
My personal experience with the NIST PQC
“competition”

Peter Schwabe

November 18, 2021



Disclaimer

This talk is biased.

• Possible personal gain from (NIST) standardization of certain
PQC schemes

• I’m an “ivory tower” academic

• Luxury of ignoring certain real-world issues

• Still aim for real-world impact

• Various thoughts in this talk are meant as constructive criticism

• I’ll try to avoid finger-pointing

1



Disclaimer

This talk is biased.

• Possible personal gain from (NIST) standardization of certain
PQC schemes

• I’m an “ivory tower” academic

• Luxury of ignoring certain real-world issues

• Still aim for real-world impact

• Various thoughts in this talk are meant as constructive criticism

• I’ll try to avoid finger-pointing

1



Disclaimer

This talk is biased.

• Possible personal gain from (NIST) standardization of certain
PQC schemes

• I’m an “ivory tower” academic

• Luxury of ignoring certain real-world issues

• Still aim for real-world impact

• Various thoughts in this talk are meant as constructive criticism

• I’ll try to avoid finger-pointing

1



Disclaimer

This talk is biased.

• Possible personal gain from (NIST) standardization of certain
PQC schemes

• I’m an “ivory tower” academic

• Luxury of ignoring certain real-world issues

• Still aim for real-world impact

• Various thoughts in this talk are meant as constructive criticism

• I’ll try to avoid finger-pointing

1



Disclaimer

This talk is biased.

• Possible personal gain from (NIST) standardization of certain
PQC schemes

• I’m an “ivory tower” academic

• Luxury of ignoring certain real-world issues

• Still aim for real-world impact

• Various thoughts in this talk are meant as constructive criticism

• I’ll try to avoid finger-pointing

1



Why (I think) I was invited

• Involved in 7 submissions to the NIST PQC project

• All 7 advanced to round 2

• 5 advanced to round 3 (4 finalists, 1 alternate)

• ERC StG project “EPOQUE – Engineering post-quantum
cryptography”

• Efficient and secure implementation of PQC
• Design of post-quantum protocols

2



Why (I think) I was invited

• Involved in 7 submissions to the NIST PQC project

• All 7 advanced to round 2

• 5 advanced to round 3 (4 finalists, 1 alternate)
• ERC StG project “EPOQUE – Engineering post-quantum

cryptography”
• Efficient and secure implementation of PQC
• Design of post-quantum protocols

2



7 submissions

KEMs
• Alkim, Avanzi, Bos, Ducas, de la Piedra, Pöppelmann, Schwabe,

Stebila, Albrecht, Orsini, Osheter, Paterson, Peer, and Smart:
NewHope

• Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck,
Schwabe, Seiler, and Stehlé: Kyber

• Chen, Danba, Hoffstein, Hülsing, Rijneveld, Saito, Schanck,
Schwabe, Whyte, Xagawa, Yamakawa, and Zhang: NTRU

• Albrecht, Bernstein, Chou, Cid, Gilcher, Lange, Maram, von
Maurich, Misoczki, Niederhagen, Paterson, Persichetti, Peters,
Schwabe, Sendrier, Szefer, Tjhai, Tomlinson, and Wang: Classic
McEliece

3



7 submissions

KEMs
• Alkim, Avanzi, Bos, Ducas, de la Piedra, Pöppelmann, Schwabe,

Stebila, Albrecht, Orsini, Osheter, Paterson, Peer, and Smart:
NewHope

• Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck,
Schwabe, Seiler, and Stehlé: Kyber

• Chen, Danba, Hoffstein, Hülsing, Rijneveld, Saito, Schanck,
Schwabe, Whyte, Xagawa, Yamakawa, and Zhang: NTRU

• Albrecht, Bernstein, Chou, Cid, Gilcher, Lange, Maram, von
Maurich, Misoczki, Niederhagen, Paterson, Persichetti, Peters,
Schwabe, Sendrier, Szefer, Tjhai, Tomlinson, and Wang: Classic
McEliece

3



7 submissions

KEMs
• Alkim, Avanzi, Bos, Ducas, de la Piedra, Pöppelmann, Schwabe,

Stebila, Albrecht, Orsini, Osheter, Paterson, Peer, and Smart:
NewHope

• Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck,
Schwabe, Seiler, and Stehlé: Kyber

• Chen, Danba, Hoffstein, Hülsing, Rijneveld, Saito, Schanck,
Schwabe, Whyte, Xagawa, Yamakawa, and Zhang: NTRU

• Albrecht, Bernstein, Chou, Cid, Gilcher, Lange, Maram, von
Maurich, Misoczki, Niederhagen, Paterson, Persichetti, Peters,
Schwabe, Sendrier, Szefer, Tjhai, Tomlinson, and Wang: Classic
McEliece

3



7 submissions

KEMs
• Alkim, Avanzi, Bos, Ducas, de la Piedra, Pöppelmann, Schwabe,

Stebila, Albrecht, Orsini, Osheter, Paterson, Peer, and Smart:
NewHope

• Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck,
Schwabe, Seiler, and Stehlé: Kyber

• Chen, Danba, Hoffstein, Hülsing, Rijneveld, Saito, Schanck,
Schwabe, Whyte, Xagawa, Yamakawa, and Zhang: NTRU

• Albrecht, Bernstein, Chou, Cid, Gilcher, Lange, Maram, von
Maurich, Misoczki, Niederhagen, Paterson, Persichetti, Peters,
Schwabe, Sendrier, Szefer, Tjhai, Tomlinson, and Wang: Classic
McEliece

3



7 submissions

Signatures
• Chen, Hülsing, Rijneveld, Samardjiska, and Schwabe: MQDSS

• Bai, Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, and
Stehlé: Dilithium

• Hülsing, Aumasson, Bernstein, Beullens, Dobraunig, Eichlseder,
Fluhrer, Gazdag, Kampanakis, Kölbl, Lange, Lauridsen, Mendel,
Niederhagen, Rechberger, Rijneveld, Schwabe, and Westerbaan:
SPHINCS+

3



7 submissions

Signatures
• Chen, Hülsing, Rijneveld, Samardjiska, and Schwabe: MQDSS

• Bai, Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, and
Stehlé: Dilithium

• Hülsing, Aumasson, Bernstein, Beullens, Dobraunig, Eichlseder,
Fluhrer, Gazdag, Kampanakis, Kölbl, Lange, Lauridsen, Mendel,
Niederhagen, Rechberger, Rijneveld, Schwabe, and Westerbaan:
SPHINCS+

3



7 submissions

Signatures
• Chen, Hülsing, Rijneveld, Samardjiska, and Schwabe: MQDSS

• Bai, Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, and
Stehlé: Dilithium

• Hülsing, Aumasson, Bernstein, Beullens, Dobraunig, Eichlseder,
Fluhrer, Gazdag, Kampanakis, Kölbl, Lange, Lauridsen, Mendel,
Niederhagen, Rechberger, Rijneveld, Schwabe, and Westerbaan:
SPHINCS+

3



Cryptographic Engineering

Designing and building cryptographic systems

The traditional approach

Cryptography

Mathematics

Algorithms

Scheme

Implementation

Software

Hardware

System

4



Cryptographic Engineering

Designing and building cryptographic systems

A holistic approach

Cryptographic Engineering

Mathematics

Algorithms

Software

Hardware

Scheme +
(prototype)

System

Performance

Implementation
Security

Correctness

4



Cryptographic Engineering

Designing and building cryptographic systems

A holistic approach

Cryptographic Engineering

Mathematics

Algorithms

Software

Hardware

Scheme +
(prototype)

System

Performance

Implementation
Security

Correctness

4



Examples, part I

Dilithium vs. Dilithium-G
• Dilithium uses uniform sampling

• Smaller signatures possible with discrete Gaussian

• Hard to implement securely (“constant-time”)

• Harder to test if sampling is correct

Parallel SHAKE in Kyber
• Kyber-768 needs to sample 9 polynomials uniformly mod q

• Use rejection sampling on SHAKE output

• 9 independent invocations of SHAKE (more output required!)

• Can vectorize SHAKE: much faster

• Easy to implement with low memory footprint on µc

5



Examples, part I

Dilithium vs. Dilithium-G
• Dilithium uses uniform sampling

• Smaller signatures possible with discrete Gaussian

• Hard to implement securely (“constant-time”)

• Harder to test if sampling is correct

Parallel SHAKE in Kyber
• Kyber-768 needs to sample 9 polynomials uniformly mod q

• Use rejection sampling on SHAKE output

• 9 independent invocations of SHAKE (more output required!)

• Can vectorize SHAKE: much faster

• Easy to implement with low memory footprint on µc

5



Examples, part I

Dilithium vs. Dilithium-G
• Dilithium uses uniform sampling

• Smaller signatures possible with discrete Gaussian

• Hard to implement securely (“constant-time”)

• Harder to test if sampling is correct

Parallel SHAKE in Kyber
• Kyber-768 needs to sample 9 polynomials uniformly mod q

• Use rejection sampling on SHAKE output

• 9 independent invocations of SHAKE (more output required!)

• Can vectorize SHAKE: much faster

• Easy to implement with low memory footprint on µc

5



Examples, part I

Dilithium vs. Dilithium-G
• Dilithium uses uniform sampling

• Smaller signatures possible with discrete Gaussian

• Hard to implement securely (“constant-time”)

• Harder to test if sampling is correct

Parallel SHAKE in Kyber
• Kyber-768 needs to sample 9 polynomials uniformly mod q

• Use rejection sampling on SHAKE output

• 9 independent invocations of SHAKE (more output required!)

• Can vectorize SHAKE: much faster

• Easy to implement with low memory footprint on µc

5



Examples, part II

Avoid fixed-weight sampling
• Fixed-weight sampling lowers failure prob. for lattice-based KEMs

• Avoid it in NewHope, Kyber, and NTRU-HRSS

• Typically computes secret permutation (e.g., through sorting)

• Problem: simple implementations leak through timing

Tweakable hash functions
• Software of SPHINCS+ modularized

• Abstraction layer: “tweakable hash functions”

• Idea: Use also to modularize the proof

6



Examples, part II

Avoid fixed-weight sampling
• Fixed-weight sampling lowers failure prob. for lattice-based KEMs

• Avoid it in NewHope, Kyber, and NTRU-HRSS

• Typically computes secret permutation (e.g., through sorting)

• Problem: simple implementations leak through timing

Tweakable hash functions
• Software of SPHINCS+ modularized

• Abstraction layer: “tweakable hash functions”

• Idea: Use also to modularize the proof

6



Examples, part II

Avoid fixed-weight sampling
• Fixed-weight sampling lowers failure prob. for lattice-based KEMs

• Avoid it in NewHope, Kyber, and NTRU-HRSS

• Typically computes secret permutation (e.g., through sorting)

• Problem: simple implementations leak through timing

Tweakable hash functions
• Software of SPHINCS+ modularized

• Abstraction layer: “tweakable hash functions”

• Idea: Use also to modularize the proof

6



Part I
Software implementations



NIST PQC software requirements

• Reference implementation “to promote understanding of how the
submitted algorithm may be implemented”

• Optimized implementation “targeting the Intel x64 processor (a
64-bit implementation), is intended to demonstrate the performance
of the algorithm”

• “Both implementations shall consist of source code written in
ANSI C”

• Some permitted external dependencies: NTL, GMP, OpenSSL,
XKCP

• API following SUPERCOP API:
• signing produces signed message instead of signature
• randomness sampled internally
• no batching of crypto operations

8



NIST PQC software requirements

• Reference implementation “to promote understanding of how the
submitted algorithm may be implemented”

• Optimized implementation “targeting the Intel x64 processor (a
64-bit implementation), is intended to demonstrate the performance
of the algorithm”

• “Both implementations shall consist of source code written in
ANSI C”

• Some permitted external dependencies: NTL, GMP, OpenSSL,
XKCP

• API following SUPERCOP API:
• signing produces signed message instead of signature
• randomness sampled internally
• no batching of crypto operations

8



NIST PQC software requirements

• Reference implementation “to promote understanding of how the
submitted algorithm may be implemented”

• Optimized implementation “targeting the Intel x64 processor (a
64-bit implementation), is intended to demonstrate the performance
of the algorithm”

• “Both implementations shall consist of source code written in
ANSI C”

• Some permitted external dependencies: NTL, GMP, OpenSSL,
XKCP

• API following SUPERCOP API:
• signing produces signed message instead of signature
• randomness sampled internally
• no batching of crypto operations

8



“NISTPQC, despite being an important and timely project, has produced
the largest regression ever in the quality of cryptographic software. This
will not be easy to fix.”

—Daniel J. Bernstein, Oct. 2018

9



Some nasty examples

• Function returning a pointer to local stack variable

• . . . but that function was never used

• Compression of keys, etc. not implemented
• FO transform without the public key

• FO transform requires public key for re-encryption
• Public key is not passed as argument to decaps

• Typical solution: store pk as part of sk
• Here: read sk out of bounds, assume that pk is in memory just

behind

• Out-of-bound reads, need zeroes in memory

• Out-of-bound writes, hope for the best

10



Some nasty examples

• Function returning a pointer to local stack variable

• . . . but that function was never used

• Compression of keys, etc. not implemented
• FO transform without the public key

• FO transform requires public key for re-encryption
• Public key is not passed as argument to decaps

• Typical solution: store pk as part of sk
• Here: read sk out of bounds, assume that pk is in memory just

behind

• Out-of-bound reads, need zeroes in memory

• Out-of-bound writes, hope for the best

10



Some nasty examples

• Function returning a pointer to local stack variable

• . . . but that function was never used

• Compression of keys, etc. not implemented

• FO transform without the public key
• FO transform requires public key for re-encryption
• Public key is not passed as argument to decaps

• Typical solution: store pk as part of sk
• Here: read sk out of bounds, assume that pk is in memory just

behind

• Out-of-bound reads, need zeroes in memory

• Out-of-bound writes, hope for the best

10



Some nasty examples

• Function returning a pointer to local stack variable

• . . . but that function was never used

• Compression of keys, etc. not implemented
• FO transform without the public key

• FO transform requires public key for re-encryption
• Public key is not passed as argument to decaps

• Typical solution: store pk as part of sk
• Here: read sk out of bounds, assume that pk is in memory just

behind

• Out-of-bound reads, need zeroes in memory

• Out-of-bound writes, hope for the best

10



Some nasty examples

• Function returning a pointer to local stack variable

• . . . but that function was never used

• Compression of keys, etc. not implemented
• FO transform without the public key

• FO transform requires public key for re-encryption
• Public key is not passed as argument to decaps
• Typical solution: store pk as part of sk
• Here: read sk out of bounds, assume that pk is in memory just

behind

• Out-of-bound reads, need zeroes in memory

• Out-of-bound writes, hope for the best

10



Some nasty examples

• Function returning a pointer to local stack variable

• . . . but that function was never used

• Compression of keys, etc. not implemented
• FO transform without the public key

• FO transform requires public key for re-encryption
• Public key is not passed as argument to decaps
• Typical solution: store pk as part of sk
• Here: read sk out of bounds, assume that pk is in memory just

behind

• Out-of-bound reads, need zeroes in memory

• Out-of-bound writes, hope for the best

10



Some more subtle examples

• Bug in noise sampling of Dilithium

• Bug in noise sampling of Falcon

• Decaps returning -1 on failure in Kyber
• Timing leaks in many implementations

• Often timing-attack resistance not claimed
• Sometimes violating constant-time claims

11



Some more subtle examples

• Bug in noise sampling of Dilithium

• Bug in noise sampling of Falcon

• Decaps returning -1 on failure in Kyber

• Timing leaks in many implementations
• Often timing-attack resistance not claimed
• Sometimes violating constant-time claims

11



Some more subtle examples

• Bug in noise sampling of Dilithium

• Bug in noise sampling of Falcon

• Decaps returning -1 on failure in Kyber
• Timing leaks in many implementations

• Often timing-attack resistance not claimed
• Sometimes violating constant-time claims

11



Underlying reasons (?)

• Different understanding of “cryptographic software”
• production quality, ready for real-world deployment
• proof-of-concept, needs to just work

• C make it easy to get things wrong

• ANSI C (i.e., without intrinsics) not useful to illustrate performance

• Multiple teams without an “implementor”

• New schemes: no existing test vectors, yet

• Unnecessarily hard to get it right

12



Underlying reasons (?)

• Different understanding of “cryptographic software”
• production quality, ready for real-world deployment
• proof-of-concept, needs to just work

• C make it easy to get things wrong

• ANSI C (i.e., without intrinsics) not useful to illustrate performance

• Multiple teams without an “implementor”

• New schemes: no existing test vectors, yet

• Unnecessarily hard to get it right

12



Underlying reasons (?)

• Different understanding of “cryptographic software”
• production quality, ready for real-world deployment
• proof-of-concept, needs to just work

• C make it easy to get things wrong

• ANSI C (i.e., without intrinsics) not useful to illustrate performance

• Multiple teams without an “implementor”

• New schemes: no existing test vectors, yet

• Unnecessarily hard to get it right

12



Underlying reasons (?)

• Different understanding of “cryptographic software”
• production quality, ready for real-world deployment
• proof-of-concept, needs to just work

• C make it easy to get things wrong

• ANSI C (i.e., without intrinsics) not useful to illustrate performance

• Multiple teams without an “implementor”

• New schemes: no existing test vectors, yet

• Unnecessarily hard to get it right

12



Underlying reasons (?)

• Different understanding of “cryptographic software”
• production quality, ready for real-world deployment
• proof-of-concept, needs to just work

• C make it easy to get things wrong

• ANSI C (i.e., without intrinsics) not useful to illustrate performance

• Multiple teams without an “implementor”

• New schemes: no existing test vectors, yet

• Unnecessarily hard to get it right

12



Some ideas how to do better

Observation: The more time you put into designing an exam, the less
time you’ll need grading it.

Invest more time:
• Provide some example code (simple, possibly pre-quantum

scheme)

• Provide a (black-box) test harness

• Interactive system with feedback from remote test harness

• Provide access to benchmarking platforms (for optimized code)

13



Some ideas how to do better

Observation: The more time you put into designing an exam, the less
time you’ll need grading it.

Invest more time:
• Provide some example code (simple, possibly pre-quantum

scheme)

• Provide a (black-box) test harness

• Interactive system with feedback from remote test harness

• Provide access to benchmarking platforms (for optimized code)

13



Some ideas how to do better

Observation: The more time you put into designing an exam, the less
time you’ll need grading it.

Invest more time:
• Provide some example code (simple, possibly pre-quantum

scheme)

• Provide a (black-box) test harness

• Interactive system with feedback from remote test harness

• Provide access to benchmarking platforms (for optimized code)

13



PQClean

• Joint work with
Matthias Kannwischer, Joost Rijneveld, John Schanck, Douglas
Stebila, Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations:
https://github.com/PQClean/PQClean

• Goal: collect “clean C” code of all round-2 candidates

• Updated goal: focus on round-3 candidates

• Make it easy to use in other projects

• Make it easy to use as starting point for optimization
• Longer-term, if there is interest:

• implementations with architecture-specific optimizations (WIP)
• implementations in other languages?

14

https://github.com/PQClean/PQClean


PQClean

• Joint work with
Matthias Kannwischer, Joost Rijneveld, John Schanck, Douglas
Stebila, Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations:
https://github.com/PQClean/PQClean

• Goal: collect “clean C” code of all round-2 candidates

• Updated goal: focus on round-3 candidates

• Make it easy to use in other projects

• Make it easy to use as starting point for optimization

• Longer-term, if there is interest:
• implementations with architecture-specific optimizations (WIP)
• implementations in other languages?

14

https://github.com/PQClean/PQClean


PQClean

• Joint work with
Matthias Kannwischer, Joost Rijneveld, John Schanck, Douglas
Stebila, Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations:
https://github.com/PQClean/PQClean

• Goal: collect “clean C” code of all round-2 candidates

• Updated goal: focus on round-3 candidates

• Make it easy to use in other projects

• Make it easy to use as starting point for optimization
• Longer-term, if there is interest:

• implementations with architecture-specific optimizations (WIP)
• implementations in other languages?

14

https://github.com/PQClean/PQClean


The definition of “clean”

• Code is valid C99

• Passes functional tests

• API functions do not write outside provided buffers

• API functions do not need pointers to be aligned

• Compiles with -Wall -Wextra -Wpedantic -Werror with gcc and
clang

• Compiles with /W4 /WX with MS compiler

• Consistent test vectors across runs

• Consistent test vectors on big-endian and little-endian machines

• Consistent test vectors on 32-bit and 64-bit machines

15



The definition of “clean”

• No errors/warnings reported by valgrind

• No errors/warnings reported by address sanitizer

• No errors/warnings reported by undefined-behavior sanitizer
• Only dependencies:

• fips202.c
• sha2.c
• aes.c
• randombytes.c

15



The definition of “clean”

• API functions return 0 on success, negative on failure

• No dynamic memory allocations

• Builds under Linux, MacOS, and Windows without warnings

• All exported symbols are namespaced with
PQCLEAN_SCHEMENAME_

• Each implementation comes with license and meta information in
META.yml

15



The definition of “clean”

• API functions return 0 on success, negative on failure

• No dynamic memory allocations

• Builds under Linux, MacOS, and Windows without warnings

• All exported symbols are namespaced with
PQCLEAN_SCHEMENAME_

• Each implementation comes with license and meta information in
META.yml

15



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set
of each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned
integers)

• Argument names consistent between .h and .c files

16



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set
of each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned
integers)

• Argument names consistent between .h and .c files

16



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set
of each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned
integers)

• Argument names consistent between .h and .c files

16



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set
of each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned
integers)

• Argument names consistent between .h and .c files

16



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set
of each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned
integers)

• Argument names consistent between .h and .c files

16



The definition of “clean” – the controversial bits

• No variable-length arrays (required to build under Windows)

• Separate subdirectories (without symlinks) for each parameter set
of each scheme

• #ifdefs only for header encapsulation

• No stringification macros

• Dealing with controversial warnings (unary minus on unsigned
integers)

• Argument names consistent between .h and .c files

16



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts
• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)
• Alternative: ct-verif (static)

• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

17



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts

• Not yet testing for “constant-time” behavior
• Could use valgrind with uninitialized secret data (dynamic)
• Alternative: ct-verif (static)

• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

17



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts
• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)
• Alternative: ct-verif (static)

• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

17



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts
• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)
• Alternative: ct-verif (static)
• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

17



Limitations and lessons learned

• MS compiler does not support C99 → no variable-length arrays

• Public CI services impose serious limitations through timeouts
• Not yet testing for “constant-time” behavior

• Could use valgrind with uninitialized secret data (dynamic)
• Alternative: ct-verif (static)
• Tricky to even find the right definition(s)

• Valgrind does not work with environments running on qemu

17



Benchmarking software in NISTPQC

• Main benchmark provider (?): eBACS/SUPERCOP

• Huge crypto benchmarking project by Bernstein and Lange

• See https://bench.cr.yp.to

• Benchmarks on Cortex-M4: pqm4

• Joint work with Kannwischer, Petri, Rijneveld, and Stoffelen

• See https://github.com/mupq/pqm4

18

https://bench.cr.yp.to
https://github.com/mupq/pqm4


Benchmarking software in NISTPQC

• Main benchmark provider (?): eBACS/SUPERCOP

• Huge crypto benchmarking project by Bernstein and Lange

• See https://bench.cr.yp.to

• Benchmarks on Cortex-M4: pqm4

• Joint work with Kannwischer, Petri, Rijneveld, and Stoffelen

• See https://github.com/mupq/pqm4

18

https://bench.cr.yp.to
https://github.com/mupq/pqm4


Benchmarking software in NISTPQC

• Main benchmark provider (?): eBACS/SUPERCOP

• Huge crypto benchmarking project by Bernstein and Lange

• See https://bench.cr.yp.to

• Benchmarks on Cortex-M4: pqm4

• Joint work with Kannwischer, Petri, Rijneveld, and Stoffelen

• See https://github.com/mupq/pqm4

18

https://bench.cr.yp.to
https://github.com/mupq/pqm4


Benchmarking software in NISTPQC

Problem with this approach
• Benchmarks are not independent

• Massive overlap between sets of submitters and “benchmarkers”

• Unfair advantage for those submitters?
• Possibly more fair approach:

• Fix a few target microarchitectures
• Publish benchmarking software long ahead of time
• If needed, give submitters access to platforms for optimizations

18



Beyond C

• How about Sage/Python for reference implementation?
• Easier to write, easier to read
• Less temptation to use in benchmarking
• Downside: Less useful as starting point for optimization

• How about using Rust?
• Harder to write
• Easier to write safely
• Easier to write correctly

• How about using hacspec?
• Subset of Rust; see https://hacspec.github.io/
• “A specification language for crypto primitives and more”
• Interfaces to verification frameworks
• Work towards goal of high-assurance crypto

19

https://hacspec.github.io/


Beyond C

• How about Sage/Python for reference implementation?
• Easier to write, easier to read
• Less temptation to use in benchmarking
• Downside: Less useful as starting point for optimization

• How about using Rust?
• Harder to write
• Easier to write safely
• Easier to write correctly

• How about using hacspec?
• Subset of Rust; see https://hacspec.github.io/
• “A specification language for crypto primitives and more”
• Interfaces to verification frameworks
• Work towards goal of high-assurance crypto

19

https://hacspec.github.io/


Beyond C

• How about Sage/Python for reference implementation?
• Easier to write, easier to read
• Less temptation to use in benchmarking
• Downside: Less useful as starting point for optimization

• How about using Rust?
• Harder to write
• Easier to write safely
• Easier to write correctly

• How about using hacspec?
• Subset of Rust; see https://hacspec.github.io/
• “A specification language for crypto primitives and more”
• Interfaces to verification frameworks
• Work towards goal of high-assurance crypto

19

https://hacspec.github.io/


Part II
Random thoughts



The pqc-forum mailing list

• A lot of very valuable, constructive, open, scientific discussion

• . . . but also a lot of
• big egos
• personal attacks
• “sniping”

• Being loud does not necessarily correlate with being right

(but
also not with being wrong)

• Essentially all comments are subjective/biased:
• Submitters have something to gain/lose
• Companies have started implementing/investing

• Selection bias (optimize own scheme, attack low-hanging fruits)
• Very incomplete picture (e.g., for SCA)

21



The pqc-forum mailing list

• A lot of very valuable, constructive, open, scientific discussion
• . . . but also a lot of

• big egos
• personal attacks
• “sniping”

• Being loud does not necessarily correlate with being right

(but
also not with being wrong)

• Essentially all comments are subjective/biased:
• Submitters have something to gain/lose
• Companies have started implementing/investing

• Selection bias (optimize own scheme, attack low-hanging fruits)
• Very incomplete picture (e.g., for SCA)

21



The pqc-forum mailing list

• A lot of very valuable, constructive, open, scientific discussion
• . . . but also a lot of

• big egos
• personal attacks
• “sniping”

• Being loud does not necessarily correlate with being right

(but
also not with being wrong)

• Essentially all comments are subjective/biased:
• Submitters have something to gain/lose
• Companies have started implementing/investing

• Selection bias (optimize own scheme, attack low-hanging fruits)
• Very incomplete picture (e.g., for SCA)

21



The pqc-forum mailing list

• A lot of very valuable, constructive, open, scientific discussion
• . . . but also a lot of

• big egos
• personal attacks
• “sniping”

• Being loud does not necessarily correlate with being right (but
also not with being wrong)

• Essentially all comments are subjective/biased:
• Submitters have something to gain/lose
• Companies have started implementing/investing

• Selection bias (optimize own scheme, attack low-hanging fruits)
• Very incomplete picture (e.g., for SCA)

21



The pqc-forum mailing list

• A lot of very valuable, constructive, open, scientific discussion
• . . . but also a lot of

• big egos
• personal attacks
• “sniping”

• Being loud does not necessarily correlate with being right (but
also not with being wrong)

• Essentially all comments are subjective/biased:
• Submitters have something to gain/lose
• Companies have started implementing/investing

• Selection bias (optimize own scheme, attack low-hanging fruits)
• Very incomplete picture (e.g., for SCA)

21



The pqc-forum mailing list

• A lot of very valuable, constructive, open, scientific discussion
• . . . but also a lot of

• big egos
• personal attacks
• “sniping”

• Being loud does not necessarily correlate with being right (but
also not with being wrong)

• Essentially all comments are subjective/biased:
• Submitters have something to gain/lose
• Companies have started implementing/investing
• Selection bias (optimize own scheme, attack low-hanging fruits)
• Very incomplete picture (e.g., for SCA)

21



Security levels and metric

NIST approach: relate to AES/SHA2/SHA3 security

“computational resources may be measured using a variety of different
metrics (e.g., number of classical elementary operations, quantum
circuit size, etc.). In order for a cryptosystem to satisfy one of the above
security requirements, any attack must require computational resources
comparable to or greater than the stated threshold, with respect to all
metrics that NIST deems to be potentially relevant to practical security.

NIST intends to consider a variety of possible metrics, reflecting different
predictions about the future development of quantum and classical
computing technology. NIST will also consider input from the
cryptographic community regarding this question.”

22



Security levels and metric

Fix the attack-cost metric
• Hard to choose parameters for “unknown target”

• Proposals’ security claims use different metrics

• Hard to separate metrick discussion from scheme discussion

• What is the cost of (quantum) access to (quantum) memory?

• How does the depth of a quantum circuit influence the cost?

• Also consider multi-target security?

Ignore classical attacks
• Concrete security of PQ schemes still not as stable as ECC

• Near-future deployment: use hybrid

• Long term: classical security won’t matter

22



Security levels and metric

Fix the attack-cost metric
• Hard to choose parameters for “unknown target”

• Proposals’ security claims use different metrics

• Hard to separate metrick discussion from scheme discussion

• What is the cost of (quantum) access to (quantum) memory?

• How does the depth of a quantum circuit influence the cost?

• Also consider multi-target security?

Ignore classical attacks
• Concrete security of PQ schemes still not as stable as ECC

• Near-future deployment: use hybrid

• Long term: classical security won’t matter

22



Security levels and metric

Fix the attack-cost metric
• Hard to choose parameters for “unknown target”

• Proposals’ security claims use different metrics

• Hard to separate metrick discussion from scheme discussion

• What is the cost of (quantum) access to (quantum) memory?

• How does the depth of a quantum circuit influence the cost?

• Also consider multi-target security?

Ignore classical attacks
• Concrete security of PQ schemes still not as stable as ECC

• Near-future deployment: use hybrid

• Long term: classical security won’t matter

22



Security levels and metric

Fix the attack-cost metric
• Hard to choose parameters for “unknown target”

• Proposals’ security claims use different metrics

• Hard to separate metrick discussion from scheme discussion

• What is the cost of (quantum) access to (quantum) memory?

• How does the depth of a quantum circuit influence the cost?

• Also consider multi-target security?

Ignore classical attacks
• Concrete security of PQ schemes still not as stable as ECC

• Near-future deployment: use hybrid

• Long term: classical security won’t matter

22



Batch signing

• Most signatures are computed offline

• (prominent counter-example: TLS handshake signatures)

• Latency does not matter for offline signatures

• Throughput may matter a lot (think of busy CAs)
• Consider batch signing API:

• Trivial to sign root of Merkle tree on top of OTS leafs
• Can optimize “root-signing” scheme for size
• Much (?) better performance in many relevant scenarios

• Curious to see more elaborate throughput-optimized signatures

23



Batch signing

• Most signatures are computed offline

• (prominent counter-example: TLS handshake signatures)

• Latency does not matter for offline signatures

• Throughput may matter a lot (think of busy CAs)

• Consider batch signing API:
• Trivial to sign root of Merkle tree on top of OTS leafs
• Can optimize “root-signing” scheme for size
• Much (?) better performance in many relevant scenarios

• Curious to see more elaborate throughput-optimized signatures

23



Batch signing

• Most signatures are computed offline

• (prominent counter-example: TLS handshake signatures)

• Latency does not matter for offline signatures

• Throughput may matter a lot (think of busy CAs)
• Consider batch signing API:

• Trivial to sign root of Merkle tree on top of OTS leafs
• Can optimize “root-signing” scheme for size
• Much (?) better performance in many relevant scenarios

• Curious to see more elaborate throughput-optimized signatures

23



Batch signing

• Most signatures are computed offline

• (prominent counter-example: TLS handshake signatures)

• Latency does not matter for offline signatures

• Throughput may matter a lot (think of busy CAs)
• Consider batch signing API:

• Trivial to sign root of Merkle tree on top of OTS leafs
• Can optimize “root-signing” scheme for size
• Much (?) better performance in many relevant scenarios

• Curious to see more elaborate throughput-optimized signatures

23



NIKEs

“But round 4 will still be limited to KEMs and Signatures, which is a great
start but clearly limiting. The most obvious thing missing is maybe NIKE.”

—John Mattsson, Oct. 2021

So far limited set of candidates

• Castryck, Lange, Martindale, Panny, and Renes (Asiacrypt 2018):
“CSIDH: An Efficient Post-Quantum Commutative Group Action”

• Azarderakhsh, Jao, and Leonardi (SAC 2017): “Post-Quantum
Static-Static Key Agreement Using Multiple Protocol Instances”

• Some work towards lattice-based NIKE; see
• “Folklore” (Lyubashevsky): https://tinyurl.com/r5eb8su8
• de Kock (Master’s thesis, TU/e, 2018): “A non-interactive key
exchange based on ring-learning with errors”

• Guo, Kamath, Rosen, Sotiraki (PKC 2020): “Limits on the Efficiency of
(Ring) LWE Based Non-interactive Key Exchange”

24

https://tinyurl.com/r5eb8su8


NIKEs

“But round 4 will still be limited to KEMs and Signatures, which is a great
start but clearly limiting. The most obvious thing missing is maybe NIKE.”

—John Mattsson, Oct. 2021

So far limited set of candidates
• Castryck, Lange, Martindale, Panny, and Renes (Asiacrypt 2018):
“CSIDH: An Efficient Post-Quantum Commutative Group Action”

• Azarderakhsh, Jao, and Leonardi (SAC 2017): “Post-Quantum
Static-Static Key Agreement Using Multiple Protocol Instances”

• Some work towards lattice-based NIKE; see
• “Folklore” (Lyubashevsky): https://tinyurl.com/r5eb8su8
• de Kock (Master’s thesis, TU/e, 2018): “A non-interactive key
exchange based on ring-learning with errors”

• Guo, Kamath, Rosen, Sotiraki (PKC 2020): “Limits on the Efficiency of
(Ring) LWE Based Non-interactive Key Exchange”

24

https://tinyurl.com/r5eb8su8


NIKEs

“But round 4 will still be limited to KEMs and Signatures, which is a great
start but clearly limiting. The most obvious thing missing is maybe NIKE.”

—John Mattsson, Oct. 2021

So far limited set of candidates
• Castryck, Lange, Martindale, Panny, and Renes (Asiacrypt 2018):
“CSIDH: An Efficient Post-Quantum Commutative Group Action”

• Azarderakhsh, Jao, and Leonardi (SAC 2017): “Post-Quantum
Static-Static Key Agreement Using Multiple Protocol Instances”

• Some work towards lattice-based NIKE; see
• “Folklore” (Lyubashevsky): https://tinyurl.com/r5eb8su8
• de Kock (Master’s thesis, TU/e, 2018): “A non-interactive key
exchange based on ring-learning with errors”

• Guo, Kamath, Rosen, Sotiraki (PKC 2020): “Limits on the Efficiency of
(Ring) LWE Based Non-interactive Key Exchange”

24

https://tinyurl.com/r5eb8su8


NIKEs

“But round 4 will still be limited to KEMs and Signatures, which is a great
start but clearly limiting. The most obvious thing missing is maybe NIKE.”

—John Mattsson, Oct. 2021

So far limited set of candidates
• Castryck, Lange, Martindale, Panny, and Renes (Asiacrypt 2018):
“CSIDH: An Efficient Post-Quantum Commutative Group Action”

• Azarderakhsh, Jao, and Leonardi (SAC 2017): “Post-Quantum
Static-Static Key Agreement Using Multiple Protocol Instances”

• Some work towards lattice-based NIKE; see
• “Folklore” (Lyubashevsky): https://tinyurl.com/r5eb8su8
• de Kock (Master’s thesis, TU/e, 2018): “A non-interactive key
exchange based on ring-learning with errors”

• Guo, Kamath, Rosen, Sotiraki (PKC 2020): “Limits on the Efficiency of
(Ring) LWE Based Non-interactive Key Exchange”

24

https://tinyurl.com/r5eb8su8


Proofs

• Too many security proofs (of NISTPQC candidates) are wrong

• Often theorems also wrong

• Sometimes security affected
• Some examples:

• Round-1 Kyber public-key compression
• SPHINCS+ assumptions on hash functions
• Lack of domain separation in various schemes (Bellare, Davis,

Günther, Eurocrypt 2020)
• Kyber extra hash creates issues with QROM FO proof

How confident can we be in proofs when schemes are standardized?

25



Proofs

• Too many security proofs (of NISTPQC candidates) are wrong

• Often theorems also wrong

• Sometimes security affected

• Some examples:
• Round-1 Kyber public-key compression
• SPHINCS+ assumptions on hash functions
• Lack of domain separation in various schemes (Bellare, Davis,

Günther, Eurocrypt 2020)
• Kyber extra hash creates issues with QROM FO proof

How confident can we be in proofs when schemes are standardized?

25



Proofs

• Too many security proofs (of NISTPQC candidates) are wrong

• Often theorems also wrong

• Sometimes security affected
• Some examples:

• Round-1 Kyber public-key compression
• SPHINCS+ assumptions on hash functions
• Lack of domain separation in various schemes (Bellare, Davis,

Günther, Eurocrypt 2020)
• Kyber extra hash creates issues with QROM FO proof

How confident can we be in proofs when schemes are standardized?

25



Proofs

• Too many security proofs (of NISTPQC candidates) are wrong

• Often theorems also wrong

• Sometimes security affected
• Some examples:

• Round-1 Kyber public-key compression
• SPHINCS+ assumptions on hash functions
• Lack of domain separation in various schemes (Bellare, Davis,

Günther, Eurocrypt 2020)
• Kyber extra hash creates issues with QROM FO proof

How confident can we be in proofs when schemes are standardized?

25



High-assurance crypto

Computer-verified proofs
• of security

• of implementation correctness

• of implementation security

Work in progress
• High-speed implementation of Kyber in jasmin

(https://github.com/jasmin-lang/jasmin)

• Proof that implementation matches spec in EasyCrypt
(https://github.com/EasyCrypt/easycrypt)

• Proof that spec achieves CCA security in EasyCrypt

• See talk by Matthias Meijers at 3rd NIST PQC conference:
https://csrc.nist.gov/Presentations/2021/
formal-verifcation-of-post-quantum-cryptography

26

https://github.com/jasmin-lang/jasmin
https://github.com/EasyCrypt/easycrypt
https://csrc.nist.gov/Presentations/2021/formal-verifcation-of-post-quantum-cryptography
https://csrc.nist.gov/Presentations/2021/formal-verifcation-of-post-quantum-cryptography


High-assurance crypto

Computer-verified proofs
• of security

• of implementation correctness

• of implementation security

Work in progress
• High-speed implementation of Kyber in jasmin

(https://github.com/jasmin-lang/jasmin)

• Proof that implementation matches spec in EasyCrypt
(https://github.com/EasyCrypt/easycrypt)

• Proof that spec achieves CCA security in EasyCrypt

• See talk by Matthias Meijers at 3rd NIST PQC conference:
https://csrc.nist.gov/Presentations/2021/
formal-verifcation-of-post-quantum-cryptography

26

https://github.com/jasmin-lang/jasmin
https://github.com/EasyCrypt/easycrypt
https://csrc.nist.gov/Presentations/2021/formal-verifcation-of-post-quantum-cryptography
https://csrc.nist.gov/Presentations/2021/formal-verifcation-of-post-quantum-cryptography


Thank you!

https://cryptojedi.org

peter@cryptojedi.org

@cryptojedi

27

https://cryptojedi.org
mailto:peter@cryptojedi.org
https://twitter.com/cryptojedi

