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Introduction: the bigger context

Public-key encryption
I Alice generates a key pair (sk, pk), publishes pk, keeps sk secret
I Bob takes some message M and pk and computes an ciphertext C,

sends C to Alice
I Alice uses sk to decrypt C and obtain M

Implementation targets
I Secure
I Fast
I (Small, low energy, low-power,. . . )
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Secure Implementations

I “Traditional” cryptographic security: all attacks take ≥ 2128

operations

I Implementation security: no leakage through side channels
I Most relevant for desktops and servers: timing attacks
I Idea:

I Secret information influences time taken by software
I Attacker measures time, computes influence−1 to obtain secret

information
I Constant-time software avoids such timing leaks:

I No secret branch conditions
I No memory access with secret address (cache timing)
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Fast Implementation

I This talk: focus on high throughput for servers
I Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
I Techniques also interesting for other (micro-)architectures

Vector arithmetic
I All “large” processors offer arithmetic on vectors of data
I Highest arithmetic throughput, example (Sandy Bridge):

I Three 32-bit additions per cycle
I Two 4× 32-bit vector additions per cycle

I Also fast: full-vector loads
I Low performance for branches, independent vector-element loads
I Synergie between efficient vectorization and timing-attack protection
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Bitslicing

I Any n-bit register is a vector register with n 1-bit elements
I Operations on such bit vectors are XOR, OR, AND

I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Computations on a transposition of data
I Simulation of hardware implementations in software

I Needs large degree of data-level parallelism (e.g., 128×)
I Size of active data set increases massively (e.g., 128×)
I Typical consequence: more loads and stores (that easily become the

performance bottleneck)
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A code-based cryptosystem

System parameters
I Integers m,n, t, k, such that

I n ≤ 2m

I k = n−mt
I t ≥ 2

I An s-bit-key stream cipher S
I An a-bit-key authenticator

(MAC) A
I An (s+ a)-bit-output hash

function H

Example
I m = 12,
n = 4096
k = 3604
t = 41

I S = Salsa20 (s = 256)
I A = Poly1305 (a = 256)
I H = SHA-512
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Key generation

Secret key
I A random sequence (α1, . . . , αn) of distinct elements in F2m

I An irreducible degree-t polynomial g ∈ F2m [x]

I Compute the secret matrix
1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)

 ∈ Ft×n
2m

I Replace all entries by a column of m bits in a standard basis of F2m

over F2

I Obtain a matrix Hsec ∈ Fmt×n
2

I Hsec is a secret parity-check matrix of the Goppa code
Γ = Γ2(α1, . . . , αn, g)

I The secret key is (α1, . . . , αn, g)
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Key generation

Public key
I Perform Gaussian elimination on Hsec to obtain a matrix Hpub

whose left tm× tm submatrix is the identity matrix
I Hpub is a public parity-check matrix for Γ

I The public key is Hpub
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Encryption

I Generate a random weight-t vector e ∈ Fn
2

I Compute w = Hpube

I Compute H(e) to obtain an (s+ a)-bit string (kenc, kauth)

I Encrypt the message M with the stream cipher S under key kenc to
obtain ciphertext C

I Compute authentication tag a on C using A with key kauth
I Send (a,w,C)
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Decryption

I Receive (a,w,C)

I Decode w to obtain weight-t string e
I Hash e with H to obtain (kenc, kauth)

I Verify that a is a valid authentication tag on C using A with kauth
I Use S with kenc to decrypt and obtain M
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Software implementation, first considerations

Key generation
I Key generation is not performance critical
I Some hassle to make constant-time, but possible

Encryption

I Typical view: adding up t columns of mt bits each
I Column positions are secret, need to load all columns
I Arithmetic (masking) to xor the desired columns
I This talk: ignore implementation of H, S, and A

Decryption
I Decryption is mainly decoding, lots of operations in F2m

I Decryption has to run in constant time!
I Obviously, decoding of w is the interesting part
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A closer look at decoding

I Start with some v ∈ Fn
2 , such that Hpubv = w

I Compute a Goppa syndrome s0, . . . , s2t−1

I Use Berlekamp’s algorithm to obtain error-locator polynomial f of
degree t

I Compute t roots of this polynomial
I For each root rj = αi, set error bit at position i in e
I All these computation work on medium-size polynomials over F2m

I Let’s now fix the example parameters from above
(n = 2m = 4096, t = 41)
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Representing elements of F2m

Option I
I Use 16-bit integer values (unsigned short)
I Addition is simply XOR (we really XOR 64 bits, but ignore most of

those)

I Multiplication:
I Use table lookups (not constant time!)

I Use carryless multiplier, e.g., pclmulqdq (not available on most
architectures, again ignores most of the 64× 64-bit multiplication)

I Squaring uses the same algorithm as multiplication
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Representing elements of F2m

Option II
I Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
I Needs many parallel computations, obtain parallelism from

independent decryption operations
I We only really care about speed when we have many decryptions

I Addition is 12 vector XORs for 256 parallel additions (much faster!)
I Multiplication is easily constant time, but is it fast?
I How about squaring, can it be faster?
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Bitsliced multiplication in F212

I Split into 12-coefficient polynomial multiplication and subsequent
reduction

I Reduction trinomial x12 + x3 + 1

I Schoolbook multiplication needs 144 ANDs and 121 XORs
I Much better: Karatsuba

I Karatsuba:

(a0 + xna1)(b0 + xnb1)

= a0b0 + xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) + x2na1b1

I Refined Karatsuba:

(a0 + xna1)(b0 + xnb1)

= (1− xn)(a0b0 − xna1b1) + xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I For details see Bernstein, “Batch binary Edwards”, Crypto 2009
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Bitsliced performance

I One level of refined Karatsuba: 114 XORs, 108 ANDs

I 222 bit operations are worse than 208 by Bernstein 2009, but better
scheduling

I Reduction takes 24 XORs, a total of 246 bit operations
I On Ivy Bridge: 247 cycles for 256 multiplications
I Bitsliced squaring is only reduction: 7 XORs

Summary:
I Bitsliced addition is much faster than non bitsliced
I Bitsliced multiplication is faster
I Bitsliced squaring is much faster (not very relevant)

I In the following: High-level algorithms that drastically reduce the
number of multiplications
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Root finding, the classical way

I Task: Find all t roots of a degree-t error-locator polynomial f
I Let f = c41x

41 + c40 + x40 + · · ·+ c0

I Try all elements of F2m , Horner scheme takes 41 mul, 41 add per
element

I Chien search: Compute cigi, cig2i, cig3i etc.
I Same operation count but different structure
I Berlekamp’s trace algorithm: not constant time
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Multipoint evaluation via FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 at all n-th

roots of unity
I Divide-and-conquer approach

I Write polynomial f as f0(x2) + xf1(x
2)

I Huge overlap between evaluating

f(α) = f0(α
2) + αf1(α

2) and

f(−α) = f0(α
2)− αf1(α

2)

I Problem: We have a binary field, and α = −α
I Wang, Zhu 1988, and independently Cantor 1989: additive FFT in

characteristic 2 (quite slow)
I von zur Gathen 1996: some improvements (still slow)
I Gao, Mateer 2010: Much faster additive FFT
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Gao-Mateer additive FFT

I Evaluate a polynomial f = c0 + c1x+ · · ·+ cn−1x
n−1 on a size-n

F2-linear space S
I Idea: Write polynomial f as f0(x2 + x) + xf1(x2 + x)

I Big overlap between evaluating

f(α) = f0(α2 + α) + αf1(α2 + α) and

f(α+ 1) = f0(α2 + α) + (α+ 1)f1(α2 + α)

I Evaluate f0 and f1 at α2 + α, obtain f(α) and f(α+ 1) with only 1
multiplication and 2 additions

I Again: apply the idea recursively
I Our paper: generalize the idea to small-degree f

I Recursion can stop much earlier
I Various speedups at the end of the recursion
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Syndrome computation, the classical way

I Receive n-bit input word, scale bits by Goppa constants
I Apply linear map

M =


1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

α2t−1
1 α2t−1

2 · · · α2t−1
n



I Can precompute matrix mapping bits to syndrome
I Yields pretty large secret key, larger than L1 cache
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Another look at syndrome computation
Look at the syndrome-computation map again:

M =


1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

α2t−1
1 α2t−1

2 · · · α2t−1
n


Consider the linear map Mᵀ:
1 α1 · · · α2t−1

1

1 α2 · · · α2t−1
2

...
...

. . .
...

1 αn · · · α2t−1
n



v1
v2
...
vt

 =


v1 + v2α1 + · · ·+ vtα

2t−1
1

v1 + v2α2 + · · ·+ vtα
2t−1
2

...
v1 + v2αn + · · ·+ vtα

2t−1
n

 =


f(α1)
f(α2)

...
f(αn)


I This transposed linear map is actually doing multipoint evaluation
I Syndrome computation is a transposed multipoint evaluation
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Transposing linear algorithms
I A linear map: a0, a1 → a0b0, a0b1 + a1b0, a1b1

in1 = a0

a0 + a1

in2 = a1

a0b0

out2 = a0b1 + a1b0

a1b1

out1 = a0b0

out3 = a1b1

b0

b0 + b1

b1

I Reversing the edges: c0, c1, c2 → b0c0 + b1c1, b0c1 + b1c2

out1 = b0c0 + b1c1

(b0 + b1)c1

out2 = b0c1 + b1c2

c0 + c1

in2 = c1

c1 + c2

in1 = c0

in3 = c2

b0

b0 + b1

b1
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What did we just do?

I The original linear map: a0b0
a0b1 + a1b0

a1b1

 =

b0 0
b1 b0
0 b1

(a0
a1

)

I The transposed map:

(
b0c0 + b1c1
b0c1 + b1c2

)
=

(
b0 b1 0
0 b0 b1

)c0c1
c2



I Reversing the edges automatically gives an algorithm for the
transposed map

I This is called the transposition principle
I Preserves number of multiplications
I References: Fiduccia 1972, Bordewijk 1956, Lupanov 1956
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Transposing the additive FFT

The naive approach
I Idea: Compute syndrome by transposing the additive FFT
I Start with additive FFT program (sequence of additions and

constant multiplications)
I Convert to directed acyclic graph (rename variables to remove

cycles)
I Reverse edges, convert to C program
I Compile with gcc

I Problems:

I Huge program (all loops and function calls removed)
I At m = 13 or m = 14 gcc runs out of memory
I Can use better register allocators, but the program is still huge
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Transposing the additive FFT

A better approach
I Analyze structure of additive FFT A: B,A1, A2, C

I A1, A2 are recursive calls

I Transposition has structure CT , AT
2 , A

T
1 , B

T

I Use recursive calls to reduce code size
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Secret permutations

I FFT evaluates f at elements in standard order
I We need output in a secret order
I Same problem for input of transposed FFT
I Similar problem during key generation (secret random permutation)

I Typical solution for permutation π: load from position i, store at
position π(i)

I This leaks through timing information
I We need to apply a secret permutation in constant time
I Solution: sorting networks
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Sorting networks

A sorting network sorts an array S of elements by using a sequence of
comparators.

I A comparator can be expressed by a pair of indices (i, j).
I A comparator swaps S[i] and S[j] if S[i] > S[j].

I Efficient sorting network: Batcher sort (Batcher, 1968)

Batcher sorting network for sorting 8 elements
http://en.wikipedia.org/wiki/Batcher%27s_sort
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Permuting by sorting

Example
Computing b3, b2, b1 from b1, b2, b3 can be done by sorting the key-value
pairs (3, b1), (2, b2), (1, b3) the output is (1, b3), (2, b2), (3, b1)

I All the output bits of > comparisons only depend on the secret
permutation

I Those bits can be precomputed during key generation
I Do conditional swap of b[i] and b[j] with condition bit c as

y ← b[i]⊕ b[j]; y ← cy; b[i]← b[i]⊕ y; b[j]← b[j]⊕ y;

I Possibly better than Batcher sort: Beneš permutation network (work
in progress)
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y ← b[i]⊕ b[j]; y ← cy; b[i]← b[i]⊕ y; b[j]← b[j]⊕ y;

I Possibly better than Batcher sort: Beneš permutation network (work
in progress)
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Results

Throughput cycles on Ivy Bridge
I Input secret permutation: 8622
I Syndrome computation: 20846
I Berlekamp-Massey: 7714
I Root finding: 14794
I Output secret permutation: 8520
I Total: 60493

I These are amortized cycle counts across 256 parallel computations
I All computations with full timing-attack protection!

McBits: Fast code-based cryptography 27



Results

Throughput cycles on Ivy Bridge
I Input secret permutation: 8622
I Syndrome computation: 20846
I Berlekamp-Massey: 7714
I Root finding: 14794
I Output secret permutation: 8520
I Total: 60493
I These are amortized cycle counts across 256 parallel computations

I All computations with full timing-attack protection!

McBits: Fast code-based cryptography 27



Results

Throughput cycles on Ivy Bridge
I Input secret permutation: 8622
I Syndrome computation: 20846
I Berlekamp-Massey: 7714
I Root finding: 14794
I Output secret permutation: 8520
I Total: 60493
I These are amortized cycle counts across 256 parallel computations
I All computations with full timing-attack protection!

McBits: Fast code-based cryptography 27



Comparison

Public-key decryption speeds from eBATS
I ntruees787ep1: 700512 cycles
I mceliece: 1219344 cycles
I ronald1024: 1340040 cycles
I ronald3072: 16052564 cycles

Diffie-Hellman shared-secret speeds from eBATS
I gls254: 77468 cycles
I kumfp127g 116944 cycles
I curve25519: 182632 cycles
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