MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

Introduction to lattice-based KEMs

May 4, 2022

Count of Problem Category Column Labels kd

Row Labels ﬂ Key Exchange Signature Grand Total
? 1 1
Braids 1 1 2
Chebychev 1 1
Codes 19 5 24
Finite Automata 1 1 2
Hash 4 4
Hypercomplex Numbers 1 1
Isogeny 1
Lattice 4 28
Mult. Var 6 7 13
Rand. walk 1 1
RSA 1 1 2
Grand Total 57 23 80
Q4 s Q2 2

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

All the way back in 2016. ..

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Experimenting with Post-Quantum Cryptography
July 7,2016

Q_ Search blog

BB Archive -
Posted by Matt Braithwaite, Software Engineer

“We're indebted to Erdem Alkim, Léo Ducas, Thomas Péppelmann and
Peter Schwabe, the researchers who developed “New Hope®, the
post-quantum algorithm that we selected for this experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

All the way back in 2016. ..

S ISARA ABOUT SOLUTIONS ~ DOCUMENTATION EVENTS ~ PRESS BLOG CONTACT US

ISARA Radiate is the first commercially available security solution offering quantum resistant algorithms that replace or augment classical algorithms,
which will be weakened or broken by quantum computing threats.

"Key Agreement using the ‘NewHope' lattice-based algorithm detailed in
the New Hope paper, and LUKE (Lattice-based Unique Key Exchange), an
ISARA speed-optimized version of the NewHope algorithm.”

https://www.isara.con/isara-radiate/

https://www.isara.com/isara-radiate/

All the way back in 2016. ..

— Newleter Contact WheretoBuy English = myinfinconlog =
Infineon
Products Applications Tools ~About Infineon Careers

Press Generalinformation Press Releases Market News PressKits MediaPool Events Contacts

>Home >aboutnfineon > Press > Press Releases

Ready for tomorrow: Infineon demonstrates first =<

post-quantum cryptography on a contactless e
security chip 3
AN

“The deployed algorithm is a variant of “New Hope®, a quantum-resistant
cryptosystem”

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

Learning with errors (LWE)

+ Given uniform A € Zg**
+ Given “noise distribution” x

- Given samples As + e, with e<—y

Learning with errors (LWE)

+ Given uniform A € Zg**

+ Given “noise distribution” x

- Given samples As + e, with e<—y
+ Search version: find s

+ Decision version: distinguish from uniform random

Learning with rounding (LWR)

+ Given uniform A € Zg**

* Given samples [As],, withp < g

Learning with rounding (LWR)

+ Given uniform A € Zg**
+ Given samples [Asjp, withp < g
+ Search version: find s

+ Decision version: distinguish from uniform random

Using structured lattices

+ Problem with LWE-based cryptosystems: public-key size
+ Only NIST candidate exclusively using standard LWE: FrodoKEM

Using structured lattices

+ Problem with LWE-based cryptosystems: public-key size
+ Only NIST candidate exclusively using standard LWE: FrodoKEM
- |dea to solve this: allow structured matrix A, e.g.,

Using structured lattices

+ Problem with LWE-based cryptosystems: public-key size
+ Only NIST candidate exclusively using standard LWE: FrodoKEM

- |dea to solve this: allow structured matrix A, e.g.,
+ NewHope: work in Rq = Z4[X]/(X" 4 1); n a power of 2, g prime

Using structured lattices

+ Problem with LWE-based cryptosystems: public-key size
+ Only NIST candidate exclusively using standard LWE: FrodoKEM
- |dea to solve this: allow structured matrix A, e.g.,

+ NewHope: work in Rq = Z4[X]/(X" 4 1); n a power of 2, g prime
« NTRU: work in Rq = Zg[X]/(X" — 1); n prime, g a power of 2

Using structured lattices

+ Problem with LWE-based cryptosystems: public-key size
+ Only NIST candidate exclusively using standard LWE: FrodoKEM
- |dea to solve this: allow structured matrix A, e.g.,

+ NewHope: work in Rq = Z4[X]/(X" 4 1); n a power of 2, g prime

« NTRU: work in Rq = Zg[X]/(X" — 1); n prime, g a power of 2

+ NTRU Prime: work in Rq = Zg[X]/ (X" — X — 1); g prime, n prime

Using structured lattices

+ Problem with LWE-based cryptosystems: public-key size
+ Only NIST candidate exclusively using standard LWE: FrodoKEM
- |dea to solve this: allow structured matrix A, e.g.,

+ NewHope: work in Rq = Z4[X]/(X" 4 1); n a power of 2, g prime

« NTRU: work in Rq = Zg[X]/(X" — 1); n prime, g a power of 2

+ NTRU Prime: work in Rq = Zg[X]/ (X" — X — 1); g prime, n prime

+ Kyber/Saber: use small-dimension matrices and vectors over

Rq = Zq[X]/(X**° +1)

Using structured lattices

+ Problem with LWE-based cryptosystems: public-key size
+ Only NIST candidate exclusively using standard LWE: FrodoKEM
- |dea to solve this: allow structured matrix A, e.g.,
+ NewHope: work in Rq = Z4[X]/(X" 4 1); n a power of 2, g prime
« NTRU: work in Rq = Zg[X]/(X" — 1); n prime, g a power of 2
+ NTRU Prime: work in Rq = Zg[X]/ (X" — X — 1); g prime, n prime
+ Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X**° +1)
- Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zg

How to build a KEM?

Alice (server) Bob (client)
s,e & x g6 & x
b<as +e —> . ucas' te
P
Alicehas v =us =ass' +e¢€'s
Bobhas v/ =bs =ass’ +es

- Secret and noise polynomials s, s’ e, ¢’ are small
- v and v’ are approximately the same

How to build a KEM, part 2

Alice Bob
s, e & X s, e & X
b
b«as +e g
u<as’ + €’
v<bs’

v/<us

How to build a KEM, part 2

Alice Bob
seed & {0,1}2%6
a+Parse(XOF(seed))
s,e & x se Ex
(b,seed)
bas +e ——— a«Parse(XOF(seed))
u«as’ + ¢
v<bs/

v/<us

How to build a KEM, part 2

Alice Bob

seed & {0,1}2%6

a+Parse(XOF(seed))

s, e & X s’ e - X

(b,seed)

bas +e ——— a«Parse(XOF(seed))
u«as’ + ¢
v<bs/
k& {0,1)"
k<« Encode(k)

v/<us A9 c—v+k

How to build a KEM, part 2

Alice Bob

seed & {0,1}2%6

a+Parse(XOF(seed))

s.e <i APV

) X S ?e 7e % X
(b,seed)

bas +e ——— a«Parse(XOF(seed))
u«as’ + ¢
v<bs' + e
k& {0,1)"
k<« Encode(k)

v/<us A9 c—v+k

How to build a KEM, part 2

Alice Bob

seed & {0,1}2%6

a+Parse(XOF(seed))

s.e <i APV

) X S 7e 7e F X
(b,seed)

bas +e ——— a«Parse(XOF(seed))
u«as’ + ¢
v<bs' + e
k& {0,1}"
k<« Encode(k)

v/<us A9 c—v+k

k'<—c—v

How to build a KEM, part 2

Alice Bob

seed & {0,1}2%6

a+Parse(XOF(seed))

8 APV
s,e<— X s,e,e’ <— X
(b,seed)

bas +e ——— a«Parse(XOF(seed))
u«as’ + ¢
v<bs' + e
k& {0,1)"
k<« Encode(k)

v/<us A9 c—v+k

k'<—c—v u<—Extract(k)

pu+Extract(k’)

How to build a KEM, part 2

Alice Bob

seed & {0,1}2%6

a+Parse(XOF(seed))

$ APV
S, €4 X §,€e,e <X
(b,seed)

bas +e ——— a«Parse(XOF(seed))
u«as’ + ¢
v<bs' + e
k& {0,1}"
k<« Encode(k)

v/<us A9 c—v+k

k'<—c—v u<—Extract(k)

pu+Extract(k’)

This is LPR encryption, written as KEM (except for generation of a)

Encode and Extract

+ Encoding in LPR encryption: map n bits to n coefficients:

+ A zero bit mapsto 0
+ Aone bit maps to g/2

- |dea: Noise affects low bits of coefficients, put data into high bits

Encode and Extract

+ Encoding in LPR encryption: map n bits to n coefficients:

+ A zero bit mapsto 0

+ Aone bit maps to g/2
- |dea: Noise affects low bits of coefficients, put data into high bits
+ Decode: map coefficient into [—q/2,q/2]

- Closerto 0 (i.e.,in [—q/4,q/4]): set bit to zero
+ Closerto £q/2: set bit to one

From passive to CCA security

+ The base scheme does not have active security
- Attacker can choose arbitrary noise, learns s from failures

From passive to CCA security

+ The base scheme does not have active security
- Attacker can choose arbitrary noise, learns s from failures
- Fujisaki-Okamoto transform (sketched):

Alice (Server) Bob (Client)
Gen():

pk, sk«KeyGen() Enc(seed, b):
seed, b+pk P {0,...,255)3

Kk, coins<—SHA3-512(x)

u, v<—Encrypt((seed, b), x, coins)
Dec(s, (u,Vv)):

x"+ Decrypt(s, (u,V))

k', coins’+-SHA3-512(x")

u’,V/+Encrypt((seed, b), X', coins’)

verify if (u’, V') = (u,V)

Design space 0: The NTRU approach

« Historically first: NTRU
+ Use parametersgandp = 3

Design space 0: The NTRU approach

« Historically first: NTRU

+ Use parametersgandp = 3

+ Keygen:
* Findf,g € Rgandf, =f' mod g,f, =f' mod p
+ public key: h = pf,g, secret key: (f, f,)

Design space 0: The NTRU approach

« Historically first: NTRU
+ Use parametersgandp =3
+ Keygen:
* Findf,g € Rgandf, =f' mod g,f, =f' mod p
+ public key: h = pfyg, secret key: (£, f,)
+ Encrypt:
- Map message m to m € R4 with coefficients in {—1,0, 1}

- Sample random small-coefficient polynomial r € Rq
+ Compute ciphertexte =r-h +m

Design space 0: The NTRU approach

« Historically first: NTRU
+ Use parametersgandp =3
+ Keygen:
* Findf,g € Rgandf, =f' mod g,f, =f' mod p
+ public key: h = pfyg, secret key: (£, f,)
+ Encrypt:
- Map message m to m € R4 with coefficients in {—1,0, 1}

- Sample random small-coefficient polynomial r € Rq
+ Compute ciphertexte =r-h +m

+ Decrypt:
« Computev="1-e

Design space 0: The NTRU approach

« Historically first: NTRU
+ Use parametersgandp =3
+ Keygen:
* Findf,g € Rgandf, =f' mod g,f, =f' mod p
+ public key: h = pfyg, secret key: (£, f,)
+ Encrypt:
- Map message m to m € R4 with coefficients in {—1,0, 1}

- Sample random small-coefficient polynomial r € Rq
+ Compute ciphertexte =r-h +m

+ Decrypt:
+ Computev=f-e=f - (r-h+m)

Design space 0: The NTRU approach

« Historically first: NTRU
+ Use parametersgandp =3
+ Keygen:
* Findf,g € Rgandf, =f' mod g,f, =f' mod p
+ public key: h = pfyg, secret key: (£, f,)
+ Encrypt:
- Map message m to m € R4 with coefficients in {—1,0, 1}

- Sample random small-coefficient polynomial r € Rq
+ Compute ciphertexte =r-h +m

+ Decrypt:
+ Computev=f-e=f-(r-h+m)=f(r-(pfyg) + m)

Design space 0: The NTRU approach

« Historically first: NTRU
+ Use parametersgandp =3
+ Keygen:
* Findf,g € Rgandf, =f' mod g,f, =f' mod p
+ public key: h = pfyg, secret key: (£, f,)
+ Encrypt:
- Map message m to m € R4 with coefficients in {—1,0, 1}

- Sample random small-coefficient polynomial r € Rq
+ Compute ciphertexte =r-h +m

+ Decrypt:
« Computev=f-e=f-(r-h+m)=f(r (pfyg) + m) =prg+f - m

Design space 0: The NTRU approach

« Historically first: NTRU
+ Use parametersgandp =3
+ Keygen:
* Findf,g € Rgandf, =f' mod g,f, =f' mod p
+ public key: h = pf,g, secret key: (f, f,)
+ Encrypt:
- Map message m to m € R4 with coefficients in {—1,0, 1}
- Sample random small-coefficient polynomial r € Rq
+ Compute ciphertexte =r-h + m
+ Decrypt:
« Computev=f-e=f-(r-h+m)=f(r (pfyg) + m) =prg+f - m
« Computem = v -f, mod p

Design space 0: The NTRU approach

« Historically first: NTRU
+ Use parametersgandp =3
+ Keygen:
* Findf,g € Rgandf, =f' mod g,f, =f' mod p
+ public key: h = pf,g, secret key: (f, f,)
+ Encrypt:
- Map message m to m € R4 with coefficients in {—1,0, 1}
- Sample random small-coefficient polynomial r € Rq
+ Compute ciphertexte =r-h +m
+ Decrypt:
« Computev=f-e=f-(r-h+m)=f(r (pfyg) + m) =prg+f - m
« Computem = v -f, mod p
- Advantages/Disadvantages compared to LPR:

+ Asymptotically weaker than Ring-LWE approach
- Slower keygen, but faster encryption/decryption

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)
- Second option: g = 25, f= (X" +1),n =27 (Saber)

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)
- Second option: g = 25, f= (X" +1),n =27 (Saber)
« Third option: g = 2%, f = ®,,1,n + 1 prime (Round5)

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)

- Second option: g = 25, f= (X" +1),n =27 (Saber)

« Third option: g = 2%, f = ®,,1,n + 1 prime (Round5)

- Fourth option: g prime, f = (X" + 1) = ®5,,n = 27
(NewHope, Kyber, LAC)

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)

- Second option: g = 25, f= (X" +1),n =27 (Saber)

« Third option: g = 2%, f = ®,,1,n + 1 prime (Round5)

- Fourth option: g prime, f = (X" + 1) = ®5,,n = 27
(NewHope, Kyber, LAC)

+ Fifth option: g prime, f = (X" — X — 1) irreducible, n prime
(NTRU Prime)

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)

- Second option: g = 25, f= (X" +1),n =27 (Saber)

« Third option: g = 2%, f = ®,,1,n + 1 prime (Round5)

- Fourth option: g prime, f = (X" + 1) = ®5,,n = 27
(NewHope, Kyber, LAC)

+ Fifth option: g prime, f = (X" — X — 1) irreducible, n prime
(NTRU Prime)

- Sixth option: ThreeBears works on large integers instead of
polynomials

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)

- Second option: g = 25, f= (X" +1),n =27 (Saber)

« Third option: g = 2%, f = ®,,1,n + 1 prime (Round5)

- Fourth option: g prime, f = (X" + 1) = ®5,,n = 27
(NewHope, Kyber, LAC)

+ Fifth option: g prime, f = (X" — X — 1) irreducible, n prime
(NTRU Prime)

- Sixth option: ThreeBears works on large integers instead of
polynomials

- No proof that any option is more or less secure

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)

- Second option: g = 25, f= (X" +1),n =27 (Saber)

« Third option: g = 2%, f = ®,,1,n + 1 prime (Round5)

- Fourth option: g prime, f = (X" + 1) = ®5,,n = 27
(NewHope, Kyber, LAC)

+ Fifth option: g prime, f = (X" — X — 1) irreducible, n prime
(NTRU Prime)

- Sixth option: ThreeBears works on large integers instead of
polynomials

- No proof that any option is more or less secure

+ NTRU Prime advertises “less structure” in their Rq

Design space 1: What ring?

+ Structured lattice-based schemes use ring Rq = Z4[X]/f
- g typically either prime or a power of two
- ftypically of degree between 512 and 1024

« First option: g = 2, f = (X" — 1), n prime (NTRU)

- Second option: g = 25, f= (X" +1),n =27 (Saber)

« Third option: g = 2%, f = ®,,1,n + 1 prime (Round5)

- Fourth option: g prime, f = (X" + 1) = ®5,,n = 27
(NewHope, Kyber, LAC)

+ Fifth option: g prime, f = (X" — X — 1) irreducible, n prime
(NTRU Prime)

- Sixth option: ThreeBears works on large integers instead of
polynomials

- No proof that any option is more or less secure

+ NTRU Prime advertises “less structure” in their Rq

- NewHope and Kyber have fastest (NTT-based) arithmetic

Design space 2: module vs. ring?

+ “Traditionally”, work directly with elements of R4 (“Ring-LWE")
- Alternative: Module-LWE (MLWE):

+ Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
-+ Work with small-dimension matrices and vectors over Rq

Design space 2: module vs. ring?

+ “Traditionally”, work directly with elements of R4 (“Ring-LWE")
- Alternative: Module-LWE (MLWE):

+ Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
-+ Work with small-dimension matrices and vectors over Rq

+ MLWE encrypts shorter messages than Ring-LWE

Design space 2: module vs. ring?

+ “Traditionally”, work directly with elements of R4 (“Ring-LWE")
- Alternative: Module-LWE (MLWE):

+ Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
-+ Work with small-dimension matrices and vectors over Rq

+ MLWE encrypts shorter messages than Ring-LWE

+ MLWE eliminates some of the structure of Ring-LWE

Design space 2: module vs. ring?

+ “Traditionally”, work directly with elements of R4 (“Ring-LWE")
- Alternative: Module-LWE (MLWE):

+ Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
-+ Work with small-dimension matrices and vectors over Rq

+ MLWE encrypts shorter messages than Ring-LWE
+ MLWE eliminates some of the structure of Ring-LWE

« MLWE can very easily scale security (change dimension of
matrix):
+ Optimize arithmetic in Rq once
+ Use same optimized Rq arithmetic for all security levels

Design space 3: what noise?

- Need to sample noise (for LWE schemes) and small secrets
+ More noise means

+ more security from the underlying hard problem

+ higher failure probability of decryption

Design space 3: what noise?

- Need to sample noise (for LWE schemes) and small secrets
+ More noise means
+ more security from the underlying hard problem
+ higher failure probability of decryption
+ Three main choices to make:
- Narrow or wide noise
- Narrow noise (e.g., in {—1, 0, 1}) not conservative

- Wide noise requires larger g (or more failures)
+ Larger g means larger public key and ciphertext

Design space 3: what noise?

- Need to sample noise (for LWE schemes) and small secrets
+ More noise means
+ more security from the underlying hard problem
+ higher failure probability of decryption
+ Three main choices to make:
+ Narrow or wide noise
- Narrow noise (e.g., in {—1, 0, 1}) not conservative
- Wide noise requires larger g (or more failures)
+ Larger g means larger public key and ciphertext
+ LWE or LWR
- LWE considered more conservative (independent noise)
+ LWR easier to implement (no noise sampling)
+ LWR allows more compact public key and ciphertext

Design space 3: what noise?

- Need to sample noise (for LWE schemes) and small secrets

+ More noise means
+ more security from the underlying hard problem
+ higher failure probability of decryption

+ Three main choices to make:
+ Narrow or wide noise
- Narrow noise (e.g., in {—1, 0, 1}) not conservative
- Wide noise requires larger g (or more failures)
+ Larger g means larger public key and ciphertext
+ LWE or LWR
- LWE considered more conservative (independent noise)
+ LWR easier to implement (no noise sampling)
+ LWR allows more compact public key and ciphertext
- Fixed-weight noise or not?
- Fixed-weight noise needs random permutation (sorting)
+ Naive implementations leak secrets through timing
+ Advantage of fixed-weight: easier to bound (or eliminate) decryption
failures

Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:

+ Easier CCA security transform and analysis
- Disadvantage:

- Need to limit noise (or have larger q)

Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
+ Easier CCA security transform and analysis
- Disadvantage:
- Need to limit noise (or have larger q)
+ For passive-security-only can go the other way:

- Allow failure probability of, e.g.,, 273°
+ Reduce size of public key and ciphertext

Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
+ Easier CCA security transform and analysis
- Disadvantage:
- Need to limit noise (or have larger q)
+ For passive-security-only can go the other way:
- Allow failure probability of, e.g.,, 273°
+ Reduce size of public key and ciphertext

- Active (CCA) security needs negligible failure probability

Design space 5: public parameters?

- “Traditional” approach to choosing a in LWE/LWR schemes:
‘Let a be a uniformly random. . .”

Design space 5: public parameters?

- “Traditional” approach to choosing a in LWE/LWR schemes:
‘Let a be a uniformly random. . .”
- Before NewHope: real-world approach: generate fixed a once

Design space 5: public parameters?

- “Traditional” approach to choosing a in LWE/LWR schemes:
‘Let a be a uniformly random. . .”
- Before NewHope: real-world approach: generate fixed a once
+ What if a is backdoored?
+ Parameter-generating authority can break key exchange
- "Solution”: Nothing-up-my-sleeves (involves endless discussion!)

Design space 5: public parameters?

- “Traditional” approach to choosing a in LWE/LWR schemes:
‘Let a be a uniformly random. . .”
- Before NewHope: real-world approach: generate fixed a once
+ What if a is backdoored?
+ Parameter-generating authority can break key exchange
- "Solution”: Nothing-up-my-sleeves (involves endless discussion!)
+ Even without backdoor:

- Perform massive precomputation based on a

+ Use precomputation to break all key exchanges
- Infeasible today, but who knows. ..

+ Attack in the spirit of Logjam

Design space 5: public parameters?

- “Traditional” approach to choosing a in LWE/LWR schemes:
‘Let a be a uniformly random. . .”
- Before NewHope: real-world approach: generate fixed a once
+ What if a is backdoored?
+ Parameter-generating authority can break key exchange
- "Solution”: Nothing-up-my-sleeves (involves endless discussion!)

- Even without backdoor:

- Perform massive precomputation based on a

+ Use precomputation to break all key exchanges
- Infeasible today, but who knows. ..

+ Attack in the spirit of Logjam

+ Solution in NewHope: Choose a fresh a every time
- Server can cache a for some time (e.g., 1h)
+ Al NIST PQC candidates now use this approach

Design space 6: error-correcting codes?

+ Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

- "Encrypt” messages of > 256 bits
+ Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?

- Answer: Use error-correcting code (ECC) to reduce failure
probability

Design space 6: error-correcting codes?

+ Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

- "Encrypt” messages of > 256 bits
+ Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?

- Answer: Use error-correcting code (ECC) to reduce failure
probability

- NewHope: very simple threshold decoding

Design space 6: error-correcting codes?

+ Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

- "Encrypt” messages of > 256 bits
+ Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?

- Answer: Use error-correcting code (ECC) to reduce failure
probability
- NewHope: very simple threshold decoding
+ LAC, Round5: more advanced ECC
+ Correct more errors, obtain smaller public key and ciphertext

+ More complex to implement, in particular without leaking through
timing

Design space /. CCA security?

- Ephemeral key exchange does not need CCA security
- Can offer passively secure version

+ Protocols will combine this with signatures for authentication

Design space /. CCA security?

- Ephemeral key exchange does not need CCA security
- Can offer passively secure version
+ Protocols will combine this with signatures for authentication
- Advantages:
- Higher failure probability — more compact

+ Simpler to implement, no CCA transform
- More flexibility for secret/noise generation

Design space /. CCA security?

- Ephemeral key exchange does not need CCA security
- Can offer passively secure version
+ Protocols will combine this with signatures for authentication

- Advantages:
- Higher failure probability — more compact
+ Simpler to implement, no CCA transform
- More flexibility for secret/noise generation
- Disadvantages:

+ Less robust (will somebody reuse keys?)
- More options (CCA vs. CPA): easier to make mistakes

Design space 8: CCA transforms

+ General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)
- Tweaks to FO transform:

+ Hash public-key into coins: multitarget protection (for non-zero
failure probability)

Design space 8: CCA transforms

+ General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)
- Tweaks to FO transform:
+ Hash public-key into coins: multitarget protection (for non-zero

failure probability)
+ Hash public-key into shared key: KEM becomes contributory

Design space 8: CCA transforms

+ General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)
- Tweaks to FO transform:
+ Hash public-key into coins: multitarget protection (for non-zero
failure probability)
+ Hash public-key into shared key: KEM becomes contributory
+ Hash ciphertext into shared key: more robust (?)

Design space 8: CCA transforms

+ General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)
- Tweaks to FO transform:
+ Hash public-key into coins: multitarget protection (for non-zero
failure probability)
+ Hash public-key into shared key: KEM becomes contributory
+ Hash ciphertext into shared key: more robust (?)
+ How to handle rejection?
+ Return special symbol (return -1): explicit
+ Return H(s, C) for secret s: implicit

Design space 8: CCA transforms

+ General Fujisaki-Okamoto principle is the same for most KEMs

(exception: NTRU)

- Tweaks to FO transform:

+ Hash public-key into coins: multitarget protection (for non-zero
failure probability)

+ Hash public-key into shared key: KEM becomes contributory

+ Hash ciphertext into shared key: more robust (?)

+ How to handle rejection?

+ Return special symbol (return -1): explicit

+ Return H(s, C) for secret s: implicit

- As of round 2, no proposal uses explicit rejection

+ Would break some security reduction
+ More robust in practice (return value alwas 0)

- Lattice-based KEMs offer best overall performance in the PQ
world
- Many tradeoffs between
- Security (including passive vs. active)
+ Failure rate
+ Size
+ Speed
+ More information about NIST PQC:
* https://csrc.nist.gov/projects/post-quantum-cryptography
* https://pqc-wiki.fau.edu/

https://csrc.nist.gov/projects/post-quantum-cryptography
https://pqc-wiki.fau.edu/

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz
Slides at https://cryptojedi.org/latticekems.pdf

+ CPA-secure “LPR KEM", see slide 7

+ Work in polynomial ring Rq = Zg[X]/(X" + 1)

+ Parameters g = 4096, n = 1024

+ Centered binomial noise with k = 8

- "Messages” have n bits = trivial encoding (see slide 8)

20

https://cryptojedi.org/wookie.tar.gz
https://cryptojedi.org/latticekems.pdf

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz
Slides at https://cryptojedi.org/latticekems.pdf

+ CPA-secure “LPR KEM", see slide 7

+ Work in polynomial ring Rq = Zg[X]/(X" + 1)

+ Parameters g = 4096, n = 1024

+ Centered binomial noise with k = 8

- "Messages” have n bits = trivial encoding (see slide 8)

1. Implement arithmetic in R (file poly.c)
2. Implement the Wookie KEM (file kem. c)

20

https://cryptojedi.org/wookie.tar.gz
https://cryptojedi.org/latticekems.pdf

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz
Slides at https://cryptojedi.org/latticekems.pdf

+ CPA-secure “LPR KEM", see slide 7

+ Work in polynomial ring Rq = Zg[X]/(X" + 1)

+ Parameters g = 4096, n = 1024

+ Centered binomial noise with k = 8

- "Messages” have n bits = trivial encoding (see slide 8)

1. Implement arithmetic in R (file poly.c)
2. Implement the Wookie KEM (file kem. c)

+ make builds various unit tests in test/ subdirectory
+ Running test.shin test/ subdirectory runs all tests

20

https://cryptojedi.org/wookie.tar.gz
https://cryptojedi.org/latticekems.pdf

Centered binomial noise with k = 8

- Let HW(b) be the Hamming weight of a byte b

21

Centered binomial noise with k = 8

- Let HW(b) be the Hamming weight of a byte b
+ To sample one coefficient p[i] of a polynomial in R:

+ Sample two uniformly random bytes a and b
+ Set p[i] = HW(a) — HW(b)

21

Centered binomial noise with k = 8

- Let HW(b) be the Hamming weight of a byte b
+ To sample one coefficient p[i] of a polynomial in R:

+ Sample two uniformly random bytes a and b
+ Set p[i] = HW(a) — HW(b)

+ Resulting coefficient will be in {-8, ..., 8}
+ Sampling a polynomial needs 2n = 2048 uniformly random bytes

21

Some remarks

- Software skeleton assumes Linux system
- Need basic build tools (make, gcc, . ..) installed:

apt install build-essential

+ Some unit tests and test . sh script assume Sage to be installed

apt install sagemath

- Can also download pre-compiled binaries of Sage:
https://doc.sagemath.org/html/en/installation/binary.html

22

https://doc.sagemath.org/html/en/installation/binary.html

