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The target



TU/ TEe_c:?‘ische Universiteit
The compression function of FSBiengtn € St arreamaon
Given a binary random r x n matrix H and a parameter w which

indicates the number of blocks in H.

Input: a regular weight-w bit string of length n, i.e., there is exactly a
single 1 in each block [(i — 1)2,i2];<jcy.

Output: Xor the w columns indicated by the input bit string.

» A collision is given by 2w columns—exactly two per block—which
add up to 0.
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» Several parameter sets in order to satisfy NIST's requirement of
having output lengths 160, 224, 256, 384, and 512 bits,
respectively.

» SHA-3 proposal additionally includes FSByg: a toy version which can
be used as a training case.
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Wagpner's generalized birthday attack



TU/ TE?E::‘;;:: Universiteit
Wagner's generalized birthday attack € I rreamton
Given 2~ lists containing B-bit strings.

Generalized birthday problem:
The 2/~ 1-sum problem consists of finding 2°~! elements —exactly one
per list—such that their sum equals 0 (modulo 2).

Wagner (CRYPTO 2002)

We can expect a solution to the generalized birthday problem after one
run of an algorithm using time O((i — 1) - 28/%) and lists of size O(25/%).
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V\/agner S tree algorlthm e University of Technology

Given 4 lists containing each about 22/% elements which are chosen
uniform at random from {0, 1}5.

» On level 0 take two lists and compare their elements on their least
significant B/3 bits.

Merge: If two elements coincide on those B/3 bits; put the xor of
both elements into a new list. Proceed in the same manner with the

other two lists.

Given the uniform randomness of the elements we expect both lists
to contain about 25/3 elements.

» On level 1 take the remaining two lists. Compare their elements by
considering the remaining 2B/3 bits.

We expect to get 1 match after the merge step.
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Given 27! lists containing each about 25/7 bit strings of length B.
Suppose the bit strings were picked uniform at random.

Tree algorithm for 2/~ 1 lists

> On level 0 take the first two lists Lo o and Lo 1 and compare their
list elements on their least significant B/i bits.

» We can expect 25/% pairs of elements which are equal on those least
significant B/ bits.

» We take the xor of both elements on all their B bits and put the xor
into a new list Ly o.

» Similarly compare the other lists—always two at a time—and look
for elements matching on their least significant B/ bits which are
xored and put into new lists.

» This process of merging yields 2:=2 lists containing each about 25/
elements which are zero on their least significant B/i bits. This
completes level 0.
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Tree algorithm for 2/~ 1 lists

» On each level j we consider the elements on their least significant
(j + 1)B/i bits of which jB/i bits are known to be zero as a result
of the previous merge.

» On level i — 2 we get two lists containing about 25/ elements; each
element is the xor of 2¢=2 elements; the least significant (i — 2)B/i
bits are zero.

» Comparing the elements of both lists on their 2B /i remaining bits
gives 1 expected match.

» Each element is the xor of elements from the previous steps; it is the
xor of 2¢~1 elements and thus a solution to the generalized birthday
problem.
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Wagner in memory-restricted environments
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Suppose that there is space for lists of size only 2¢ with ¢ < B/i.

Precomputation step

Bernstein:

» Generate 2°(B~%) entries and only consider those of which the least
significant B — ic bits are zero.

» Then apply Wagner's algorithm with lists of size 2¢ and clamp away
¢ bits on each level.

Generalization:
» The least significant B — ic bits can have an arbitrary value

» This clamping value does not even have to be the same on all lists
as long as the sum of all clamping values is zero.

» If an attack does not produce a collision we simply restart the attack
with different clamping values.
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Repeating (parts of) the tree algorithm Universty ofTechnology

» When performing the algorithm with smaller lists some bits are left
“uncontrolled” at the end.

» Deal with the lower success probability by repeatedly running the
attack with different clamping values.

» We can apply the same idea of changing clamping values to an
arbitrary merge step of the tree algorithm.
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» Assume that due to memory restrictions the number of uncontrolled
bits is high.

» In order to find a collision of 2¢~! vectors we start with only 2¢~2
lists of size O(2%) and apply the usual Wagner tree algorithm; i.e.,
clamp away b bits on each level.

» The number of clamped bits before the last merge step is now
(i —3)b.

» The last merge step produces 2% possible values, the smallest of
which has an expected number of 2b leading zeros, leaving
B — (i — 1)b uncontrolled.

» This computation can be seen as a function mapping clamping
constants to the final B — (i — 1)b uncontrolled bits and apply
Pollard iteration to find a collision between the output of two such
computations;

» Combination then yields a collision of 2! vectors.
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EXpeCted runn'ng tlme e University of Technology

Plain Wagner:

» If we assume that the total time for one run is basically linear in the
size and the number of lists and the number of levels, then the
complete attack takes time

t = 2B—ib+b — 2B—(i—1)b.

Pollard variant:

» As Pollard iteration has square-root running time, the expected
number of runs for this variant is 25/2=(=1)5/2 each taking time
2%, so the expected running time is

¢+ — 9B/2—(i-1)b/2+b.

= Pollard variant of the attack becomes more efficient than plain
Wagner with repeated runs if B > (i + 2)b.
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Attacking FSBys



The compression function of FSByg

TU/e

Technische Universiteit
Eindhoven
University of Technology

Given a binary random 192 x 393216 matrix H; number of blocks:

w = 24.

Input: a regular weight-24 bit string of length 393216, i.e., there is
exactly a single 1 in each interval [(i — 1) - 16384, 7 - 16834]1<i<24.

Output: Xor the 48 columns indicated by the input bit string.

192:

Goal: Find a collision in FSB,g's compression function; i.e., find 48
columns —exactly 2 per block —which add up to 0.
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Determine the number of lists for a Wagner attack on FSByg.

» We choose 16 lists to solve this particular 48-sum problem.
(16 is the highest power of 2 dividing 48).

» Each list entry will be the xor of three columns coming from one and
a half blocks (no overlaps!!)

In particular:

> List Lo : consider sums of two columns coming from the first block
of 2 columns and a third column from the first half of the
following block.

» We get 227 sums of two columns coming from the first block. These
are added to the first 2! elements of the second block of the matrix
H; in total roughly 240 elements for L o.

» List Lo ; contains sums of columns coming from the second half of
the second block and the third block. This yields again about 24°
possible list entries.

» Similarly, we construct the lists Lo 2, Lo3,..., Lo,is5.
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Straightforward Wagner Universty ofTechrlogy

v

The columns of H were chosen uniform at random from {0, 1}192.

» Assume that taking sums of those elements does not bias the
distribution of 192-bit strings.

» Applying Wagner's attack with 16 lists in a straightforward way
means that we need to have at least 2/192/51 entries per list.

» By clamping away 39 bits in each step we expect to get at least one
collision after one run of the tree algorithm.
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» For each list we generate more than twice the amount needed for a
straightforward attack.

» In order to reduce the amount of data for the following steps we
note that about 24°/4 elements are likely to be zero on their least
significant two bits.

» Clamping those 2 bits away should thus yield a list of 23® bit strings.

» Now we ignore those 2 least significant bits which are 0 and regard
the list elements as 190-bit strings.

» Now we expect that a straightforward application of Wagner's
attack to 16 lists with about 2190/5 elements yields a collision after
completing the tree algorithm.
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Storage requirements
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> List entries could be 192-bit strings; namely the sums of columns
of H.

» We don't need to store the whole bit string; bits we already know to
be 0 do not have to be stored; so in each level of the tree the
number of bits per entry decreases.

» However, we know that a successful attack will produce a list
containing the all-zero bit string at the end.

> In order to identify a collision we have to store the column positions
in the matrix that lead to this all-zero value.

» Unlike storage requirements for values the number of bytes for
positions increases with increasing levels.
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» Dynamic recomputation reduces the storage requirements by not
storing the entry value at all but recomputing it every time it is
needed from the positions.

» There are 2% possibilities to choose columns to produce entries of a
list, so we can encode the positions in 40 bits (5 bytes).

> In each level the size of a single entry doubles (because the number
of positions doubles),

» The expected number of entries per list remains the same but the
number of lists halves; so the total amount of data is the same on
each level when using dynamic recomputation.
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What list size can we handle? € I orrecmotos

» We start with 16 lists of size 23%, each containing bit strings of
length ' = 190.

» We store the column positions of each entry which we encode in 40
bits (5 bytes).

» Storing 16 lists with 238 entries, each entry encoded in 5 bytes
requires 20480 GB of storage space.

» The Coding and Cryptography Computer Cluster at Eindhoven
University of Technology only has a total hard disk space of 7 TB,
so we have to adapt our attack strategy to this limitation.
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» On the first level we have 16 lists and as we need at least 5 bytes
per list entry we can handle at most 7 - 249/24 /5 = 1.36 x 236
entries per list.

> A straightforward implementation would use lists of size 236:

consider 240 entries per list and clamp 4 bits during list generation;

this leads to 236 values for each of the 16 lists.

» These values have a length of 188 bits represented by 5 bytes
holding the positions from the matrix.

» Clamping 36 bits in each of the 3 steps leaves two lists of length 236

with 80 unknown bits.

» We expect to run the attack 256.5 times until we find a collision.
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» First compute left half-tree, using 8 lists of size 237 (5 TB)

» Clamp 3 bits through precomputation

> Resulting list L3 o has entries with 189 — 3 - 37 = 78 remaining bits

» Now save values instead of positions, compression by factor of 4
(1.25 TB)

» Compute right half-tree (5 TB, total of 6.25 TB) and perform last
merge

» In case of collision: Compute left half-tree again to reconstruct
positions
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H a H:—t ree cCom preSS|On e University of Technology

» First compute left half-tree, using 8 lists of size 237 (5 TB)

» Clamp 3 bits through precomputation

> Resulting list L3 o has entries with 189 — 3 - 37 = 78 remaining bits

» Now save values instead of positions, compression by factor of 4
(1.25 TB)

» Compute right half-tree (5 TB, total of 6.25 TB) and perform last
merge

» In case of collision: Compute left half-tree again to reconstruct
positions

» Otherwise: Change clamping constants in right half-tree

» Expected: 18.5 half-tree computations (2x left half-tree, 16.5x
right half-tree)
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|Ln.u IL0,1 ILu,z IL(J,.% ILM ILn,s ILu,a ILQ.7 I,lLu,x ILQ.Q ILnAm ILo,u ILmz ILo.l.‘; ILn.u ILo,lsl

oA \/

|L1.4 I |L1,s I |L1,6 I |L1,7

|L1,2 I |L1‘3

L3
compressed

Final merge

Computations only done twicel Computations done (expected) 16.5 timesl
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» Coding and Cryptography Computer Cluster

» 10 machines, each equipped with

Intel Core 2 Quad Q6600 processor (2.4 GHz),
8 GB of RAM supporting ECC,

Marvell PCI-E Gigabit Ethernet cards,
Western Digital 700 GB SATA hard disk.

» For this project: Communication through MPI (MPICH2)

» Offers synchronous message based communication
» Standard for HPC applications
» MPICH2 provides an ethernet back-end

vy vy vy
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Flndlng the bot‘tleneck(s) TU/e University of Technology

» Basically every byte needs to be stored, sent, and loaded 4 times.
» Possible performance bottlenecks

» CPU computation power
> Network throughput
» Hard-disk throughput
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» Basically every byte needs to be stored, sent, and loaded 4 times.
» Possible performance bottlenecks
» CPU computation power
> Network throughput
» Hard-disk throughput
» If the CPU is too slow we have to write faster code
» Determine network throughput: IBM MPI benchmark
» Determine hard-disk throughput: our own hard-disk benchmark

> Direct 1/0O, no filesystem
> Sequential and randomized access patterns
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Finding the bottleneck(s)
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» Basically every byte needs to be stored, sent, and loaded 4 times.
» Possible performance bottlenecks
» CPU computation power
> Network throughput
» Hard-disk throughput
» If the CPU is too slow we have to write faster code
» Determine network throughput: IBM MPI benchmark
» Determine hard-disk throughput: our own hard-disk benchmark

> Direct 1/0O, no filesystem
> Sequential and randomized access patterns

— Mainly bottlenecked by hard-disk throughput
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» Distribute fractions of lists to nodes according to some of the bits
relevant for sorting and merging on the next level

» Each node on each level holds two fractions of two lists

» Each node performs sort-and-merge on its list fractions
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Parallelization
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TU/

Loo L01
0,1 01

Lo 2 La 3 Ln 1 Ln 5 Lo 6 Lq 7 Lo s Lq 9 Ln 10 Ln 1 Ln 12 Ln 13 Ln 1 Lo 15
2 3 2 3 4 5 4 5

01 01 23 23 45 45

\/ \/ \/ \/

\/ \/ \/ \/

Lln
0,1,2 3

Ly Lo Ly
0,1,23 4567 4567

LM Lis L16 L7
0,1,23 0,1,23 4567 4567

Lao
0,1,23,456,7

L2
0,1,2,3456,7

L2
0,123,45,6,7

L3
0,1,2,3,45,6,7

L. Ly
compressed on nodes 8 and 9 0,1,2,3,4,56,7

Final merge

Computations only done twicel Computations done (expected) 16.5 timesl
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Parallelization

» Distribute fractions of lists to nodes according to some of the bits
relevant for sorting and merging on the next level

Each node on each level holds two fractions of two lists
Each node performs sort-and-merge on its list fractions
Split fractions further into 512 parts of 640 MB each (presort)

vV v vvY

Sort and merge parts independently in memory
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» Distribute fractions of lists to nodes according to some of the bits
relevant for sorting and merging on the next level

Each node on each level holds two fractions of two lists
Each node performs sort-and-merge on its list fractions
Split fractions further into 512 parts of 640 MB each (presort)

Sort and merge parts independently in memory

vV VY Vv Vv Yy

Pipeline
» Loading from hard disk into memory,
> Sorting of two parts,
» Merging of previously sorted parts,

» Requires 6 parts in memory at the same time (3.75 GB)
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» Distribute fractions of lists to nodes according to some of the bits
relevant for sorting and merging on the next level

Each node on each level holds two fractions of two lists
Each node performs sort-and-merge on its list fractions
Split fractions further into 512 parts of 640 MB each (presort)

Sort and merge parts independently in memory

vV VY Vv Vv Yy

Pipeline

» Loading from hard disk into memory,

> Sorting of two parts,

» Merging of previously sorted parts,
» Requires 6 parts in memory at the same time (3.75 GB)
» Two blocks of operations:

> Load, Sort, Merge, Send
> Receive, Presort, Store
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» Each node uses a large data partition /dev/sdal

» Opened with 0_DIRECT (without caching)
» Organize data in chunks of 1.25 MB (“ales”), each belonging to

> one of two list fractions,
> one of 512 parts (per list fraction),
> OR free space.

» AleSystem also stores number of elements per part

» Throughput with sequential access (during list generation):
~90 MB/sec (non duplex)

» Throughput with random access: ~40 MB/sec (non duplex)
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» Compression and last merge step not (fully) implemented, yet
» Current benchmarks: One half-tree computation takes ~ 33 h
> 2:32 h for list generation
> 0:43 h for first sort/merge step
> 10:02 h for second sort/merge step
> 10:46 h for third sort/merge step
» Expected: 18.5 half-tree computations: 610:30 h
> 16.5 last merge steps (estimated 12 h each): 198 h
» Expected total time: 808.5 h or 33 days and 16.5 hours
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Wagner against FSBy¢0
16 lists of size 2127
Entries are xors of 10 columns from 5 blocks (213%) possibilities

Each entry requires 135 bits (17 bytes)
Clamp 8 bits through precomputation

vV v v v .Y

Running time 227 (not considering costs for precomputation)
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Wagner against FSBi¢

» 16 lists of size 2127

» Entries are xors of 10 columns from 5 blocks (213%) possibilities
» Each entry requires 135 bits (17 bytes)

» Clamp 8 bits through precomputation

» Running time 2'27 (not considering costs for precomputation)
» Memory requirement: 17 - 2°7 Exabytes

» Currently available: Storage systems with a few petabytes
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Wagner against FSBy¢0
16 lists of size 2127
Entries are xors of 10 columns from 5 blocks (213%) possibilities
Each entry requires 135 bits (17 bytes)
Clamp 8 bits through precomputation

Memory requirement: 17 - 257 Exabytes

Currently available: Storage systems with a few petabytes

>

>

>

>

» Running time 2'27 (not considering costs for precomputation)

>

>

» With just a few exabytes, Pollard variant becomes more efficient
>

E.g. with 144 exabytes: time 2220
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Overview of Wagner against FSB variants

Number of lists | lists | Storage (EB) | Time

FSBlGO 16 2127 17 - 251 2127
16 (Pollard) | 260 | 9.2% =144 | 2220

FSBo2s 16 | 277 242121 | 2177
16 (Pollard) | 2% | 13.2% =208 2339

F58256 16 2202 27 . 2146 2202
16 (Pollard) | 2% | 14.2% =224 2382

32 (Pollard) | 256 18 2400

FSB3ga 16 | 2291 39 - 2235 2291
32 (Pollard) | 260 9.25 =288 | 26135

FSB512 16 2393 53 . 2337 2393
32 (Pollard) | 250 | 12.2% =384 2858
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Paper: http://cryptojedi.org/users/peter/#fsbday
Cluster: http://www.win.tue.nl/cccc/

Code: Will be available (public domain)
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