\ldots,p-1\}$, (x,-y) otherwise

- ▶ Joint work with Bernstein and Lange: Get the $\sqrt{2}$ -speedup with SIMD
- lacktriangle Consider ECDLP on elliptic curve over \mathbb{F}_p
- Begin with simplest type of negating additive walk
- Starting points W_0 are known multiples of Q
- lacktriangle Precomputed table contains r known multiples of P
- Use (relatively) large r (in our implementation: 2048)
- ▶ |(x,y)| is (x,y) if $y \in \{0,2,4,...,p-1\}$, (x,-y) otherwise
- Occasionally check for 2-cycles:
 - ▶ If $W_{i-1} = W_{i-3}$, set $W_i = |2\min\{W_{i-1}, W_{i-2}\}|$
 - ▶ Otherwise set $W_i = W_{i-1}$

- ▶ Joint work with Bernstein and Lange: Get the $\sqrt{2}$ -speedup with SIMD
- lacktriangle Consider ECDLP on elliptic curve over \mathbb{F}_p
- Begin with simplest type of negating additive walk
- lacktriangle Starting points W_0 are known multiples of Q
- Precomputed table contains r known multiples of P
- Use (relatively) large r (in our implementation: 2048)
- |(x,y)| is (x,y) if $y \in \{0,2,4,\ldots,p-1\}$, (x,-y) otherwise
- Occasionally check for 2-cycles:
 - ▶ If $W_{i-1} = W_{i-3}$, set $W_i = |2\min\{W_{i-1}, W_{i-2}\}|$
 - ▶ Otherwise set $W_i = W_{i-1}$
- ▶ With even lower frequency check for 4-cycles, 6-cycles etc.
- ► Implementation actually checks for 12-cycles (with very low frequency)

▶ Compute |(x,y)| as $(x,y+\epsilon(p-2y))$, with $\epsilon=y \mod 2$

- ▶ Compute |(x,y)| as $(x,y+\epsilon(p-2y))$, with $\epsilon=y \mod 2$
- \blacktriangleright Amortize \min computations across relevant iterations, update \min while computing iterations

- ▶ Compute |(x,y)| as $(x,y+\epsilon(p-2y))$, with $\epsilon=y \mod 2$
- \blacktriangleright Amortize \min computations across relevant iterations, update \min while computing iterations
- Always compute doublings, even if they are not used
- ▶ Select W_i from W_{i-1} and $2W_{\min}$ without branch
- ▶ Selection bit is output of branchfree comparison between W_{i-1} and W_{i-1-c} when detecting c-cycles

- ▶ Compute |(x,y)| as $(x,y+\epsilon(p-2y))$, with $\epsilon=y \mod 2$
- \blacktriangleright Amortize \min computations across relevant iterations, update \min while computing iterations
- Always compute doublings, even if they are not used
- ▶ Select W_i from W_{i-1} and $2W_{\min}$ without branch
- ▶ Selection bit is output of branchfree comparison between W_{i-1} and W_{i-1-c} when detecting c-cycles
- All selections, subtractions, additions and comparisons are linear-time
- Asymptotically negligible compared to finite-field multiplications in EC arithmetic

- lacktriangle Checking for fruitless cycles every w iterations
- ▶ Probability for fruitless cycle: w/2r
- lacktriangle Average wasted iterations if fruitless cycle occurred: w/2

- ightharpoonup Checking for fruitless cycles every w iterations
- ▶ Probability for fruitless cycle: w/2r
- ightharpoonup Average wasted iterations if fruitless cycle occurred: w/2
- ► Checking without finding a fruitless cycle wastes one iteration

- ightharpoonup Checking for fruitless cycles every w iterations
- ▶ Probability for fruitless cycle: w/2r
- lacktriangle Average wasted iterations if fruitless cycle occurred: w/2
- ► Checking without finding a fruitless cycle wastes one iteration
- ▶ Overall loss: $1 + w^2/4r$ per w iterations

- ightharpoonup Checking for fruitless cycles every w iterations
- ▶ Probability for fruitless cycle: w/2r
- lacktriangle Average wasted iterations if fruitless cycle occurred: w/2
- ► Checking without finding a fruitless cycle wastes one iteration
- ▶ Overall loss: $1 + w^2/4r$ per w iterations
- ▶ Minimize 1/w + w/4r: Take $w \approx 2\sqrt{r}$

- ightharpoonup Checking for fruitless cycles every w iterations
- ▶ Probability for fruitless cycle: w/2r
- ▶ Average wasted iterations if fruitless cycle occurred: w/2
- ► Checking without finding a fruitless cycle wastes one iteration
- ▶ Overall loss: $1 + w^2/4r$ per w iterations
- ▶ Minimize 1/w + w/4r: Take $w \approx 2\sqrt{r}$
- ▶ Slowdown from fruitless cycles by a factor of $1 + \Theta(1/\sqrt{r})$

- ightharpoonup Checking for fruitless cycles every w iterations
- ▶ Probability for fruitless cycle: w/2r
- ▶ Average wasted iterations if fruitless cycle occurred: w/2
- ► Checking without finding a fruitless cycle wastes one iteration
- ▶ Overall loss: $1 + w^2/4r$ per w iterations
- ▶ Minimize 1/w + w/4r: Take $w \approx 2\sqrt{r}$
- ▶ Slowdown from fruitless cycles by a factor of $1 + \Theta(1/\sqrt{r})$
- ▶ Negligible if $r \to \infty$ as $p \to \infty$

- ightharpoonup Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
- \blacktriangleright Our software takes expected 35.6 PS3 years for the same DLP

- \blacktriangleright Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
- ▶ Our software takes expected 35.6 PS3 years for the same DLP
- lackbox (very-close-to) factor- $\sqrt{2}$ speedup through negation map

- ightharpoonup Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
- \blacktriangleright Our software takes expected 35.6 PS3 years for the same DLP
- (very-close-to) factor- $\sqrt{2}$ speedup through negation map
- ► Faster iterations
 - ► Faster arithmetic in $\mathbb{Z}/(2^{128}-3)\mathbb{Z}$ (prime field has order $(2^{128}-3)/76439$)
 - \blacktriangleright Non-standard radix $2^{12.8}$ to represent elements of $(2^{128}-3)/76439$
 - Careful design of iteration function, arithmetic and handling of fruitless cycles

- ightharpoonup Software by Bos et al. takes expected 65.16 PS3 years to solve DLP
- \blacktriangleright Our software takes expected 35.6 PS3 years for the same DLP
- (very-close-to) factor- $\sqrt{2}$ speedup through negation map
- Faster iterations
 - ► Faster arithmetic in $\mathbb{Z}/(2^{128}-3)\mathbb{Z}$ (prime field has order $(2^{128}-3)/76439$)
 - ▶ Non-standard radix $2^{12.8}$ to represent elements of $(2^{128} 3)/76439$
 - Careful design of iteration function, arithmetic and handling of fruitless cycles
- Negligible overhead (in practice!) from fruitless cycles

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang: **High-speed high-security signatures**. http://cryptojedi.org/papers/#ed25519

Daniel J. Bernstein, Tanja Lange, and Peter Schwabe: On the correct use of the negation map in the Pollard rho method. http://cryptojedi.org/papers/#negation

Daniel J. Bernstein and Peter Schwabe: **NEON crypto.** http://cryptojedi.org/papers/#neoncrypto