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About me

• Assistant professor at Radboud
University

• Working on high-speed
high-security crypto software

• Last time in Nancy: 2012 (?)

• Typically speaking about
crypto-software optimization

• Lot of assembly on slides. . .

• This talk:
• higher level
• no assembly
• most vague performance

numbers I’ve ever used
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Essential crypto today

Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)

• Authenticator (e.g., HMAC, GMAC, Poly1305)

• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture

• All widely deployed asymmetric crypto relies on
• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms
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. . . Shor, 1996
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Will there be quantum computers?

“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions

• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)
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The NIST competition

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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The NIST competition

“Key exchange”

• What is meant is key encapsulation mechanisms (KEMs)
• (pk, sk)← KeyGen()
• (c, k)← Encaps(pk)
• k ← Decaps(c, sk)

Status of the NIST competition

• In total 69 submissions accepted as “complete and proper”

• Several already broken

• 3 withdrawn
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NIST finalists as drop-in replacements?

• Can wait until NIST standardizes some algorithms in 5–7 years

• Plug these algorithms into existing protocols and systems

• My impression: that’s what many systems designers expect

• Message of this talk: this is a terrible idea!
• Would generate a generation of rather poor protocols

• mediocre performance (designed pre-quantum, instantiated
post-quantum)

• Suboptimal security properties

• Bad crypto is very hard to get rid of (think MD5)

• We probably have one shot to get this done properly
• Systems will have to transition to PQ crypto
• Let’s work on getting the best out of this transition!
• Requires interaction between cryptographers and systems designers
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The starting point: ECC

• Today: build asymmetric crypto from elliptic-curve arithmetic

• Given P on a curve, s ∈ Z, compute Q = sP

• ECDLP: hard to compute s, given P and Q

• Use for ECDH for key encapsulation and encryption

• Use for ECDSA or Schnorr signatures

• Use same curves, same parameters

• Performance:
• All operations between 50 000 and 200 000 cycles
• Keys and ciphertexts: 32 bytes
• Signatures: 64 bytes

• Let’s look at post-quantum candidates (at NIST security level 3)
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PQ-KEMs, part 1: code-based

• Idea: Take error-correcting code for up to t errors

• Keep decoding algorithm secret

• Encryption: map message to code word, add t errors

• Most prominent example: McEliece (1978), uses binary Goppa codes

• “Classic McEliece” KEM NIST submission:
• Encapsulation: < 300 000 cycles
• Decapsulation: < 500 000 cycles
• Key generation: billions of cycles
• Cipher text: 226 bytes
• Public key: ≈ 1MB

• Probably good choice for, e.g., GPG, but not for low-latency
applications

• Possible solution: use QCMDPC codes (NIST candidate “BIKE”)

• Less studied, less conservative, problems with CCA security
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PQ-KEMs, part 2: lattice-based

• Typically based on (variants of) LWE

• Given uniform A ∈ Zk×`
q and “noise distribution” χ

• Given samples As+ e, with e← χ, find s

• Only one LWE-based candidate: Frodo
• All operations around 3Mio cycles
• Public key and ciphertext: ≈ 15KB

• More than 20 lattice-based KEMS, others use structured lattices

• Typical performance:
• All operations: ≈ 100 000 cycles
• Public keys and ciphertexts: ≈ 1KB

• Structured lattices considered less conservative

• Many different design choices and tradeoffs
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PQ-KEMs, part 3: SIKE

• Started as “supersingular-isogeny Diffie-Hellman” (SIDH), Jao, De
Feo, 2011

• Given two elliptic curves E , E ′ from the same isogeny class

• Find path of small isogenies from E to E ′

• Security related to claw finding, but no reduction from claw finding

• Rather young construction, more study needed

• Active attacks in 2016 by Galbraith, Petit, Shani, and Ti

• Secure SIDH (or SIKE) is not “analogous to the Diffie-Hellman key
exchange”

• SIKE performance:
• Keygen: ≈ 30Mio cycles
• Encaps/Decaps: ≈ 50Mio cycles each
• Public key/ciphertext: < 600 bytes each
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PQ-Signatures, part 1: MQ-based

• Find solution to system of m quadratic eqns in n variables over Fq

• Additional assumption: attacker cannot exploit structure

• No reduction fromMQ

• Example: NIST candidate Gui
• Signing: 1.7 billion cycles
• Verification: ≈ 600 000 cycles
• Signature: 63 bytes
• Public key: almost 2MB

• Can also construct signatures with reduction fromMQ
• Example: MQDSS

• Signing ≈ 8.5Mio cycles
• Verification ≈ 5.8Mio cycles
• Signature: ≈ 40KB
• Public key: 72 bytes
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PQ-Signatures, part 2: lattice-based

• Based on, e.g., LWE and SIS:
• Given uniform A ∈ Zk×`

q

• Find nonzero x ∈ Z`, s.t.: Ax = 0 ∈ Zk
q and ‖x‖ < β

• As for KEMs, typically use structured lattices

• Example: Dilithium
• Signing: ≈ 1.8Mio cycles
• Verification: ≈ 400 000 cycles
• Public key: ≈ 1.5KB
• Signature: ≈ 2.7KB
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PQ-Signatures, part 3: hash-based

• Start from (hash-based) one-time signatures
• Build Merkle trees and certification trees on top

• Two hash-based signatures in NIST PQC:
• SPHINCS+: more conservative, does not need collision resistance
• Gravity-SPHINCS: performance optimized, requires collision

resistance
• Many tradeoffs possible between

• Speed (signing is generally slow)
• Security (trivially via hash sizes)
• Size (roughly 10-50KB)
• Maxium number of signatures per key

• Example: SPHINCS
• Signing: ≈ 52Mio cycles
• Verification: ≈ 1.5Mio cycles
• Signature: ≈ 40KB
• Public key is small
• Up to 250 signatures
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Stateful signatures

• Hash-based signatures are already (almost) standardized

• XMSS standard draft submitted to IETF for conflict review

• Also highly parametrizable, for example:
• Signing: ≈ 12.5Mio cycles
• Verification: ≈ 1Mio cycles
• Signature: ≈ 2.8KB
• Public key: 64 bytes
• Up to 220 signatures

• Issue with XMSS: it’s stateful

• Security demands that secret key is updated for every signature

• Major problem, for examples, with backups

• Stateful sigs are required for forward security

• XMSS gives forward security for free

• Start thinking systems with stateful signatures
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Do we need fast signatures?

• Is it a problem if generating a signature takes, say, a second?

• If this is acceptable, can optimize, for size or verification speed

• For certificates (offline signing): probably not

• For software updates: probably not (?)

• Signed e-mails: probably not (?)

• For TLS (signed DH): yes, definitely!

• But we don’t need signed DH for authenticated key exchange!

• Can build AKE using CCA-secure KEMs only

• See the OPTLS proposal (Krawczyk, Wee, 2015)

• This is what systems like Signal, Noise already do

• Probably much better performance in a post-quantum world

• Design AKE from CCA-secure KEMs only
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Do we need fast key generation?

. . . for KEMs

• Potentially interesting tradeoffs between keygen and encapsulation
time

• First intuition: ephemeral keys need fast keygen

• However: CCA-secure KEMs support key caching

• Asymptotically keygen cost becomes negligible

• Requires modifications on protocol layer

• Cannot rely on protocol randomness from ephemeral keys anymore

• Conclusion: desirable but not necessary?

. . . for Signatures

• First intuition: keygen can be slow

• Second look: not terribly slow

• Smartcard producers need to generate lots of keys

• Not a huge concern, RSA keygen is slow already today

17
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Decapsulation failures

• (Hashed) ECDH:
• no failures for honest users
• with some care: no advantage for dishonest users

• Many post-quantum KEMs:
• Tradeoff between security and failure probability
• Failures reveal information about secret keys

• No problem for purely ephemeral keys (but need fast keygen!)

• Question: what failure probability is tolerable?

• Adam Langley: “260 is fine”

• Obvious question: how about 250, 240, 230, . . . ?

• This is important to know for size/speed optimization
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Do we want CPA-secure KEMs?

• With Diffie-Hellman we get CCA security “for free”

• Post-quantum KEMs need additional effort for CCA security

• Popular example Fujisaki-Okamoto transform:
• Encapsulation generates all randomness deterministically from seed
• Encrypt seed to recipient
• Decapsulation recovers the seed, re-encrypts
• Rejects if ciphertexts don’t match

• Post-quantum CPA-secure KEMs
• are simpler, smaller, faster
• need additional primitives in protocols
• are less robust (e.g., think key caching)

• My intuition: only standardize/use CCA-secure KEMs
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We’re going to miss DH

• Diffie-Hellman is extremely versatile:

• Can use it, for example, for non-interactive key exchange (NIKE)
• Bob knows Alice’ long-term public key A

• Alice knows Bob’s long-term public key B

• They can each compute k = h(A,B, aB) = h(A,B, bA)

• Used in various protocols, e.g., WireGuard

• Extremely expensive to instantiate post-quantum

• Example: SIDH-based, Azarderakhsh, Jao, Leonardi, 2017:
• Public key and ciphertext: > 30KB each
• Computing time: > 1 minute

• Conclusion: Design protocols that don’t need NIKE
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A vision for a post-quantum-secure Internet

• Let’s assume no major cryptanalytic breakthrough

• Agree on “the right spot” in the lattice-based KEM design space

• Agree on details of hash-based signatures

• Build Internet crypto from
• CCA-secure lattice-based KEM
• Stateful and stateless hash-based signatures

• Build AKE from KEMs alone, no signatures

• This means that certificates are signed KEM public keys

• Use HSMs and smartcards for stateful, forward-secure signatures

• If impossible: fall back to slower, larger stateless signatures

• Carefully optimize hash-based signatures per application
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Conclusion

• There are now 60+ concrete post-quantum schemes now

• There is software for all of those (which sometimes even works)

• Try them out, put them into systems, see what fails

• Start rethinking protocols and systems for a post-quantum world
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Resources online

• Personal website:
https://cryptojedi.org

• NIST PQC website:
https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography

• PQC Lounge:
https://www.safecrypto.eu/pqclounge/

• NIST mailing list:
https://www.safecrypto.eu/pqclounge/
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