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Introduction: the bigger context

Public-key encryption

> Alice generates a key pair (sk, pk), publishes pk, keeps sk secret

> Bob takes some message M and pk and computes an ciphertext C,
sends C' to Alice

> Alice uses sk to decrypt C' and obtain M
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Introduction: the bigger context

Public-key encryption

> Alice generates a key pair (sk, pk), publishes pk, keeps sk secret

> Bob takes some message M and pk and computes an ciphertext C,
sends C' to Alice

> Alice uses sk to decrypt C' and obtain M

Implementation targets

» Secure
» Fast

> (Small, low energy, low-power,...)
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Secure Implementations

» “Traditional” cryptographic security: all attacks take > 2128
operations
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» “Traditional” cryptographic security: all attacks take > 2128
operations

» Implementation security: no leakage through side channels

» Most relevant for desktops and servers: timing attacks
> ldea:

» Secret information influences time taken by software

> Attacker measures time, computes influence™! to obtain secret
information
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Secure Implementations

» “Traditional” cryptographic security: all attacks take > 2128
operations

» Implementation security: no leakage through side channels

» Most relevant for desktops and servers: timing attacks

> ldea:

» Secret information influences time taken by software

> Attacker measures time, computes influence™! to obtain secret
information

» Constant-time software avoids such timing leaks:
> No secret branch conditions
» No memory access with secret address (cache timing)
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Fast Implementation

» This talk: focus on high throughput for servers
» Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
» Techniques also interesting for other (micro-)architectures
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» This talk: focus on high throughput for servers
» Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
» Techniques also interesting for other (micro-)architectures

Vector arithmetic

> All “large” processors offer arithmetic on vectors of data
» Highest arithmetic throughput, example (Sandy Bridge):

» Three 32-bit additions per cycle
» Two 4 x 32-bit vector additions per cycle
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Fast Implementation

» This talk: focus on high throughput for servers
» Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
» Techniques also interesting for other (micro-)architectures

Vector arithmetic

> All “large” processors offer arithmetic on vectors of data

v

Highest arithmetic throughput, example (Sandy Bridge):

» Three 32-bit additions per cycle
» Two 4 x 32-bit vector additions per cycle

Also fast: full-vector loads

v

v

Low performance for branches, independent vector-element loads
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Fast Implementation

» This talk: focus on high throughput for servers
» Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
» Techniques also interesting for other (micro-)architectures

Vector arithmetic

> All “large” processors offer arithmetic on vectors of data

v

Highest arithmetic throughput, example (Sandy Bridge):

» Three 32-bit additions per cycle
» Two 4 x 32-bit vector additions per cycle

Also fast: full-vector loads

v

v

Low performance for branches, independent vector-element loads

v

Synergie between efficient vectorization and timing-attack protection
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Bitslicing

» Any n-bit register is a vector register with n 1-bit elements
» Operations on such bit vectors are XOR, OR, AND
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Bitslicing

Any n-bit register is a vector register with n 1-bit elements
Operations on such bit vectors are XOR, OR, AND

This is called bitslicing, introduced by Biham in 1997 for DES
Other views on bitslicing:

vV vy VY

» Computations on a transposition of data
» Simulation of hardware implementations in software
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Bitslicing

vV vy VY

Any n-bit register is a vector register with n 1-bit elements
Operations on such bit vectors are XOR, OR, AND
This is called bitslicing, introduced by Biham in 1997 for DES

Other views on bitslicing:

» Computations on a transposition of data
» Simulation of hardware implementations in software

Needs large degree of data-level parallelism (e.g., 128x)
Size of active data set increases massively (e.g., 128x)

Typical consequence: more loads and stores (that easily become the
performance bottleneck)
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A code-based cryptosystem

System parameters Example
» Integers m,n,t, k, such that > m =12,
> < om n = 4096
» k=n—mt k = 3604
> t>2 t =41
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A code-based cryptosystem

System parameters

» Integers m,n,t, k, such that
> n < 2™
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> An s-bit-key stream cipher §

Example

> m=12,
n = 4096
k = 3604
t=41

> S = Salsa20 (s = 256)
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A code-based cryptosystem

System parameters

» Integers m,n,t, k, such that
> n < 2™
» k=n—mt
> t>2

> An s-bit-key stream cipher §

» An a-bit-key authenticator
(MAQ) A

Example

> m=12,
n = 4096
k = 3604
t=41

> S = Salsa20 (s = 256)
> A = Polyl305 (a = 256)
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A code-based cryptosystem

System parameters

» Integers m,n,t, k, such that
> n < 2™
> k=n—mt
> t>2
> An s-bit-key stream cipher §
» An a-bit-key authenticator
(MAQ) A
> An (s + a)-bit-output hash
function H

Example

> m=12,
n = 4096
k = 3604
t=41

> S = Salsa20 (s = 256)
> A = Polyl305 (a = 256)
» H = SHA-512
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Key generation

Secret key

» A random sequence (a1, ..., q,) of distinct elements in Fom

> An irreducible degree-t polynomial g € Fom [z]
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Key generation

Secret key
» A random sequence (a1, ..., q,) of distinct elements in Fom
> An irreducible degree-t polynomial g € Fom [z]

» Compute the secret matrix

1/g(a1) 1/glag) -+ 1/g(an)
ar/glar)  az/glas) -+ an/glan) e
: : : € Faym
o glar) ofglaz) - ol glom)
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Key generation

Secret key
» A random sequence (a1, ..., q,) of distinct elements in Fom
> An irreducible degree-t polynomial g € Fom [z]
» Compute the secret matrix
1/g(on) 1/glaz) -+ 1/g(om)
ar/glar)  az/glaz) -+ an/g(an) ,
c ]F xXn
: : .. : 2m
ot Hglan) ey t/glas) - el /g(an)
» Replace all entries by a column of m bits in a standard basis of Fom
over FFy
» Obtain a matrix H. € Fy"**"
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Key generation

Secret key

v

A random sequence (s, ..., ay,) of distinct elements in Fom

v

An irreducible degree-t polynomial g € Fom [z]

» Compute the secret matrix
1/g(a1) glaz) -+ 1/g(an)
ar/glar)  az/glaz) -+ an/g(an) ,
c ]F xXn
: : .. : 2m
ot Hglan) ey t/glas) - el /g(an)
» Replace all entries by a column of m bits in a standard basis of Fom
over FFy
» Obtain a matrix H. € Fy"**"

v

Hye. is a secret parity-check matrix of the Goppa code
F - FQ(alv' .. ,Oén,g)
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Key generation

Secret key
» A random sequence (a1, ..., q,) of distinct elements in Fom
> An irreducible degree-t polynomial g € Fom [z]
» Compute the secret matrix
1/g(a1) glaz) -+ 1/g(an)
ar/glar)  az/glaz) -+ an/g(an) ,
c ]F xXn
: : .. : 2m
ot Hglan) ey t/glas) - el /g(an)
» Replace all entries by a column of m bits in a standard basis of Fom
over FFy
» Obtain a matrix H. € Fy"**"
> H,.. is a secret parity-check matrix of the Goppa code
F - ]-—‘2(0417“'7047179)
> The secret key is (g, ..., an,9)
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Key generation

Public key

> Perform Gaussian elimination on H,,. to obtain a matrix H,;
whose left tm x tm submatrix is the identity matrix
> Hp, is a public parity-check matrix for I’

> The public key is Hpysp
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Encryption

vV v vv

Generate a random weight-t vector e € F}
Compute w = Hpupe
Compute H(e) to obtain an (s + a)-bit string (kenc, kquth)

Encrypt the message M with the stream cipher S under key ke, to
obtain ciphertext C

» Compute authentication tag a on C using A with key kquin
» Send (a,w,C)
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Decryption

Receive (a,w, C)

Decode w to obtain weight-t string e

Hash e with H to obtain (kene, kautn)

Verify that a is a valid authentication tag on C using A with kqup
Use S with k.. to decrypt and obtain M

vV v .v. v Yy

McBits: Fast code-based cryptography
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Software implementation, first considerations

Key generation

» Key generation is not performance critical
» Some hassle to make constant-time, but possible
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McBits: Fast code-based cryptography

11



Software implementation, first considerations

Key generation

» Key generation is not performance critical
» Some hassle to make constant-time, but possible

Encryption

Typical view: adding up t columns of mt bits each
Column positions are secret, need to load all columns

Arithmetic (masking) to xor the desired columns

vV v v v

This talk: ignore implementation of H, S, and A
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Software implementation, first considerations

Key generation

» Key generation is not performance critical
» Some hassle to make constant-time, but possible

Encryption

Typical view: adding up t columns of mt bits each
Column positions are secret, need to load all columns

Arithmetic (masking) to xor the desired columns

vV v v v

This talk: ignore implementation of H, S, and A

Decryption

» Decryption is mainly decoding, lots of operations in Fom
» Decryption has to run in constant time!

» Obviously, decoding of w is the interesting part
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A closer look at decoding

> Start with some v € F3, such that Hp,pv = w
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A closer look at decoding

> Start with some v € F3, such that Hp,pv = w
» Compute a Goppa syndrome sq, ..., So;_1

» Use Berlekamp's algorithm to obtain error-locator polynomial f of
degree ¢
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A closer look at decoding

> Start with some v € F3, such that Hp,pv = w
» Compute a Goppa syndrome sq, ..., So;_1

» Use Berlekamp's algorithm to obtain error-locator polynomial f of
degree ¢

» Compute ¢ roots of this polynomial
» For each root 7; = v, set error bit at position 4 in e

> All these computation work on medium-size polynomials over Fom
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A closer look at decoding

Start with some v € 3, such that Hp,,v = w

» Compute a Goppa syndrome sq, ..., So;_1

» Use Berlekamp's algorithm to obtain error-locator polynomial f of

vV v v Y

degree ¢

Compute t roots of this polynomial

For each root 7; = v, set error bit at position 4 in e

All these computation work on medium-size polynomials over Fom

Let's now fix the example parameters from above
(n=2™ = 4096,t = 41)

McBits: Fast code-based cryptography
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Representing elements of Fom

Option |

» Use 16-bit integer values (unsigned short)

» Addition is simply XOR (we really XOR 64 bits, but ignore most of
those)
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Representing elements of Fom

Option |
» Use 16-bit integer values (unsigned short)
» Addition is simply XOR (we really XOR 64 bits, but ignore most of
those)

» Multiplication:

> Use table lookups (not constant timel)
> Use carryless multiplier, e.g., pclmulqdqg (not available on most
architectures, again ignores most of the 64 x 64-bit multiplication)
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Representing elements of Fom

Option |

» Use 16-bit integer values (unsigned short)

» Addition is simply XOR (we really XOR 64 bits, but ignore most of
those)

» Multiplication:

> Use table lookups (not constant timel)
> Use carryless multiplier, e.g., pclmulqdqg (not available on most
architectures, again ignores most of the 64 x 64-bit multiplication)

» Squaring uses the same algorithm as multiplication
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Representing elements of Fom

Option [l
» Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)

» Needs many parallel computations, obtain parallelism from
independent decryption operations

> We only really care about speed when we have many decryptions
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Representing elements of Fom

Option [l

v

Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)

Needs many parallel computations, obtain parallelism from
independent decryption operations

v

v

We only really care about speed when we have many decryptions
Addition is 12 vector XORs for 256 parallel additions (much faster!)

v
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Representing elements of Fom

Option [l

» Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)

» Needs many parallel computations, obtain parallelism from

vV v v v

independent decryption operations

We only really care about speed when we have many decryptions
Addition is 12 vector XORs for 256 parallel additions (much faster!)
Multiplication is easily constant time, but is it fast?

How about squaring, can it be faster?
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Bitsliced multiplication in Fo:2

» Split into 12-coefficient polynomial multiplication and subsequent
reduction

» Reduction trinomial 22 + 23 + 1
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Bitsliced multiplication in Fo:2

» Split into 12-coefficient polynomial multiplication and subsequent
reduction

» Reduction trinomial 22 + 23 + 1

» Schoolbook multiplication needs 144 ANDs and 121 XORs
» Much better: Karatsuba
» Karatsuba:

(a0 +z™a1)(bo + z"b1)
= aobo + xn((ao + a1)(bo + b1) — aobo — a1b1) + $2nalb1
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Bitsliced multiplication in Fo:2

» Split into 12-coefficient polynomial multiplication and subsequent
reduction
» Reduction trinomial 2'2 + 23 + 1
» Schoolbook multiplication needs 144 ANDs and 121 XORs
» Much better: refined Karatsuba
» Karatsuba:

(a0 +z™a1)(bo + z"b1)
= aobo + xn((ao + a1)(bo + b1) — aobo — a1b1) + $2nalb1

» Refined Karatsuba:

(a0 +2™a1)(bo + z"b1)
= (1 — :En)(aobo — x"albl) —+ xn(ao =+ al)(bo —+ bl)

» Refined Karatsuba uses M,,, = 3M,, + 7n — 3 instead of
Ms,, = 3M,, + 8n — 4 bit operations
» For details see Bernstein, “Batch binary Edwards”, Crypto 2009
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Bitsliced performance

» One level of refined Karatsuba: 114 XORs, 108 ANDs
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> 222 bit operations are worse than 208 by Bernstein 2009, but better
scheduling
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Bitsliced performance

v

One level of refined Karatsuba: 114 XORs, 108 ANDs

222 bit operations are worse than 208 by Bernstein 2009, but better
scheduling

Reduction takes 24 XORs, a total of 246 bit operations
On Ivy Bridge: 247 cycles for 256 multiplications

v

v

v
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Bitsliced performance

One level of refined Karatsuba: 114 XORs, 108 ANDs

222 bit operations are worse than 208 by Bernstein 2009, but better
scheduling

» Reduction takes 24 XORs, a total of 246 bit operations

>

>

On Ivy Bridge: 247 cycles for 256 multiplications
Bitsliced squaring is only reduction: 7 XORs

Summary:

>

>

>

Bitsliced addition is much faster than non bitsliced
Bitsliced multiplication is faster

Bitsliced squaring is much faster (not very relevant)
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Bitsliced performance

One level of refined Karatsuba: 114 XORs, 108 ANDs

222 bit operations are worse than 208 by Bernstein 2009, but better
scheduling

» Reduction takes 24 XORs, a total of 246 bit operations

>

>

On Ivy Bridge: 247 cycles for 256 multiplications
Bitsliced squaring is only reduction: 7 XORs

Summary:

| 4
>
>
>

Bitsliced addition is much faster than non bitsliced
Bitsliced multiplication is faster
Bitsliced squaring is much faster (not very relevant)

In the following: High-level algorithms that drastically reduce the
number of multiplications
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Root finding, the classical way

» Task: Find all ¢ roots of a degree-t error-locator polynomial f

> Letf2041x41+040+x40+---+co
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Root finding, the classical way

» Task: Find all ¢ roots of a degree-t error-locator polynomial f

» Let f=cya*t +cio+ 20+ +¢

» Try all elements of Fym, Horner scheme takes 41 mul, 41 add per
element
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Root finding, the classical way

v

Task: Find all ¢ roots of a degree-t error-locator polynomial f
Let f:C41.’L'41 +C40+!L‘4O+-“+CO

Try all elements of Fym, Horner scheme takes 41 mul, 41 add per
element

v

v

v

Chien search: Compute c;g%, ¢;9%%, c;g** etc.

v

Same operation count but different structure
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Root finding, the classical way

» Task: Find all ¢ roots of a degree-t error-locator polynomial f
> Let f:C41.’L'41 +C40+!L‘4O+-“+CO

» Try all elements of Fym, Horner scheme takes 41 mul, 41 add per
element

» Chien search: Compute c; g, c;g*, c;g®" etc.
» Same operation count but different structure

» Berlekamp's trace algorithm: not constant time

McBits: Fast code-based cryptography
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Multipoint evaluation via FFT

» Evaluate a polynomial f =co+ciz+ -+ cp_12” ' at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(z?) 4+ xf1(z?)
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» Evaluate a polynomial f =co+ciz+ -+ cp_12” ' at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(z?) 4+ xf1(z?)
» Huge overlap between evaluating
f(a) = fo(@®) + afi(a®) and
f(=a) = fo(@®) - afi(a®)
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Multipoint evaluation via FFT

» Evaluate a polynomial f =co+ciz+ -+ cp_12” ' at all n-th
roots of unity
» Divide-and-conquer approach
> Write polynomial f as fo(z?) 4+ xf1(z?)
» Huge overlap between evaluating
f(a) = fo(@®) + afi(a®) and
f(=a) = fo(@®) - afi(a®)

» Problem: We have a binary field, and a = —«

» Wang, Zhu 1988, and independently Cantor 1989: additive FFT in
characteristic 2 (quite slow)
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Multipoint evaluation via FFT

Evaluate a polynomial f =co+ciz+ -+ + cp_12” " at all n-th
roots of unity
Divide-and-conquer approach
> Write polynomial f as fo(z?) 4+ xf1(z?)
» Huge overlap between evaluating
f(@) = fo(@®) + afi(a®) and
f(=a) = fo(@®) - afi(a®)

Problem: We have a binary field, and a = —«

» Wang, Zhu 1988, and independently Cantor 1989: additive FFT in

characteristic 2 (quite slow)

von zur Gathen 1996: some improvements (still slow)
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Multipoint evaluation via FFT

Evaluate a polynomial f =co+ciz+ -+ + cp_12” " at all n-th
roots of unity
Divide-and-conquer approach
> Write polynomial f as fo(z?) 4+ xf1(z?)
» Huge overlap between evaluating
f(@) = fo(@®) + afi(a®) and
f(=a) = fo(@®) - afi(a®)

Problem: We have a binary field, and a = —«

» Wang, Zhu 1988, and independently Cantor 1989: additive FFT in

characteristic 2 (quite slow)
von zur Gathen 1996: some improvements (still slow)
Gao, Mateer 2010: Much faster additive FFT
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Gao-Mateer additive FFT

» Evaluate a polynomial f =co+ciz+- -+ co_12” ' on a size-n
Fo-linear space S

» Idea: Write polynomial f as fo(2? 4+ ) + xfi (2% + )
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Gao-Mateer additive FFT

» Evaluate a polynomial f =co+ciz+- -+ co_12” ' on a size-n
Fo-linear space S

» Idea: Write polynomial f as fo(2? 4+ ) + xfi (2% + )
» Big overlap between evaluating
f(a) = fo(a® +a) + afi(a® + ) and
fla+1) = fo(a®> +a) + (a+1)fi(a® + a)

McBits: Fast code-based cryptography

18



Gao-Mateer additive FFT

v

Evaluate a polynomial f =co+ciz + - -+ co_12™ ' on a size-n
Fo-linear space S

Idea: Write polynomial f as fo(2? + x) + xf1 (2% + x)

Big overlap between evaluating

v

v

f(a) = fo(a® +a) + afi(a® + ) and
fla+1) = fola® +a) + (a+ 1) fi(e® + @)

v

Evaluate fy and f; at a® + «, obtain f(«) and f(a + 1) with only 1
multiplication and 2 additions
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Gao-Mateer additive FFT

» Evaluate a polynomial f =co+ciz+- -+ co_12” ' on a size-n
Fo-linear space S

» ldea: Write polynomial f as fo(2? + ) + 2. f1(2? + x)

» Big overlap between evaluating

f(a) = fo(a® +a) + afi(a® + ) and
fla+1) = fola® +a) + (a+ 1) fi(e® + @)

» Evaluate fy and f; at o + «, obtain f(a) and f(a+ 1) with only 1
multiplication and 2 additions

» Again: apply the idea recursively
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Gao-Mateer additive FFT

Evaluate a polynomial f =co+ciz + - -+ co_12™ ' on a size-n
Fo-linear space S
Idea: Write polynomial f as fo(2? + x) + xf1 (2% + x)

Big overlap between evaluating

f(a) = fo(a® +a) + afi(a® + ) and
fla+1) = fola® +a) + (a+ 1) fi(e® + @)

Evaluate fy and f; at a® + «, obtain f(«) and f(a + 1) with only 1
multiplication and 2 additions

» Again: apply the idea recursively
» Our paper: generalize the idea to small-degree f

» Recursion can stop much earlier
» Various speedups at the end of the recursion

McBits: Fast code-based cryptography
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Syndrome computation, the classical way

» Receive n-bit input word, scale bits by Goppa constants
» Apply linear map

1 1 1
aq (€5 Qn
M = OL% Oé% a2
2t—1 2t—1 2t—1
Qaj Q5 a;,

McBits: Fast code-based cryptography 19



Syndrome computation, the classical way

v

v

v

v

Receive n-bit input word, scale bits by Goppa constants

Apply linear map
1 1
a1 a2
2 2
M = ag @)
2t—1  2t—1
o1 Qg

2t—1

Can precompute matrix mapping bits to syndrome

Yields pretty large secret key, larger than L1 cache

McBits: Fast code-based cryptography
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Another look at syndrome computation

Look at the syndrome-computation map again:

1

(631
2
M = ai

2t—1

Q;

Consider the linear map MT:

oAl V1
2t—1

1 a -+ of Vo
2t—1

1 an - aj Vg

1

(&)

2
Q3

2t—1
Qo

v + v201 + -
v + v2a2 + -

V1 + V2 + -

2t—1
+ viag

2t—1
+ vrag

2t—1
+ vray,

» This transposed linear map is actually doing multipoint evaluation

» Syndrome computation is a transposed multipoint evaluation

McBits: Fast code-based cryptography
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Transposing linear algorithms

» A linear map: ag, a1 — agbg, agb1 + a1bg, a1b1

bo
in1 = Qo > aobo —> out; = aobo

\ by + by \

ag + a3 — > outy = (10[)1 + a1b0

s /

ing = a; > a1b; ——> outz = a1b;

McBits: Fast code-based cryptography
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Transposing linear algorithms

» A linear map: ag, a1 — agbg, agb1 + a1bg, a1b1

bo
in1 = Qo > a()bo —> out; = aobo

N e N

ag + a3 — > outy = (10[)1 + a1b0

s /

ing = a; > a1b; ——> outz = a1b;

» Reversing the edges: cg,c1,co — bocy + bic1, bocy + brco

outy = bocg + b1y 0 co+cp <——ing =c¢
\ bo + b1 \
(bo + bl)Cl Ing = ¢
/ by / |

outy = bgcy + bicg <——— 1 +c2 «<—— ing =y

McBits: Fast code-based cryptography
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What did we just do?

» The original linear map:

aobo bo 0 a
apby +aibg | = | b1 bo (ao>
a1 bl 0 bl 1

» The transposed map:

boco + b1cy . bo b1 O EO
boci +bica)  \O0 by b cl

McBits: Fast code-based cryptography 22



What did we just do?

» The original linear map:

aobo bo 0 a
apby +aibg | = | b1 bo (a())
a1 bl 0 bl 1

» The transposed map:

boco + b1cy . bo b1 O zo
boci +bica)  \O0 by b cl
2

» Reversing the edges automatically gives an algorithm for the
transposed map

» This is called the transposition principle

McBits: Fast code-based cryptography
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What did we just do?

» The original linear map:

aobo bo 0 a
apby +aibg | = | b1 bo ( 0)
a1b1 0 bl

v

The transposed map:

boco + b1cy . bo b1 O zo
boci +bica)  \O0 by b Cl
2

v

Reversing the edges automatically gives an algorithm for the
transposed map

v

This is called the transposition principle

v

Preserves number of multiplications
References: Fiduccia 1972, Bordewijk 1956, Lupanov 1956

v

McBits: Fast code-based cryptography
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Transposing the additive FFT

The naive approach

> Idea: Compute syndrome by transposing the additive FFT

» Start with additive FFT program (sequence of additions and
constant multiplications)

» Convert to directed acyclic graph (rename variables to remove
cycles)

» Reverse edges, convert to C program
» Compile with gcc

McBits: Fast code-based cryptography
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Transposing the additive FFT

The naive approach

> Idea: Compute syndrome by transposing the additive FFT

» Start with additive FFT program (sequence of additions and
constant multiplications)

» Convert to directed acyclic graph (rename variables to remove
cycles)

» Reverse edges, convert to C program
» Compile with gcc
» Problems:

> Huge program (all loops and function calls removed)
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Transposing the additive FFT

The naive approach

> Idea: Compute syndrome by transposing the additive FFT

» Start with additive FFT program (sequence of additions and
constant multiplications)

» Convert to directed acyclic graph (rename variables to remove
cycles)

» Reverse edges, convert to C program
» Compile with gcc
» Problems:

> Huge program (all loops and function calls removed)
» At m = 13 or m = 14 gcc runs out of memory
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Transposing the additive FFT

The naive approach

> Idea: Compute syndrome by transposing the additive FFT

» Start with additive FFT program (sequence of additions and
constant multiplications)

» Convert to directed acyclic graph (rename variables to remove
cycles)

» Reverse edges, convert to C program

» Compile with gcc

» Problems:

> Huge program (all loops and function calls removed)
> At m = 13 or m = 14 gcc runs out of memory
> Can use better register allocators, but the program is still huge

McBits: Fast code-based cryptography
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Transposing the additive FFT

A better approach
» Analyze structure of additive FFT A: B, Ay, A3, C

» Ay, As are recursive calls

McBits: Fast code-based cryptography 23



Transposing the additive FFT

A better approach

>
»
>
>

Analyze structure of additive FFT A: B, A1, A3, C

Aq, Agy are recursive calls

Transposition has structure CT, AT AT BT

Use recursive calls to reduce code size

McBits: Fast code-based cryptography
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Secret permutations

» FFT evaluates f at elements in standard order

» We need output in a secret order

» Same problem for input of transposed FFT

» Similar problem during key generation (secret random permutation)

McBits: Fast code-based cryptography
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Secret permutations

FFT evaluates f at elements in standard order

We need output in a secret order

Same problem for input of transposed FFT

Similar problem during key generation (secret random permutation)

vV v v v Y

Typical solution for permutation 7: load from position 4, store at
position 7 (%)
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Secret

vV v v v Y

permutations

FFT evaluates f at elements in standard order

We need output in a secret order

Same problem for input of transposed FFT

Similar problem during key generation (secret random permutation)

Typical solution for permutation 7: load from position 4, store at
position 7 (%)

» This leaks through timing information

» We need to apply a secret permutation in constant time
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Secret

vV v v v Y

permutations

FFT evaluates f at elements in standard order

We need output in a secret order

Same problem for input of transposed FFT

Similar problem during key generation (secret random permutation)

Typical solution for permutation 7: load from position 4, store at
position 7 (%)

» This leaks through timing information

» We need to apply a secret permutation in constant time

Solution: sorting networks

McBits: Fast code-based cryptography
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Sorting networks

A sorting network sorts an array S of elements by using a sequence of
comparators.

> A comparator can be expressed by a pair of indices (i, j).
» A comparator swaps S[i] and S[j] if S[i] > S[j].

McBits: Fast code-based cryptography
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Sorting networks

A sorting network sorts an array S of elements by using a sequence of

comparators.

> A comparator can be expressed by a pair of indices (i, j).
» A comparator swaps S[i] and S[j] if S[i] > S[j].
» Efficient sorting network: Batcher sort (Batcher, 1968)

!
!
!

!

Batcher sorting network for sorting 8 elements

http://en.wikipedia.org/wiki/Batcher’,27s_sort
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Permuting by sorting

Example

Computing b3, by, by from by, ba, b3 can be done by sorting the key-value
pairs (3, bl), (27 b2)7 (1a b3) the output is (1a b3)7 (27 62)7 (33 bl)

McBits: Fast code-based cryptography 26



Permuting by sorting

Example

Computing b3, by, by from by, ba, b3 can be done by sorting the key-value
pairs (3, bl), (27 b2)7 (L b3) the output is (L b3)’ (27 bZ)v (33 bl)

» All the output bits of > comparisons only depend on the secret

permutation

» Those bits can be precomputed during key generation
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Permuting by sorting

Example

Computing b3, by, by from by, ba, b3 can be done by sorting the key-value
pairs (3, bl), (27 b2)7 (L b3) the output is (L b3)’ (27 bZ)v (33 bl)

» All the output bits of > comparisons only depend on the secret
permutation

» Those bits can be precomputed during key generation

» Do conditional swap of b[i] and b[j] with condition bit ¢ as

y < O] @bj]; y<cy; blil bl Dy;  blj] « bl D y;
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Permuting by sorting

Example

Computing b3, by, by from by, ba, b3 can be done by sorting the key-value
pairs (3, b1)> (27 b2)7 (L b3) the output is (L b3)’ (27 bZ)v (33 bl)

» All the output bits of > comparisons only depend on the secret
permutation

» Those bits can be precomputed during key generation

» Do conditional swap of b[i] and b[j] with condition bit ¢ as
y < il @by cy; bl <[] @y; bl bl Dy

» Possibly better than Batcher sort: Benes permutation network (work
in progress)

McBits: Fast code-based cryptography
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Results

Throughput cycles on Ivy Bridge

S
>
>
>
>
>

Input secret permutation: 8622
Syndrome computation: 20846
Berlekamp-Massey: 7714

Root finding: 14794

Output secret permutation: 8520
Total: 60493
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>
>

Input secret permutation: 8622

Syndrome computation: 20846

Berlekamp-Massey: 7714

Root finding: 14794

Output secret permutation: 8520

Total: 60493

These are amortized cycle counts across 256 parallel computations
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Results

Throughput cycles on Ivy Bridge

S
>
>
>
>
>
>
>

Input secret permutation: 8622

Syndrome computation: 20846

Berlekamp-Massey: 7714

Root finding: 14794

Output secret permutation: 8520

Total: 60493

These are amortized cycle counts across 256 parallel computations

All computations with full timing-attack protection!

McBits: Fast code-based cryptography
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Comparison

Public-key decryption speeds from eBATS

vV v v v

ntruees787epl: 700512 cycles
mceliece: 1219344 cycles
ronald1024: 1340040 cycles
ronald3072: 16052564 cycles
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Comparison

Public-key decryption speeds from eBATS

ntruees787epl: 700512 cycles
mceliece: 1219344 cycles
ronald1024: 1340040 cycles
ronald3072: 16052564 cycles

vV v v v

Diffie-Hellman shared-secret speeds from eBATS

> gls254: 77468 cycles
> kumfpl127g 116944 cycles
» curve25519: 182632 cycles
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