
FSBday:Implementing Wagner's Generalized Birthday Atta
k against theSHA-3 Candidate FSBChristiane Peters, Peter S
hwabejoint work with Dan Bernstein, Tanja Lange and Ruben NiederhagenEindhoven University of Te
hnologyJune 16, 2009Resear
h Retreat on Code-Based Cryptography, INRIA Ro
quen
ourt



The targetWagner's generalized birthday atta
kWagner in memory-restri
ted environmentsAtta
king FSB48Storage requirementsOur atta
k strategyImplementationResults and analysis



The 
ompression fun
tion of FSBlengthGiven a binary random r × n matrix H and a parameter w whi
hindi
ates the number of blo
ks in H .Input: a regular weight-w bit string of length n, i.e., there is exa
tly asingle 1 in ea
h blo
k [(i − 1) n
w , i n

w ]1≤i≤w.Output: Xor the w 
olumns indi
ated by the input bit string.
n

r

n
w

n
w

n
w

n
w

◮ A 
ollision is given by 2w 
olumns�exa
tly two per blo
k�whi
hadd up to 0. FSBday 2



Parameters
◮ Several parameter sets in order to satisfy NIST's requirement ofhaving output lengths 160, 224, 256, 384, and 512 bits,respe
tively.
◮ SHA-3 proposal additionally in
ludes FSB48: a toy version whi
h 
anbe used as a training 
ase.

FSBday 3



The targetWagner's generalized birthday atta
kWagner in memory-restri
ted environmentsAtta
king FSB48Storage requirementsOur atta
k strategyImplementationResults and analysis



Wagner's generalized birthday atta
kGiven 2i−1 lists 
ontaining B-bit strings.Generalized birthday problem:The 2i−1-sum problem 
onsists of �nding 2i−1 elements�exa
tly oneper list�su
h that their sum equals 0 (modulo 2).Wagner (CRYPTO 2002)We 
an expe
t a solution to the generalized birthday problem after onerun of an algorithm using time O((i − 1) · 2B/i) and lists of size O(2B/i).FSBday 4



Wagner's tree algorithmGiven 4 lists 
ontaining ea
h about 2B/3 elements whi
h are 
hosenuniform at random from {0, 1}B.
◮ On level 0 take two lists and 
ompare their elements on their leastsigni�
ant B/3 bits.Merge: If two elements 
oin
ide on those B/3 bits; put the xor ofboth elements into a new list. Pro
eed in the same manner with theother two lists.Given the uniform randomness of the elements we expe
t both liststo 
ontain about 2B/3 elements.
◮ On level 1 take the remaining two lists. Compare their elements by
onsidering the remaining 2B/3 bits.We expe
t to get 1 mat
h after the merge step. FSBday 5



Tree algorithm for 2
i−1 listsGiven 2i−1 lists 
ontaining ea
h about 2B/i bit strings of length B.Suppose the bit strings were pi
ked uniform at random.

◮ On level 0 take the �rst two lists L0,0 and L0,1 and 
ompare theirlist elements on their least signi�
ant B/i bits.
◮ We 
an expe
t 2B/i pairs of elements whi
h are equal on those leastsigni�
ant B/i bits.
◮ We take the xor of both elements on all their B bits and put the xorinto a new list L1,0.
◮ Similarly 
ompare the other lists�always two at a time�and lookfor elements mat
hing on their least signi�
ant B/i bits whi
h arexored and put into new lists.
◮ This pro
ess of merging yields 2i−2 lists 
ontaining ea
h about 2B/ielements whi
h are zero on their least signi�
ant B/i bits. This
ompletes level 0. FSBday 6



Tree algorithm for 2
i−1 lists

◮ On ea
h level j we 
onsider the elements on their least signi�
ant
(j + 1)B/i bits of whi
h jB/i bits are known to be zero as a resultof the previous merge.

◮ On level i − 2 we get two lists 
ontaining about 2B/i elements; ea
helement is the xor of 2i−2 elements; the least signi�
ant (i − 2)B/ibits are zero.
◮ Comparing the elements of both lists on their 2B/i remaining bitsgives 1 expe
ted mat
h.
◮ Ea
h element is the xor of elements from the previous steps; it is thexor of 2i−1 elements and thus a solution to the generalized birthdayproblem. FSBday 7



The targetWagner's generalized birthday atta
kWagner in memory-restri
ted environmentsAtta
king FSB48Storage requirementsOur atta
k strategyImplementationResults and analysis



Pre
omputation stepSuppose that there is spa
e for lists of size only 2c with c < B/i.Bernstein:
◮ Generate 2c·(B−ic) entries and only 
onsider those of whi
h the leastsigni�
ant B − ic bits are zero.
◮ Then apply Wagner's algorithm with lists of size 2c and 
lamp away

c bits on ea
h level.Generalization:
◮ The least signi�
ant B − ic bits 
an have an arbitrary value
◮ This 
lamping value does not even have to be the same on all listsas long as the sum of all 
lamping values is zero.
◮ If an atta
k does not produ
e a 
ollision we simply restart the atta
kwith di�erent 
lamping values. FSBday 8



Repeating (parts of) the tree algorithm
◮ When performing the algorithm with smaller lists some bits are left�un
ontrolled� at the end.
◮ Deal with the lower su

ess probability by repeatedly running theatta
k with di�erent 
lamping values.
◮ We 
an apply the same idea of 
hanging 
lamping values to anarbitrary merge step of the tree algorithm.

FSBday 9



Using Pollard iteration
◮ Assume that due to memory restri
tions the number of un
ontrolledbits is high.
◮ In order to �nd a 
ollision of 2i−1 ve
tors we start with only 2i−2lists of size O(2b) and apply the usual Wagner tree algorithm; i.e.,
lamp away b bits on ea
h level.
◮ The number of 
lamped bits before the last merge step is now

(i − 3)b.
◮ The last merge step produ
es 22b possible values, the smallest ofwhi
h has an expe
ted number of 2b leading zeros, leaving

B − (i − 1)b un
ontrolled.
◮ This 
omputation 
an be seen as a fun
tion mapping 
lamping
onstants to the �nal B − (i − 1)b un
ontrolled bits and applyPollard iteration to �nd a 
ollision between the output of two su
h
omputations;
◮ Combination then yields a 
ollision of 2i−1 ve
tors. FSBday 10



Expe
ted running timePlain Wagner:
◮ If we assume that the total time for one run is basi
ally linear in thesize and the number of lists and the number of levels, then the
omplete atta
k takes time

t = 2B−ib+b = 2B−(i−1)b.Pollard variant:
◮ As Pollard iteration has square-root running time, the expe
tednumber of runs for this variant is 2B/2−(i−1)b/2, ea
h taking time

2b, so the expe
ted running time is
t = 2B/2−(i−1)b/2+b.

=⇒ Pollard variant of the atta
k be
omes more e�
ient than plainWagner with repeated runs if B > (i + 2)b. FSBday 11



The targetWagner's generalized birthday atta
kWagner in memory-restri
ted environmentsAtta
king FSB48Storage requirementsOur atta
k strategyImplementationResults and analysis



The 
ompression fun
tion of FSB48Given a binary random 192 × 393216 matrix H ; number of blo
ks:
w = 24.Input: a regular weight-24 bit string of length 393216, i.e., there isexa
tly a single 1 in ea
h interval [(i − 1) · 16384, i · 16834]1≤i≤24.Output: Xor the 48 
olumns indi
ated by the input bit string.

3 · 217

192

214Goal: Find a 
ollision in FSB48's 
ompression fun
tion; i.e., �nd 48
olumns�exa
tly 2 per blo
k�whi
h add up to 0. FSBday 12



Applying Wagner to FSB48Determine the number of lists for a Wagner atta
k on FSB48.
◮ We 
hoose 16 lists to solve this parti
ular 48-sum problem.(16 is the highest power of 2 dividing 48).
◮ Ea
h list entry will be the xor of three 
olumns 
oming from one anda half blo
ks (no overlaps!!)In parti
ular:
◮ List L0,0: 
onsider sums of two 
olumns 
oming from the �rst blo
kof 214 
olumns and a third 
olumn from the �rst half of thefollowing blo
k.
◮ We get 227 sums of two 
olumns 
oming from the �rst blo
k. Theseare added to the �rst 213 elements of the se
ond blo
k of the matrix

H ; in total roughly 240 elements for L0,0.
◮ List L0,1 
ontains sums of 
olumns 
oming from the se
ond half ofthe se
ond blo
k and the third blo
k. This yields again about 240possible list entries.
◮ Similarly, we 
onstru
t the lists L0,2, L0,3,. . . , L0,15. FSBday 13



Straightforward Wagner
◮ The 
olumns of H were 
hosen uniform at random from {0, 1}192.
◮ Assume that taking sums of those elements does not bias thedistribution of 192-bit strings.
◮ Applying Wagner's atta
k with 16 lists in a straightforward waymeans that we need to have at least 2⌈192/5⌉ entries per list.
◮ By 
lamping away 39 bits in ea
h step we expe
t to get at least one
ollision after one run of the tree algorithm. FSBday 14



List entries
◮ For ea
h list we generate more than twi
e the amount needed for astraightforward atta
k.
◮ In order to redu
e the amount of data for the following steps wenote that about 240/4 elements are likely to be zero on their leastsigni�
ant two bits.
◮ Clamping those 2 bits away should thus yield a list of 238 bit strings.
◮ Now we ignore those 2 least signi�
ant bits whi
h are 0 and regardthe list elements as 190-bit strings.
◮ Now we expe
t that a straightforward appli
ation of Wagner'satta
k to 16 lists with about 2190/5 elements yields a 
ollision after
ompleting the tree algorithm. FSBday 15



The targetWagner's generalized birthday atta
kWagner in memory-restri
ted environmentsAtta
king FSB48Storage requirementsOur atta
k strategyImplementationResults and analysis



Note on list entries
◮ List entries 
ould be 192-bit strings; namely the sums of 
olumnsof H .
◮ We don't need to store the whole bit string; bits we already know tobe 0 do not have to be stored; so in ea
h level of the tree thenumber of bits per entry de
reases.
◮ However, we know that a su

essful atta
k will produ
e a list
ontaining the all-zero bit string at the end.
◮ In order to identify a 
ollision we have to store the 
olumn positionsin the matrix that lead to this all-zero value.
◮ Unlike storage requirements for values the number of bytes forpositions in
reases with in
reasing levels. FSBday 16



Storing positions
◮ Dynami
 re
omputation redu
es the storage requirements by notstoring the entry value at all but re
omputing it every time it isneeded from the positions.
◮ There are 240 possibilities to 
hoose 
olumns to produ
e entries of alist, so we 
an en
ode the positions in 40 bits (5 bytes).
◮ In ea
h level the size of a single entry doubles (be
ause the numberof positions doubles),
◮ The expe
ted number of entries per list remains the same but thenumber of lists halves; so the total amount of data is the same onea
h level when using dynami
 re
omputation. FSBday 17



What list size 
an we handle?
◮ We start with 16 lists of size 238, ea
h 
ontaining bit strings oflength r′ = 190.
◮ We store the 
olumn positions of ea
h entry whi
h we en
ode in 40bits (5 bytes).
◮ Storing 16 lists with 238 entries, ea
h entry en
oded in 5 bytesrequires 20480 GB of storage spa
e.
◮ The Coding and Cryptography Computer Cluster at EindhovenUniversity of Te
hnology only has a total hard disk spa
e of 7 TB,so we have to adapt our atta
k strategy to this limitation. FSBday 18



Adapt atta
k strategy
◮ On the �rst level we have 16 lists and as we need at least 5 bytesper list entry we 
an handle at most 7 · 240/24/5 = 1.36 × 236entries per list.
◮ A straightforward implementation would use lists of size 236:
onsider 240 entries per list and 
lamp 4 bits during list generation;this leads to 236 values for ea
h of the 16 lists.
◮ These values have a length of 188 bits represented by 5 bytesholding the positions from the matrix.
◮ Clamping 36 bits in ea
h of the 3 steps leaves two lists of length 236with 80 unknown bits.
◮ We expe
t to run the atta
k 256.5 times until we �nd a 
ollision.FSBday 19



The targetWagner's generalized birthday atta
kWagner in memory-restri
ted environmentsAtta
king FSB48Storage requirementsOur atta
k strategyImplementationResults and analysis



Half-tree 
ompression
◮ First 
ompute left half-tree, using 8 lists of size 237 (5 TB)
◮ Clamp 3 bits through pre
omputation
◮ Resulting list L3,0 has entries with 189 − 3 · 37 = 78 remaining bits
◮ Now save values instead of positions, 
ompression by fa
tor of 4(1.25 TB)
◮ Compute right half-tree (5 TB, total of 6.25 TB) and perform lastmerge
◮ In 
ase of 
ollision: Compute left half-tree again to re
onstru
tpositions

FSBday 20



Half-tree 
ompression
◮ First 
ompute left half-tree, using 8 lists of size 237 (5 TB)
◮ Clamp 3 bits through pre
omputation
◮ Resulting list L3,0 has entries with 189 − 3 · 37 = 78 remaining bits
◮ Now save values instead of positions, 
ompression by fa
tor of 4(1.25 TB)
◮ Compute right half-tree (5 TB, total of 6.25 TB) and perform lastmerge
◮ In 
ase of 
ollision: Compute left half-tree again to re
onstru
tpositions
◮ Otherwise: Change 
lamping 
onstants in right half-tree
◮ Expe
ted: 18.5 half-tree 
omputations (2× left half-tree, 16.5×right half-tree) FSBday 20



Atta
k Strategy
L0,0 L0,1 L0,2 L0,3 L0,4 L0,5 L0,6 L0,7 L0,8 L0,9 L0,10 L0,11 L0,12 L0,13 L0,14 L0,15

L1,0 L1,1 L1,2 L1,3 L1,4 L1,5 L1,6 L1,7

L2,0 L2,1 L2,2 L2,3

L3,0
ompressed L3,1Final mergeComputations only done twi
e Computations done (expe
ted) 16.5 times FSBday 21



The targetWagner's generalized birthday atta
kWagner in memory-restri
ted environmentsAtta
king FSB48Storage requirementsOur atta
k strategyImplementationResults and analysis



CCCC
◮ Coding and Cryptography Computer Cluster
◮ 10 ma
hines, ea
h equipped with

◮ Intel Core 2 Quad Q6600 pro
essor (2.4 GHz),
◮ 8 GB of RAM supporting ECC,
◮ Marvell PCI-E Gigabit Ethernet 
ards,
◮ Western Digital 700 GB SATA hard disk.

◮ For this proje
t: Communi
ation through MPI (MPICH2)
◮ O�ers syn
hronous message based 
ommuni
ation
◮ Standard for HPC appli
ations
◮ MPICH2 provides an ethernet ba
k-end

FSBday 22



Finding the bottlene
k(s)
◮ Basi
ally every byte needs to be stored, sent, and loaded 4 times.
◮ Possible performan
e bottlene
ks

◮ CPU 
omputation power
◮ Network throughput
◮ Hard-disk throughput

FSBday 23



Finding the bottlene
k(s)
◮ Basi
ally every byte needs to be stored, sent, and loaded 4 times.
◮ Possible performan
e bottlene
ks

◮ CPU 
omputation power
◮ Network throughput
◮ Hard-disk throughput

◮ If the CPU is too slow we have to write faster 
ode
◮ Determine network throughput: IBM MPI ben
hmark
◮ Determine hard-disk throughput: our own hard-disk ben
hmark

◮ Dire
t I/O, no �lesystem
◮ Sequential and randomized a

ess patterns

FSBday 23



Finding the bottlene
k(s)

 0

 20

 40

 60

 80

 100

 120

210 215 220 225 230

ba
nd

w
id

th
 in

 M
B

yt
e/

s

packet size in bytes

hdd sequential
hdd randomized

mpi

FSBday 23



Finding the bottlene
k(s)
◮ Basi
ally every byte needs to be stored, sent, and loaded 4 times.
◮ Possible performan
e bottlene
ks

◮ CPU 
omputation power
◮ Network throughput
◮ Hard-disk throughput

◮ If the CPU is too slow we have to write faster 
ode
◮ Determine network throughput: IBM MPI ben
hmark
◮ Determine hard-disk throughput: our own hard-disk ben
hmark

◮ Dire
t I/O, no �lesystem
◮ Sequential and randomized a

ess patterns

=⇒ Mainly bottlene
ked by hard-disk throughput FSBday 23



Parallelization
◮ Distribute fra
tions of lists to nodes a

ording to some of the bitsrelevant for sorting and merging on the next level
◮ Ea
h node on ea
h level holds two fra
tions of two lists
◮ Ea
h node performs sort-and-merge on its list fra
tions

FSBday 24



Parallelization
L0,00,1 L0,10,1 L0,22,3 L0,32,3 L0,44,5 L0,54,5 L0,66,7 L0,76,7 L0,80,1 L0,90,1 L0,102,3 L0,112,3 L0,124,5 L0,134,5 L0,146,7 L0,156,7

L1,00,1,2,3 L1,10,1,2,3 L1,24,5,6,7 L1,34,5,6,7 L1,40,1,2,3 L1,50,1,2,3 L1,64,5,6,7 L1,74,5,6,7
L2,00,1,2,3,4,5,6,7 L2,10,1,2,3,4,5,6,7 L2,20,1,2,3,4,5,6,7 L2,30,1,2,3,4,5,6,7

L3,0
ompressed on nodes 8 and 9 L3,10,1,2,3,4,5,6,7Final mergeComputations only done twi
e Computations done (expe
ted) 16.5 times FSBday 24



Parallelization
◮ Distribute fra
tions of lists to nodes a

ording to some of the bitsrelevant for sorting and merging on the next level
◮ Ea
h node on ea
h level holds two fra
tions of two lists
◮ Ea
h node performs sort-and-merge on its list fra
tions
◮ Split fra
tions further into 512 parts of 640 MB ea
h (presort)
◮ Sort and merge parts independently in memory

FSBday 24



Parallelization
◮ Distribute fra
tions of lists to nodes a

ording to some of the bitsrelevant for sorting and merging on the next level
◮ Ea
h node on ea
h level holds two fra
tions of two lists
◮ Ea
h node performs sort-and-merge on its list fra
tions
◮ Split fra
tions further into 512 parts of 640 MB ea
h (presort)
◮ Sort and merge parts independently in memory
◮ Pipeline

◮ Loading from hard disk into memory,
◮ Sorting of two parts,
◮ Merging of previously sorted parts,

◮ Requires 6 parts in memory at the same time (3.75 GB)
FSBday 24



Parallelization
◮ Distribute fra
tions of lists to nodes a

ording to some of the bitsrelevant for sorting and merging on the next level
◮ Ea
h node on ea
h level holds two fra
tions of two lists
◮ Ea
h node performs sort-and-merge on its list fra
tions
◮ Split fra
tions further into 512 parts of 640 MB ea
h (presort)
◮ Sort and merge parts independently in memory
◮ Pipeline

◮ Loading from hard disk into memory,
◮ Sorting of two parts,
◮ Merging of previously sorted parts,

◮ Requires 6 parts in memory at the same time (3.75 GB)
◮ Two blo
ks of operations:

◮ Load, Sort, Merge, Send
◮ Re
eive, Presort, Store FSBday 24



Ales instead of Files
◮ Ea
h node uses a large data partition /dev/sda1
◮ Opened with O_DIRECT (without 
a
hing)
◮ Organize data in 
hunks of 1.25 MB (�ales�), ea
h belonging to

◮ one of two list fra
tions,
◮ one of 512 parts (per list fra
tion),
◮ OR free spa
e.

◮ AleSystem also stores number of elements per part
◮ Throughput with sequential a

ess (during list generation):

∼90 MB/se
 (non duplex)
◮ Throughput with random a

ess: ∼40 MB/se
 (non duplex)

FSBday 25



The targetWagner's generalized birthday atta
kWagner in memory-restri
ted environmentsAtta
king FSB48Storage requirementsOur atta
k strategyImplementationResults and analysis



Timing Results
◮ Compression and last merge step not (fully) implemented, yet
◮ Current ben
hmarks: One half-tree 
omputation takes ∼ 33 h

◮ 2:32 h for list generation
◮ 9:43 h for �rst sort/merge step
◮ 10:02 h for se
ond sort/merge step
◮ 10:46 h for third sort/merge step

◮ Expe
ted: 18.5 half-tree 
omputations: 610:30 h
◮ 16.5 last merge steps (estimated 12 h ea
h): 198 h
◮ Expe
ted total time: 808.5 h or 33 days and 16.5 hours

FSBday 26



S
alability Analysis IWagner against FSB160

◮ 16 lists of size 2127

◮ Entries are xors of 10 
olumns from 5 blo
ks (2135) possibilities
◮ Ea
h entry requires 135 bits (17 bytes)
◮ Clamp 8 bits through pre
omputation
◮ Running time 2127 (not 
onsidering 
osts for pre
omputation)

FSBday 27



S
alability Analysis IWagner against FSB160

◮ 16 lists of size 2127

◮ Entries are xors of 10 
olumns from 5 blo
ks (2135) possibilities
◮ Ea
h entry requires 135 bits (17 bytes)
◮ Clamp 8 bits through pre
omputation
◮ Running time 2127 (not 
onsidering 
osts for pre
omputation)
◮ Memory requirement: 17 · 257 Exabytes
◮ Currently available: Storage systems with a few petabytes

FSBday 27



S
alability Analysis IWagner against FSB160

◮ 16 lists of size 2127

◮ Entries are xors of 10 
olumns from 5 blo
ks (2135) possibilities
◮ Ea
h entry requires 135 bits (17 bytes)
◮ Clamp 8 bits through pre
omputation
◮ Running time 2127 (not 
onsidering 
osts for pre
omputation)
◮ Memory requirement: 17 · 257 Exabytes
◮ Currently available: Storage systems with a few petabytes
◮ With just a few exabytes, Pollard variant be
omes more e�
ient
◮ E.g. with 144 exabytes: time 2220

FSBday 27



S
alability Analysis IIOverview of Wagner against FSB variantsNumber of lists lists Storage (EB) TimeFSB160 16 2127 17 · 251 212716 (Pollard) 260 9 · 24 = 144 2220FSB224 16 2177 24 · 2121 217716 (Pollard) 260 13 · 24 = 208 2339FSB256 16 2202 27 · 2146 220216 (Pollard) 260 14 · 24 = 224 238232 (Pollard) 256 18 2400FSB384 16 2291 39 · 2235 229132 (Pollard) 260 9 · 25 = 288 2613.5FSB512 16 2393 53 · 2337 239332 (Pollard) 260 12 · 25 = 384 2858 FSBday 28



Further information
Paper: http://
ryptojedi.org/users/peter/#fsbdayCluster: http://www.win.tue.nl/



/Code: Will be available (publi
 domain)

FSBday 29


	The target
	Wagner's generalized birthday attack
	Wagner in memory-restricted environments
	Attacking FSB48
	Storage requirements
	Our attack strategy
	Implementation
	Results and analysis

