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“Do you really think you can get a Ph.D. without
even mentioning Edwards curves in your thesis?”
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A new start: Work on Edwards signatures
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» Elliptic-curve signatures using twisted Edwards curves
» 128 bits of security
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Elliptic-curve signatures using twisted Edwards curves
128 bits of security

Support for batch verification

Timing-attack resistant implementation

Foolproof session keys

Hash-function collision resilience

The usual: make it fast

» Fast signing

> Fast verification

» Faster batch verification
> Fast key generation
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EdDSA Ed25519
> Integer b > 10 » b= 256
» Prime power ¢ =1 (mod 4) > ¢ = 2255 — 19 (prime)
> (b — 1)-bit encoding of » little-endian encoding of
elements of I, {0, ...,22% — 20}
» Hash function H with 2b-bit » H = SHA-512
output

» Non-square d € F,

> Beflzy) e
FyxFy, —22+y? = 1+dz?y?}
(twisted Edwards curve F)

> prime £ € (2074, 2=3) with
/B =(0,1)
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B = (x,4/5), with z “even”
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EdDSA Ed25519
> Integer b > 10 » b= 256
» Prime power ¢ =1 (mod 4) > ¢ = 2255 — 19 (prime)
> (b — 1)-bit encoding of » little-endian encoding of
elements of I, {0,...,2%5 — 20}
» Hash function H with 2b-bit » H = SHA-512
output

» Non-square d € F,

» Be{(x,y) €
FyxFy, —22+y? = 1+dz?y?}
(twisted Edwards curve F)

» prime £ € (20~ 20=3) with » ( a 253-bit prime
(B =(0,1)

v

d = —121665/121666
B = (x,4/5), with z “even”

v

Ed25519 curve is birationally equivalent to the Curve25519 curve.
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EdDSA keys

> Secret key: b-bit string k
» Compute H(k) = (ho, ..

i) h2b—1)
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Secret key: b-bit string k

Compute H(k) = (ho, ..., hap—1)

Derive integer a =202+ Y .., 2R,
Note that a is a multiple of 8 o
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EdDSA keys Z5

Secret key: b-bit string k

Compute H(k) = (ho, ..., hap—1)

Derive integer a =202+ Y .., 2R,
Note that a is a multiple of 8 o
Compute A =aB

Public key: Encoding A of A = (z4,y4) as ya and one (parity) bit
of x4 (needs b bits)
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EdDSA keys
> Secret key: b-bit string k
» Compute H(k) = (ho,...,hap—1)
» Derive integer a =272+ Y .., .2%h;
» Note that a is a multiple of 8 o
» Compute A =aB
» Public key: Encoding A of A = (x,y4) as y4 and one (parity) bit

of x4 (needs b bits)
Compute A from A: 24 = /(3 /(dy? +1)

High-speed high-security signatures

8



EdDSA signatures %@fdj

Signing
» Message M determines r = H (hy, ..., hoy—1, M) € {0,...,2%* — 1}
Define R=1rB
Define S = (r+ H(R, A, M)a) mod ¢
Signature: (R,.S), with S the b-bit little-endian encoding of S
(R, S) has 2b bits (3 known to be zero)

v
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EdDSA signatures %@fdj

Signing
» Message M determines r = H (hy, ..., hoy—1, M) € {0,...,2%* — 1}
» Define R =rB
» Define S = (r+ H(R, A, M)a) mod ¢
» Signature: (R,S), with S the b-bit little-endian encoding of S
» (R,S) has 2b bits (3 known to be zero)

Verification

» Verifier parses A from A and R from R
» Computes H(R, A, M)
» Checks group equation

8SB =8R+8H(R,A M)A
» Rejects if parsing fails or equation does not hold
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Security features of EdDSA
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Collision resilience

» ECDSA uses H(M)
» Collisions in H allow existential forgery
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ECDSA uses H(M)
Collisions in H allow existential forgery
Schnorr signatures and EdDSA include R in the hash

» Schnorr: H(R, M)
» EdDSA: H(R, A, M)

Signatures are hash-function-collision resilient
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» ECDSA uses H(M)
» Collisions in H allow existential forgery
» Schnorr signatures and EdDSA include R in the hash
» Schnorr: H(R, M)
» EdDSA: H(R, A, M)
» Signatures are hash-function-collision resilient
» Including A alleviates concerns about attacks against multiple keys
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» Each message needs a different r (“session key")

» Just knowing a few bits of r allows to recover a

» Usual approach (e.g., Schnorr signatures): Choose random r for
each message
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Foolproof session keys % ;@’)&59'

» Each message needs a different r (“session key")
Just knowing a few bits of r allows to recover a

Usual approach (e.g., Schnorr signatures): Choose random r for
each message

Potential problems: Bad random-number generators,
off-by-one(-byte) bugs

Even worse: No random-number generator: Sony's PS3 security
desaster

EdDSA uses deterministic, pseudo-random session keys
H(hb7 ) h2b713 M)

» Same security as Schnorr under standard PRF assumptions

Does not consume per-message randomness

Better for testing (deterministic output)
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Speed of Ed25519
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Fast constant-time implementation %”)

» Recent paper by Brumley and Tuveri: remote timing attack against
ECDSA implementation in OpenSSL
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» Recent paper by Brumley and Tuveri: remote timing attack against
ECDSA implementation in OpenSSL

» Protection against timing attacks means:

» No data flow from secret data into branch conditions
» No data flow from secret data into load indices
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Fast constant-time implementation %")

» Recent paper by Brumley and Tuveri: remote timing attack against
ECDSA implementation in OpenSSL
» Protection against timing attacks means:
» No data flow from secret data into branch conditions
» No data flow from secret data into load indices
» Choose constant-time scalar-multiplication algorithms
» Substitute table lookups by arithmetic
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» Main computational task: Compute R = rB
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Fast signing %@f\)}

Main computational task: Compute R = rB

v

v

First compute  mod ¢, write it as 7g + 1611 + - - - + 165373, with

ri € {—8,-7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

v

Precompute 16¢|r;|B for i = 0,...,63 and |r;] € {1,...,8}, in a
lookup table at compile time

Compute R = 3% 16'r, B

v
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Main computational task: Compute R = rB
First compute  mod ¢, write it as 7g + 1611 + - - - + 165373, with

ri € {—8,-7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

Precompute 16¢|r;|B for i = 0,...,63 and |r;] € {1,...,8}, in a
lookup table at compile time

Compute R = 3% 16'r, B
64 table lookups, 64 conditional point negations, 63 point additions
Wait, lookups?
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Fast signing
» Main computational task: Compute R = rB
» First compute  mod ¢, write it as ro 4+ 167 + - - - 4+ 16537143, with
ri € {—8,—7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

» Precompute 16|r;|B for i = 0,...,63 and |r;| € {1,...,8},ina
lookup table at compile time

» Compute R = Y% 16'r; B

> 64 table lookups, 64 conditional point negations, 63 point additions

» Wait, lookups?

» In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one
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Fast signing
» Main computational task: Compute R = rB
» First compute  mod ¢, write it as ro 4+ 167 + - - - 4+ 16537143, with
ri € {—8,—7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

» Precompute 16|r;|B for i = 0,...,63 and |r;| € {1,...,8},ina
lookup table at compile time

» Compute R = Y% 16'r; B

> 64 table lookups, 64 conditional point negations, 63 point additions

» Wait, lookups?

» In each lookup load all 8 relevant entries from the table, use

v

arithmetic to obtain the desired one
Signing takes 88,328 cycles on an Intel Westmere CPU

» Key generation takes about 6,000 cycles more (read from

/dev/urandom)
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» First part: point decompression, compute = coordinate xg of R as

fo:I:\/ dyR+1)

» Looks like a square root and an inversion is required
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Fast verification % 9« 5/

>

First part: point decompression, compute = coordinate xg of R as

JJR—:E\/ dyR+1)

» Looks like a square root and an inversion is required

As g =5 (mod 8) for each square « we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by v/—1 if 82 = —

vV v v Yy

Decompression has o = u/v, merge square root with inversion:
8= (u/v)(q+3)/8 — y(a+3)/8,a—1—(q+3)/8

a8/ (Ta=10 /8 _ 8 (00 TY(a-5)/8.

Second part: computation of SB — H(R, A, M)A
Double-scalar multiplication using signed sliding windows
Different window sizes for B (compile time) and A (run time)
Verification takes < 280,000 cycles
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» Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;
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» Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

» Choose independent uniform random 128-bit integers z;
» Compute H; = H(R;, As, M;)
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v

Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

v

Choose independent uniform random 128-bit integers z;
Compute H; = H(R;, Ai, M;)
Verify the equation

< > 28 mod €>B + 3 zRi+ Y (2H; mod ()A; =0
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Faster

batch verification %@f\y

Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

Choose independent uniform random 128-bit integers z;

» Compute H; = H(R;, A;, M;)

Verify the equation
< > 28 mod €>B + 3 zRi+ Y (2H; mod ()A; =0
Use Bos-Coster algorithm for multi-scalar multiplication

Verifying a batch of 64 signatures takes 8.55 million cycles (134, 000
cycles/signature)
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» Computation of Q = > s; P
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Computation of Q = >"7 s; P;

Idea: Assume sy > s > -+ > s,. Recursively compute

Q= (s1—82)P1 +s2(P1+ P) +s3P5---+5,P,

Each step requires the two largest scalars, one scalar subtraction and
one point addition
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Each step “eliminates” expected log n scalar bits
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» Computation of Q = > s; P;

Idea: Assume sy > s > -+ > s,. Recursively compute

Q= (s1—82)P1 +s2(P1+ P) +s3P5---+5,P,

Each step requires the two largest scalars, one scalar subtraction and
one point addition

Each step “eliminates” expected log n scalar bits

» Requires fast access to the two largest scalars: put scalars into a

heap

Crucial for good performance: fast heap implementation

Typical heap root replacement: start at the root, swap down for a
variable amount of times

Floyd's heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

» Each swap-down step needs only one comparison (instead of two)
» Swap-down loop is more friendly to branch predictors
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New fast and secure signature scheme

(Slow) C and Python reference implementations

Fast AMDG64 assembly implementations

All software in the public domain and included in eBATS
Software to be included in the NaCl library

Paper to be presented at CHES 2011

vV vV.v v v.yY

http://ed25519.cr.yp.to/
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Questions?
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