
The security impact of a new cryptographic library

Daniel J. Bernstein, Tanja Lange, and Peter Schwabe

October 9, 2012

Latincrypt 2012, Santiago, Chile



What this paper is not about

I Not a paper proposing a new cryptographic primitive or protocol
I Not a cryptanalysis paper
I Not a number-theory paper
I Not a side-channel attack paper
I Not an implementation paper presenting new speed results

The security impact of a new cryptographic library 2



What this paper is about

I What happens with the results of crypto papers:
I Various well understood algorithms, e.g. AES-128, RSA-2048 etc.
I Various implementations of these algorithms, bundled in libraries

(e.g., OpenSSL)
I Applications simply use the libraries and the world is safe

I . . . or is it?
I We still see complete failures of confidentiality and integrity
I This paper: Analyze underlying problems and fix them

The security impact of a new cryptographic library 3



What this paper is about

I What happens with the results of crypto papers:
I Various well understood algorithms, e.g. AES-128, RSA-2048 etc.
I Various implementations of these algorithms, bundled in libraries

(e.g., OpenSSL)
I Applications simply use the libraries and the world is safe
I . . . or is it?

I We still see complete failures of confidentiality and integrity
I This paper: Analyze underlying problems and fix them

The security impact of a new cryptographic library 3



What this paper is about

I What happens with the results of crypto papers:
I Various well understood algorithms, e.g. AES-128, RSA-2048 etc.
I Various implementations of these algorithms, bundled in libraries

(e.g., OpenSSL)
I Applications simply use the libraries and the world is safe
I . . . or is it?

I We still see complete failures of confidentiality and integrity

I This paper: Analyze underlying problems and fix them

The security impact of a new cryptographic library 3



What this paper is about

I What happens with the results of crypto papers:
I Various well understood algorithms, e.g. AES-128, RSA-2048 etc.
I Various implementations of these algorithms, bundled in libraries

(e.g., OpenSSL)
I Applications simply use the libraries and the world is safe
I . . . or is it?

I We still see complete failures of confidentiality and integrity
I This paper: Analyze underlying problems and fix them

The security impact of a new cryptographic library 3



NaCl: A new cryptographic library

I Networking and Cryptography library (NaCl, pronounced “salt”)
I Networking part is still in prototype form, this talk is about the

crypto part
I Acknowledgment: Contributions by

I Matthew Dempsky (Mochi Media)
I Niels Duif (TU Eindhoven)
I Emilia Käsper (KU Leuven, now Google)
I Adam Langley (Google)
I Bo-Yin Yang (Academia Sinica)

I User’s perspective: Bundle of functionalities rather than bundle of
algorithms

I Focus on protecting Internet communication

The security impact of a new cryptographic library 4



NaCl: A new cryptographic library

I Networking and Cryptography library (NaCl, pronounced “salt”)
I Networking part is still in prototype form, this talk is about the

crypto part
I Acknowledgment: Contributions by

I Matthew Dempsky (Mochi Media)
I Niels Duif (TU Eindhoven)
I Emilia Käsper (KU Leuven, now Google)
I Adam Langley (Google)
I Bo-Yin Yang (Academia Sinica)

I User’s perspective: Bundle of functionalities rather than bundle of
algorithms

I Focus on protecting Internet communication

The security impact of a new cryptographic library 4



Protecting Internet communication

I Alice wants to send a message m to Bob
I Uses Bob’s public key and her own private key to compute

authenticated ciphertext c, sends c to Bob
I Bob uses his private key and Alice’s public key to verify and recover

m

The security impact of a new cryptographic library 5



Alice using a typical crypto library

I First choose algorithms and parameters, e.g. AES-128, RSA-2048,
SHA-256

I Generate random AES key
I Use AES to encrypt packet
I Hash encrypted packet
I Read RSA private key from wire format
I Use key to sign hash
I Read Bob’s RSA public key from wire format
I Use key to encrypt AES key and signature
I . . .

I Plus more code to allocate storage, handle errors etc.

The security impact of a new cryptographic library 6



Alice using a typical crypto library

I First choose algorithms and parameters, e.g. AES-128, RSA-2048,
SHA-256

I Generate random AES key
I Use AES to encrypt packet
I Hash encrypted packet
I Read RSA private key from wire format
I Use key to sign hash
I Read Bob’s RSA public key from wire format
I Use key to encrypt AES key and signature
I . . .

I Plus more code to allocate storage, handle errors etc.

The security impact of a new cryptographic library 6



Alice using NaCl

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)

The security impact of a new cryptographic library 7



Alice using NaCl

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m

I All objects are C++ std::string variables represented in wire
format, ready for transmission

I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)

The security impact of a new cryptographic library 7



Alice using NaCl

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission

I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)

The security impact of a new cryptographic library 7



Alice using NaCl

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors

I Bob verifies and decrypts:
m = crypto_box_open(c,n,pk,sk)

I Initial keypair generation for Alice and Bob:
pk = crypto_box_keypair(&sk)

The security impact of a new cryptographic library 7



Alice using NaCl

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)

I Initial keypair generation for Alice and Bob:
pk = crypto_box_keypair(&sk)

The security impact of a new cryptographic library 7



Alice using NaCl

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)

The security impact of a new cryptographic library 7



Signatures in NaCl

I crypto_box does not use signatures but a public-key authenticator
I Sometimes non-repudiability is required or one wants broadcast

authenticated communication

I NaCl also contains signatures with an easy-to-use interface:
pk = crypto_sign_keypair(&sk)

generates a 64-byte private key and a 32-byte public key
sm = crypto_sign(m, sk)

signs m under sk; sm is 64 bytes longer than m

m = crypto_sign_open(sm, pk)

verifies the signature and recovers m

The security impact of a new cryptographic library 8



Signatures in NaCl

I crypto_box does not use signatures but a public-key authenticator
I Sometimes non-repudiability is required or one wants broadcast

authenticated communication
I NaCl also contains signatures with an easy-to-use interface:

pk = crypto_sign_keypair(&sk)

generates a 64-byte private key and a 32-byte public key
sm = crypto_sign(m, sk)

signs m under sk; sm is 64 bytes longer than m

m = crypto_sign_open(sm, pk)

verifies the signature and recovers m

The security impact of a new cryptographic library 8



NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring
I NaCl systematically avoids all loads from addresses that

depend on secret data
I The tool ctgrind by Langley verifies this automatically

The security impact of a new cryptographic library 9



NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring
I NaCl systematically avoids all loads from addresses that

depend on secret data
I The tool ctgrind by Langley verifies this automatically

The security impact of a new cryptographic library 9



NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring

I NaCl systematically avoids all loads from addresses that
depend on secret data

I The tool ctgrind by Langley verifies this automatically

The security impact of a new cryptographic library 9



NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring
I NaCl systematically avoids all loads from addresses that

depend on secret data
I The tool ctgrind by Langley verifies this automatically

The security impact of a new cryptographic library 9



NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs
I NaCl systematically avoids all branch conditions that depend

on secret data

The security impact of a new cryptographic library 10



NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs
I NaCl systematically avoids all branch conditions that depend

on secret data

The security impact of a new cryptographic library 10



NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs

I NaCl systematically avoids all branch conditions that depend
on secret data

The security impact of a new cryptographic library 10



NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs
I NaCl systematically avoids all branch conditions that depend

on secret data

The security impact of a new cryptographic library 10



NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time

The security impact of a new cryptographic library 11



NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time

The security impact of a new cryptographic library 11



NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time

The security impact of a new cryptographic library 11



NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time

The security impact of a new cryptographic library 11



NaCl Security: Centralizing randomness

I Bello in 2008: Debian/Ubuntu OpenSSL keys have only 15 bits of
entropy

I Debian developer had removed on line of randomness-generating
code

I NaCl uses /dev/urandom, the OS random-number generator
I Reviewing this code is much more tractable than reviewing separate

RNG in every library

The security impact of a new cryptographic library 12



NaCl Security: Centralizing randomness

I Bello in 2008: Debian/Ubuntu OpenSSL keys have only 15 bits of
entropy

I Debian developer had removed on line of randomness-generating
code

I NaCl uses /dev/urandom, the OS random-number generator
I Reviewing this code is much more tractable than reviewing separate

RNG in every library

The security impact of a new cryptographic library 12



NaCl Security: No unnecessary randomness

I “Bushing”, Cantero, Boessenkool, Peter in 2010: Sony ignored
ECDSA requirement of new randomness for each signature

I Signatures leaked PlayStation 3 code-signing key

I NaCl uses deterministic crypto_box and crypto_sign
I Also simplifies testing: NaCl uses automated test battery by eBACS

(ECRYPT Benchmarking of Cryptographic Systems)

The security impact of a new cryptographic library 13



NaCl Security: No unnecessary randomness

I “Bushing”, Cantero, Boessenkool, Peter in 2010: Sony ignored
ECDSA requirement of new randomness for each signature

I Signatures leaked PlayStation 3 code-signing key
I NaCl uses deterministic crypto_box and crypto_sign
I Also simplifies testing: NaCl uses automated test battery by eBACS

(ECRYPT Benchmarking of Cryptographic Systems)

The security impact of a new cryptographic library 13



NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack

I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped
I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010
I NaCl pays attention to cryptanalysis and makes very

conservative choices
I Primitives in NaCl all offer 128 bits of security

The security impact of a new cryptographic library 14



NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack
I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped

I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010
I NaCl pays attention to cryptanalysis and makes very

conservative choices
I Primitives in NaCl all offer 128 bits of security

The security impact of a new cryptographic library 14



NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack
I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped
I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010

I NaCl pays attention to cryptanalysis and makes very
conservative choices

I Primitives in NaCl all offer 128 bits of security

The security impact of a new cryptographic library 14



NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack
I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped
I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010
I NaCl pays attention to cryptanalysis and makes very

conservative choices
I Primitives in NaCl all offer 128 bits of security

The security impact of a new cryptographic library 14



NaCl Speed

I Typical reason for low-security crypto or no crypto: speed
I For example, DNSSEC on using RSA-1024:

“tradeoff between the risk of key compromise and
performance. . . ”

I NaCl offers exceptionally high speeds, keeps up with the
network

I NaCl operations per second on AMD Phenom II X6 1100T for any
reasonable packet size:

I > 80000 crypto_box
I > 80000 crypto_box_open
I > 70000 crypto_sign_open
I > 180000 crypto_sign

I Handles arbitrary packet floods up to ≈ 30 Mbps per CPU,
depending on protocol

The security impact of a new cryptographic library 15



NaCl Speed

I Typical reason for low-security crypto or no crypto: speed
I For example, DNSSEC on using RSA-1024:

“tradeoff between the risk of key compromise and
performance. . . ”

I NaCl offers exceptionally high speeds, keeps up with the
network

I NaCl operations per second on AMD Phenom II X6 1100T for any
reasonable packet size:

I > 80000 crypto_box
I > 80000 crypto_box_open
I > 70000 crypto_sign_open
I > 180000 crypto_sign

I Handles arbitrary packet floods up to ≈ 30 Mbps per CPU,
depending on protocol

The security impact of a new cryptographic library 15



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”

The security impact of a new cryptographic library 16



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”

The security impact of a new cryptographic library 16



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys

I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”

The security impact of a new cryptographic library 16



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed

I Also fast on mobile devices: See our CHES 2012 paper “NEON
crypto”

The security impact of a new cryptographic library 16



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”

The security impact of a new cryptographic library 16



How NaCl achieves this speed

I Achieve this speed without compromising security:
I ECC instead of RSA: Much stronger security record
I Curve25519 instead of NIST curves: twist security et al.
I EdDSA instead of ECDSA: collision-resilience et al.
I Salsa20 instead of AES: much larger security margin
I Poly1305 instead of HMAC: information-theoretic security

I Carefully optimized implementations
I Build process includes benchmarking and choosing the fastest

implementation

The security impact of a new cryptographic library 17



NaCl online

http://nacl.cr.yp.to
I No license: NaCl is in the public domain
I No patents that we are aware of

The security impact of a new cryptographic library 18



NaCl online

http://nacl.cr.yp.to
I No license: NaCl is in the public domain
I No patents that we are aware of

The security impact of a new cryptographic library 19



NaCl Users

I DNSCurve and DNSCrypt: high-security authenticated encryption
for DNS queries, deployed by OpenDNS

I QuickTun, VPN from Ivo Smits
I Ethos, operating system from Jon Solworth
I Prototype implementation of CurveCP: High security cryptographic

version of TCP (future networking part of NaCl)

The security impact of a new cryptographic library 20


