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e Typically speaking about
crypto-software optimization

e Lot of assembly on slides. ..
e This talk:

e higher level

e no assembly

e most vague performance
numbers |'ve ever used
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Symmetric crypto

e Block or stream cipher (e.g., AES, ChaCha20)
e Authenticator (e.g., HMAC, GMAC, Poly1305)
e Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

e Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

e Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture

e All widely deployed asymmetric crypto relies on

e the hardness of factoring, or
e the hardness of (elliptic-curve) discrete logarithms



... Shor, 1996

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shorf

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size. e.g.. the number of digits of the
integer to be factored.



Will there be quantum computers?

“In the past, people have said, maybe it's 50 years away, it's a dream,
maybe it'll happen sometime. | used to think it was 50. Now I'm
thinking like it's 15 or a little more. It's within reach. It's within our
lifetime. It's going to happen.”

—NMark Ketchen (IBM), Feb. 2012, about quantum computers
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Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions

Lattice-based crypto (PKE and Sigs)

Code-based crypto (mainly PKE)

Multivariate-based crypto (mainly Sigs)

Hash-based signatures (only Sigs)

Isogeny-based crypto (so far, mainly PKE)



The NIST competition

Count of Problem Category Column Labels |

Row Labels ﬂ Key Exchange Signature Grand Total
? 1 1
Braids 1 1 2
Chebychev 1 1
Codes 19 5 24
Finite Automata 1 1 2
Hash 4 4
Hypercomplex Numbers 1 1
Isogeny 1 1
Lattice 24 4 28
Mult. Var 6 7 13
Rand. walk 1 1
RSA 1 1 2
Grand Total 57 23 80
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Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.



The NIST competition

“Key exchange”

e What is meant is key encapsulation mechanisms (KEMs)
o (pk, sk) + KeyGen()
e (c, k) < Encaps(pk)
e k < Decaps(c, sk)
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“Key exchange”

e What is meant is key encapsulation mechanisms (KEMs)
o (pk, sk) + KeyGen()
e (c, k) < Encaps(pk)
e k < Decaps(c, sk)

Status of the NIST competition

e In total 69 submissions accepted as “complete and proper”
e Several already broken

e 3 withdrawn
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NIST finalists as drop-in replacements?

Can wait until NIST standardizes some algorithms in 5-7 years

Plug these algorithms into existing protocols and systems

My impression: that's what many systems designers expect

Message of this talk: this is a terrible idea!

Would generate a generation of rather poor protocols
e mediocre performance (designed pre-quantum, instantiated
post-quantum)
e Suboptimal security properties

Bad crypto is very hard to get rid of (think MD5)

We probably have one shot to get this done properly
e Systems will have to transition to PQ crypto
e Let's work on getting the best out of this transition!
e Requires interaction between cryptographers and systems designers
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e Today: build asymmetric crypto from elliptic-curve arithmetic
e Given P on a curve, s € Z, compute Q = sP

e ECDLP: hard to compute s, given P and @

e Use for ECDH for key encapsulation and encryption

e Use for ECDSA or Schnorr signatures

e Use same curves, same parameters

e Performance:

e All operations between 50000 and 200 000 cycles
e Keys and ciphertexts: 32 bytes
e Signatures: 64 bytes

e Let's look at post-quantum candidates (at NIST security level 3)
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PQ-KEMs, part 1: code-based

e |dea: Take error-correcting code for up to t errors
e Keep decoding algorithm secret
e Encryption: map message to code word, add t errors

e Most prominent example: McEliece (1978), uses binary Goppa codes
e “Classic McEliece” KEM NIST submission:

e Encapsulation: < 300000 cycles
e Decapsulation: < 500000 cycles
e Key generation: billions of cycles
Cipher text: 226 bytes

Public key: ~ 1 MB

e Probably good choice for, e.g., GPG, but not for low-latency
applications

e Possible solution: use QCMDPC codes (NIST candidate “BIKE")

e Less studied, less conservative, problems with CCA security



PQ-KEMs, part 2: lattice-based

e Typically based on (variants of) LWE
e Given uniform A € Z** and “noise distribution” x

e Given samples As + e, with e < x, find s
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PQ-KEMs, part 2: lattice-based

e Typically based on (variants of) LWE

e Given uniform A € Z** and “noise distribution” x
e Given samples As + e, with e < x, find s

e Only one LWE-based candidate: Frodo

e All operations around 3 Mio cycles
e Public key and ciphertext: ~ 15 KB

e More than 20 lattice-based KEMS, others use structured lattices

e Typical performance:

e All operations: ~ 100000 cycles
e Public keys and ciphertexts: ~ 1 KB

e Structured lattices considered less conservative

e Many different design choices and tradeoffs
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PQ-KEMs, part 3: SIKE

e Started as “supersingular-isogeny Diffie-Hellman™ (SIDH), Jao, De
Feo, 2011

e Given two elliptic curves E, E’ from the same isogeny class
e Find path of small isogenies from E to E’

e Security related to claw finding, but no reduction from claw finding
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PQ-KEMs, part 3: SIKE

e Started as “supersingular-isogeny Diffie-Hellman™ (SIDH), Jao, De
Feo, 2011

e Given two elliptic curves E, E’ from the same isogeny class

e Find path of small isogenies from E to E’

e Security related to claw finding, but no reduction from claw finding
e Rather young construction, more study needed

e Active attacks in 2016 by Galbraith, Petit, Shani, and Ti

e Secure SIDH (or SIKE) is not “analogous to the Diffie-Hellman key

exchange”
e SIKE performance:

e Keygen: ~ 30 Mio cycles
e Encaps/Decaps: ~ 50 Mio cycles each
e Public key/ciphertext: < 600 bytes each
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PQ-Signatures, part 1: MQ-based

e Find solution to system of m quadratic eqns in n variables over F,
e Additional assumption: attacker cannot exploit structure
e No reduction from MQ
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PQ-Signatures, part 1: MO-based

e Find solution to system of m quadratic eqns in n variables over F,

Additional assumption: attacker cannot exploit structure

No reduction from MQ
e Example: NIST candidate Gui

e Signing: 1.7 billion cycles

e Verification: ~ 600000 cycles
e Signature: 63 bytes

e Public key: almost 2 MB

e Can also construct signatures with reduction from MQ
Example: MQDSS
e Signing =~ 8.5 Mio cycles

e Verification ~ 5.8 Mio cycles
e Signature: ~ 40KB
e Public key: 72 bytes
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PQ-Signatures, part 2: lattice-based

e Based on, e.g., LWE and SIS:

e Given uniform A € Z§**
e Find nonzero x € Z*, s.t.: Ax =0 € Zk and |)x|| < 8
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PQ-Signatures, part 2: lattice-based

e Based on, e.g., LWE and SIS:
e Given uniform A € Z§**
e Find nonzero x € Z*, s.t.: Ax =0 € Zk and |)x|| < 8
e As for KEMs, typically use structured lattices
e Example: Dilithium
e Signing: ~ 1.8 Mio cycles
Verification: ~ 400000 cycles

Public key: ~ 1.5KB
Signature: &~ 2.7 KB

13



PQ-Signatures, part 3: hash-based

e Start from (hash-based) one-time signatures
e Build Merkle trees and certification trees on top
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e Start from (hash-based) one-time signatures

e Build Merkle trees and certification trees on top

e Two hash-based signatures in NIST PQC:
e SPHINCS™: more conservative, does not need collision resistance
e Gravity-SPHINCS: performance optimized, requires collision

resistance

Many tradeoffs possible between

e Speed (signing is generally slow)

Security (trivially via hash sizes)
Size (roughly 10-50KB)
e Maxium number of signatures per key

Example: SPHINCS
e Signing: = 52 Mio cycles

e Verification: ~ 1.5 Mio cycles
e Signature: ~ 40KB

e Public key is small

Up to 2%° signatures
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Stateful signatures

e Hash-based signatures are already (almost) standardized
e XMSS standard draft submitted to IETF for conflict review
e Also highly parametrizable, for example:
e Signing: ~ 12.5 Mio cycles
e Verification: ~ 1 Mio cycles
e Signature: ~ 2.8KB
Public key: 64 bytes
e Up to 2%° signatures

e Issue with XMSS: it's stateful

e Security demands that secret key is updated for every signature
e Major problem, for examples, with backups

e Stateful sigs are required for forward security

e XMSS gives forward security for free

e Start thinking systems with stateful signatures

15
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Do we need fast signatures?

e Is it a problem if generating a signature takes, say, a second?
e If this is acceptable, can optimize, for size or verification speed
e For certificates (offline signing): probably not

e For software updates: probably not (?)

e Signed e-mails: probably not (?)

e For TLS (signed DH): yes, definitely!

e But we don't need signed DH for authenticated key exchange!
e Can build AKE using CCA-secure KEMs only

e See the OPTLS proposal (Krawczyk, Wee, 2015)

e This is what systems like Signal, Noise already do

e Probably much better performance in a post-quantum world
e Design AKE from CCA-secure KEMs only

16
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e First intuition: ephemeral keys need fast keygen
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Do we need fast key generation?

... for KEMs
e Potentially interesting tradeoffs between keygen and encapsulation
time
e First intuition: ephemeral keys need fast keygen
e However: CCA-secure KEMs support key caching
e Asymptotically keygen cost becomes negligible
e Requires modifications on protocol layer
e Cannot rely on protocol randomness from ephemeral keys anymore

e Conclusion: desirable but not necessary?

... for Signatures

e First intuition: keygen can be slow
e Second look: not terribly slow
e Smartcard producers need to generate lots of keys

e Not a huge concern, RSA keygen is slow already today ot
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Decapsulation failures

(Hashed) ECDH:

e no failures for honest users

e with some care: no advantage for dishonest users
e Many post-quantum KEMs:

e Tradeoff between security and failure probability
e Failures reveal information about secret keys

No problem for purely ephemeral keys (but need fast keygen!)

e Question: what failure probability is tolerable?

e Adam Langley: “2%0 is fine”
e Obvious question: how about 250, 240 230 7
e This is important to know for size/speed optimization

18
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Do we want CPA-secure KEMs?

With Diffie-Hellman we get CCA security “for free”

Post-quantum KEMs need additional effort for CCA security

Popular example Fujisaki-Okamoto transform:

e Encapsulation generates all randomness deterministically from seed

Encrypt seed to recipient

Decapsulation recovers the seed, re-encrypts
Rejects if ciphertexts don't match

e Post-quantum CPA-secure KEMs
e are simpler, smaller, faster
e need additional primitives in protocols
e are less robust (e.g., think key caching)

My intuition: only standardize/use CCA-secure KEMs
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We're going to miss DH

e Diffie-Hellman is extremely versatile:
e Can use it, for example, for non-interactive key exchange (NIKE)

e Bob knows Alice’ long-term public key A

e Alice knows Bob's long-term public key B

e They can each compute k = h(A, B, aB) = h(A, B, bA)
e Used in various protocols, e.g., WireGuard
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We're going to miss DH

e Diffie-Hellman is extremely versatile:

e Can use it, for example, for non-interactive key exchange (NIKE)
e Bob knows Alice’ long-term public key A
e Alice knows Bob's long-term public key B
e They can each compute k = h(A, B, aB) = h(A, B, bA)
e Used in various protocols, e.g., WireGuard
e Extremely expensive to instantiate post-quantum
e Example: SIDH-based, Azarderakhsh, Jao, Leonardi, 2017:
e Public key and ciphertext: > 30 KB each
e Computing time: > 1 minute
e Conclusion: Design protocols that don’t need NIKE
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e Let's assume no major cryptanalytic breakthrough
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e Agree on details of hash-based signatures
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A vision for a post-quantum-secure Internet

e Let's assume no major cryptanalytic breakthrough
e Agree on “the right spot” in the lattice-based KEM design space
e Agree on details of hash-based signatures

e Build Internet crypto from

e CCA-secure lattice-based KEM
e Stateful and stateless hash-based signatures

e Build AKE from KEMs alone, no signatures

e This means that certificates are signed KEM public keys

e Use HSMs and smartcards for stateful, forward-secure signatures
e If impossible: fall back to slower, larger stateless signatures

e Carefully optimize hash-based signatures per application
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Conclusion

There are now 60+ concrete post-quantum schemes now

There is software for all of those (which sometimes even works)

Try them out, put them into systems, see what fails

Start rethinking protocols and systems for a post-quantum world
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Resources online

e Personal website:
https://cryptojedi.org
e NIST PQC website:
https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography
e PQC Lounge:
https://www.safecrypto.eu/pgqclounge/
e NIST mailing list:
https://www.safecrypto.eu/pqclounge/
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