
Security Issues in Cloud Computing
Modern Cryptography II – Asymmetric Cryptography

Peter Schwabe

October 21 and 28, 2011

So far we assumed that Alice and Bob both have some key, which nobody else has. How
do they get this key? This was an open problem was until 1976, when Diffie and Hellman
published the paper “New direction in Cryptography”.

Diffie-Hellman key-exchange protocol

General description Small example

Public: Fix a large prime number p Fix p = 17

Public: Fix a number g ∈ {2, . . . , p − 1}
called generator

Fix g = 2

Alice chooses a ∈ {1, . . . , p− 1} at random,
computes ga mod p, sends this to Bob

Alices chooses a = 7, computes 27

mod 17 = 9, sends this to Bob

Bob chooses b ∈ {1, . . . , p − 1} at random,
computes gb mod p, sends this to Alice

Bob chooses b = 11, computes 211

mod 17 = 8, sends this to Alice

Alice computes K = (gb)a mod p Alice computes K = 87 mod 17 = 15

Bob computes K = (ga)b mod p Bob computes K = 911 mod 17 = 15

A passive attacker sees ga mod p and gb mod p. Finding the key from this information
is related to two important problems:

• Computing gab mod p given ga mod p and gb mod p is called the Computational
Diffie-Hellman Problem (CDHP),

• computing a given ga mod p is called the Discrete-Logarithm Problem (DLP).

For large values of p both problems are considered hard.

Man-in-the-middle attack against Diffie-Hellman key exchange

A passive (listening) attacker needs to solve the CDHP to obtain the key shared by Alice
and Bob. How about an active attacker? Assume that all messages from Alice to Bob

1



and vice versa are routed through Oscar’s computer. Oscar can read and modify all
messages.
Alice Oscar Bob
Sends ga mod p

receives ga mod p, sends go

mod p to Bob
Sends gb mod p

receives gb mod p, sends go

mod p to Alice

Alice knows a, receives go mod p, computes k1 = (go)a mod p, Bob knows b, receives
go mod p, computes k2 = (go)b Oscar computes k1 and k2 and communicates with Bob
(saying “I am Alice”) using k2 and with Alice (saying “I am Bob”) using k1.

Computational issues

The main computations in Diffie-Hellman are exponentiations, computing ga mod p
from g and a (fixed base) and (gb)a from gb and a (variable base). If we could compute
this by multiplying a times (or b times) we could solve the DLP (simply compare after
each multiplication)! How do we compute the exponentiations efficiently?
Example: Consider

a = 37146

= 3 · 10000 + 7 · 1000 + 1 · 100 + 4 · 10 + 6

= (((((((3 · 10) + 7) · 10) + 1) · 10) + 4) · 10) + 6 (“Horner scheme”)

Now compute ga as
ga = (((g3)10 · g7)10 · g1)10 · g4)10 · g6.

Transformation to the binary representation of a: Instead of writing a = a0 + 10 · a1 +
100 · a2 + · · ·+ 10nan with ai ∈ {0, . . . , 9}, i = 0, . . . , n write a in binary representation
a = a0 + 2 ·a1 + 4 ·a2 + · · ·+ 2nan with ai ∈ {0, 1}, i = 0, . . . , n. Compute exponentation
with the square-and-multiply algorithm:

2



Algorithm 1 Square-and-multiply algorithm

Input: a = (an, . . . , a0), p, g
Output: ga mod p
r ← 1
for i from n downto 0 do

r ← r2 mod p
if (ai = 1) then

r ← r · a mod p
end if

end for
return r

Example: Compute 212 mod 17. 12 = (1100)2 = 1 · 8 + 1 · 4 + 0 · 2 + 0 · 1

r ← 1

i = 3 :r ← r2 mod p(r = 1)

r ← r · g mod p(r = 2)

i = 2 :r ← r2 mod p(r = 4)

r ← r · g mod p(r = 8)

i = 1 :r ← r2 mod p(r = 64 mod 17 = 13)

i = 0 :r ← r2 mod p(r = 169 mod 17 = 16)

return r(r = 16)

Some remarks on Diffie-Hellman

• State-of-the-art Diffie-Hellman key exchange does not use this arithmetic modulo p
but arithmetic on elliptic curves. The reason is that DLP and CDHP are harder to
solve, at the same security level we can use the shorter keys (e.g. 256 bits instead
of 3248 bits).

• There are more efficient algorithms than square-and-multiply, they all share the
idea of “scanning the exponent”.

• Exponentiation ga can typically be made much faster than the exponentiation
(gb)a, because g is fixed (and gb is not).

• Dont use the square-and-multiply algorithm with a secret exponent in any real-
world application!

3



Public-key cryptography

The paper by Diffie and Hellman contained more than the key-exchange protocol, namely
the idea of public-key cryptography:

• Use different keys to encrypt and to decrypt,

• Make encryption key public, keep the decryption key (private key) secret,

• Everybody can encrypt messages to ,e.g, Alice, but only Alice (with her private
key) can decrypt,

• Obvious: It must be impossible to decrypt with the public key (in particular it
must be impossible to compute the private key from the public key).

The paper only described this idea, it did not propose a way yo implement such a scheme.

The RSA cryptosystem

In 1978, Rivest, Shamir and Adleman proposed a concrete public-key cryptosystem called
RSA cryptosystem.

Mathematical preliminaries:

What we used so far: addition, subtraction, multiplication modulo n. What about
division or inversion?
For each integer a with gcd(a, n) = 1 there exists an integer b such that a · b mod n = 1.
This integer b can be efficiently computed using the Extended Euclidean Algorithm. We
call this integer b the “inverse of a modulo n”.
Example: Let n = 7, a = 2, then b = 4 or let n = 7, a = 3, then b = 5.

How many integers smaller than n have an inverse modulo n? This is what the Eulerian
ϕ-function tells us:
ϕ(n) = number of integers smaller than n that have an inverse modulo n.

Example: For a prime p: ϕ(p) = p− 1.
For a product of two distict prime numbers p and q: ϕ(pq) = (p− 1)(q − 1).

RSA key generation

• Pick two random large different prime numbers p and q,

• compute n = p · q,

• choose e ∈ {3, . . . , ϕ(n)− 1} such that e is invertible modulo ϕ(n),

• compute d, the inverse of e modulo ϕ(n).

4



• Public key: (e, n), private key: d.

• Additional secret information: p, q, ϕ(n), can be deleted.

RSA encryption

Consider a message M , which is an integer smaller than n. Compute ciphertext:

C = M e mod n

RSA decryption

Recover the message M from C by computing

M = Cd mod n.

Why does RSA work? No proof here, see for example Handbook of Applied Cryptogra-
phy, Section 8.3.

Security of RSA

• We obviously need to consider chosen-plaintext attacks because everybody can
encrypt. General question: Given many pairs (Mi, Ci), i = 1, . . . , k, and given e, n
fulfilling Ci = M e

i mod n, is it possible to find d, such that Mi = Cd
i mod n, or

is it possible to compute Mt, given only Ct = M e
t mod n?

• If an attacker can factor n, i.e., compute p and q, he can easily compute ϕ(n) =
(p− 1)(q− 1) and then compute the inverse of e modulo ϕ(n), which is the private
key d.

• It would be sufficient for an attacker to compute ϕ(n) without computing p and
q. This is not easier than factoring n. Assume we know n = p · q and ϕ(n) =
(p− 1)(q − 1). Then we can factor n as follows:

ϕ(n) = (p− 1)(q − 1) = pq − q − p + 1⇔ p + q = n− ϕ(n) + 1, (1)

−4n = −4pq = (p− q)2 − (p + q)2 ⇔ (p− q)2 = (p + q)2 − 4n, (2)

q = ((p + q)− (p− q)). (3)

Obtain p + q from equation (1), obtain p − q from equation (2) and use both in
equation (3) to obtain q (and p).

• An attacker could also consider computing d without knowing ϕ(n). This has been
shown to be as hard as factoring n by Miller in 1975.

Summary: The currently best known way to break RSA is factoring n. It has been
shown that computing the private key is as hard as factoring, but it is not proven that
computing M from M e mod n is as hard as factoring.

5



How hard is it to factor large numbers?

• Many numbers (those with small prime factors) can be factored relatively effi-
ciently.

• RSA numbers (products of two large primes) are among the hardest to factor.

• RSA factoring records (factoring challenge numbers put online by RSA Security):
Name Digits Bits Year Group

RSA-100 100 330 April 1991 Lenstra et al.
RSA-130 130 430 April 1996 Lenstra et al.
RSA-576 174 576 Dec. 2003 Franke et al.
RSA-640 193 640 Nov. 2005 Franke et al.

• Most recently: In December 2009, Kleinjung, Aoki, Franke, Lenstra, Thomé, Bos,
Gaudry, Kruppa, Montgomery, Osvik, te Riele, Timofeev, and Zimmermann an-
nounced to have factored RSA-768 (768 bits, 232 decimal digits). The computation
consisted of 3 steps (using the so-called number-field sieve)

– step 1: 1/2 year on 80 processors,

– step 2: almost 2 years on many hundreds of machines (estimate: 1500 years
on one 22 GHz Opteron),

– step 3: 119 days on four clusters.

Implementation issues of RSA

• Finding large prime numbers in the key generation can be done by choosing ran-
dom numbers and testing whether they are prime. This will find prime numbers
efficiently because there are “many” primes and because testing for primality is
efficient (e.g., using the Miller-Rabin primality test).

• Exponentiation can be done as for Diffie-Hellman.

General remarks about RSA

• Very common keysize: 1024 bits. Factoring such a number is estimated to be 1000
times harder than factoring RSA-768.

• RSA keysizes roughly corresponding to symmetric-key sizes (e.g. for an ideal block
cipher), according to the recommendations by ECRYPT II from 2011:

– 816-bit RSA – 64-bit symmetric

– 1008-bit RSA – 72-bit symmetric

– 1248-bit RSA – 80-bit symmetric

– . . .

– 3248-bit RSA – 128-bit symmetric

6



– 15424-bit RSA – 256-bit symmetric

• In principle, p and q are not required for decryption. Storing them alongside d
allows us to speed up decryption.

• Other optimization: Use small public exponent e (e.g., e = 3). Have to be very
careful, this can lead to weaknesses.

• Generally: Dont use plain RSA in practice, use various tweaks (for example: use
a padding scheme to encrypt the same message to different ciphertexts)

General remarks about public-key cryptography

• While RSA is based on the hardness of factoring large integers, we can also con-
struct public-key schemes based on the hardness of the DLP (e.g. ElGamal en-
cryption)

• Again, most state-of-the-art public-key cryptography use elliptic curves.

• All the schemes mentioned here (RSA, Diffie-Hellman, ElGamal, elliptic-curve
cryptosystems) will be broken by quantum computers, when they can be build.

7


