# Crypto protocols for the post-quantum era: PQ-WireGuard and KEMTLS

Peter Schwabe

September 9, 2021

#### **NISTPQC**

| Count of Problem Category | Column Labels |           |                    |
|---------------------------|---------------|-----------|--------------------|
| Row Labels                | Key Exchange  | Signature | <b>Grand Total</b> |
| ?                         | 1             |           | 1                  |
| Braids                    | 1             | 1         | 2                  |
| Chebychev                 | 1             |           | 1                  |
| Codes                     | 19            | 5         | 24                 |
| Finite Automata           | 1             | 1         | 2                  |
| Hash                      |               | 4         | 4                  |
| Hypercomplex Numbers      | 1             |           | 1                  |
| Isogeny                   | 1             |           | 1                  |
| Lattice                   | 24            | 4         | 28                 |
| Mult. Var                 | 6             | 7         | 13                 |
| Rand. walk                | 1             |           | 1                  |
| RSA                       | 1             | 1         | 2                  |
| Grand Total               | 57            | 23        | 80                 |
| Ç 4                       | 1 31          |           |                    |

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

1

1. Massively different performance characteristics than ECC

- 1. Massively different performance characteristics than ECC
- 2. Much more complex landscape of crypto primitives

- 1. Massively different performance characteristics than ECC
- 2. Much more complex landscape of crypto primitives
- 3. No drop-in replacement for DH

- 1. Massively different performance characteristics than ECC
- 2. Much more complex landscape of crypto primitives
- 3. No drop-in replacement for DH
- 4. Most efficient signatures are stateful (and forward secure)

- 1. Massively different performance characteristics than ECC
- 2. Much more complex landscape of crypto primitives
- 3. No drop-in replacement for DH
- 4. Most efficient signatures are stateful (and forward secure)
- 5. Potentially more complex proofs

- 1. Massively different performance characteristics than ECC
- 2. Much more complex landscape of crypto primitives
- 3. No drop-in replacement for DH
- 4. Most efficient signatures are stateful (and forward secure)
- 5. Potentially more complex proofs

# Post-quantum WireGuard

Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, Philip R. Zimmermann

#### WireGuard

- · Modern Virtual Private Network (VPN) protocol
- Presented by Donenfeld at NDSS 2017
- Merged into Linux kernel in 2020
- Only  $\approx$ 4000 lines of code
- · Runs over UDP

"Compared to horrors that are OpenVPN and IPSec, WireGuard is a work of art"

-Linus Torvalds

#### "Cryptographically opinionated"

- · No "crypto agility"
- · Fixed suite of cryptographic primitives:
  - · X25519 as Diffie-Hellman routine
  - · ChaCha20-Poly1305 as AEAD
  - · Blake2s for hashing and keyed hashing
  - · HKDF for key derivation

#### The WireGuard handshake (basic idea: "4DH")

```
Initiator has long-term DH key-pair (sski, spki)
Responder has long-term DH key-pair (ssk, spk,)
 Initiator
                                                                                                      Responder
  (esk_i, epk_i) \leftarrow DH.Gen()
                                             epk;
                                                                                     (esk_r, epk_r) \leftarrow DH.Gen()
                                                                      epk,
  k_1 \leftarrow \text{DH.Shared}(esk_i, spk_r)
                                                                                k_1 \leftarrow \text{DH.Shared}(ssk_r, epk_i)
  k_2 \leftarrow \text{DH.Shared}(ssk_i, epk_r)
                                                                                k_2 \leftarrow \text{DH.Shared}(esk_r, spk_i)
  k_3 \leftarrow \text{DH.Shared}(\mathbf{esk}_i, \mathbf{epk}_r)
                                                                                k_3 \leftarrow \text{DH.Shared}(esk_t, epk_t)
  k_4 \leftarrow \text{DH.Shared}(ssk_i, spk_r)
                                                                                k_4 \leftarrow \text{DH.Shared}(ssk_r, spk_i)
```

Derive session key from  $k_1$ ,  $k_2$ ,  $k_3$ , and  $k_4$ 

# The WireGuard handshake (high-level)

```
Initiator
                                                                                                                                                                                 Responder
 1: (esk_i, epk_i) \leftarrow DH.Gen()
 2: sid \leftarrow \{0,1\}^{32}
 3: 1tk \leftarrow AEAD.Enc(\kappa_3, 0, spk, H_3)
 4: now ← Timestamp()
 5: time \leftarrow AEAD.Enc(\kappa_4, 0, H_4, now)
 6. m1 \leftarrow MAC(H(lbl<sub>3</sub> || spk<sub>r</sub>), type || 0<sup>3</sup> || sid<sub>i</sub> || epk<sub>i</sub> || ltk || time)
 7: m2 \leftarrow MAC(cookie, type \parallel 0^3 \parallel \text{sid}_i \parallel \text{epk}_i \parallel 1\text{tk} \parallel \text{time} \parallel \text{m1})
 8: InitHello \leftarrow type \parallel 0^3 \parallel \text{sid}_i \parallel \text{epk}_i \parallel 1 \text{tk} \parallel \text{time} \parallel \text{m1} \parallel \text{m2}
                                                                        InitHello
 9:
                                                                                                                                                      (esk_r, epk_r) \leftarrow DH.Gen()
10.
                                                                                                                                                                      sid_{c} \stackrel{\$}{\leftarrow} \{0,1\}^{32}
11:
                                                                                                                                       zero \leftarrow AEAD.Enc(\kappa_9, 0, H_9, \emptyset)
12:
                                                                 m1 \leftarrow \mathsf{MAC}(\mathsf{H}(\mathsf{lbl}_3 \parallel \mathsf{spk}_i), \mathsf{type} \parallel 0^3 \parallel \mathsf{sid}_i \parallel \mathsf{sid}_i \parallel \mathsf{epk}_i \parallel \mathsf{zero})
13.
                                                                         m2 \leftarrow MAC(cookie, type \parallel 0^3 \parallel sid_f \parallel sid_i \parallel epk_f \parallel zero \parallel m1)
14.
                                                                           RespHello \leftarrow type \parallel 0^3 \parallel \operatorname{sid}_r \parallel \operatorname{sid}_i \parallel \operatorname{epk}_r \parallel \operatorname{zero} \parallel \operatorname{m1} \parallel \operatorname{m2}
                                                                                                                RespHello
15.
                                                             tk_i \leftarrow KDF_1(C_0, \emptyset)
16:
                                                             tk_r \leftarrow KDF_2(C_0, \emptyset)
```

AEAD.Enc( $tk_i$ ,  $\cdot$ ,  $\emptyset$ , application data)

## Handshake security

- Key confidentiality
- Entity authentication

## Handshake security

- · Key confidentiality
- Entity authentication
- Key uniqueness
- · Identity hiding
- · Replay attack resistance
- · Unknown key-share (UKS) attack resistance
- DoS attack resistance (early reject)

# WireGuard security proofs

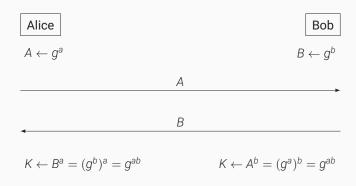
- Computational: Dowling and Paterson, 2018
  - eCK-PFS-PSK
  - · Assumes additional key-confirmation message
  - · Missing: key uniqueness, identity hiding, DoS mitigation
- · Symbolic: Donenfeld and Milner, 2017
  - Missing: perfect forward secrecy, replay attack resistance, DoS mitigation

#### Post-quantum security of WireGuard

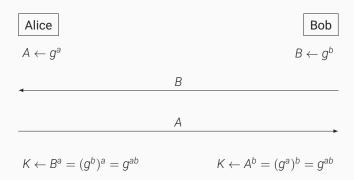
- The optional PSK provides confidentiality against quantum attacks.
- · Assumption: PSK cannot be recovered by quantum attackers
- Post-quantum cryptography: Donenfeld claimed 'not practical for use here'
- · Applebaum, Martindale, Wu, 2019:
  - · Tweak to WireGuard protocol
  - · Send H(pk) instead of pk
  - · Resistance against surveillance attackers

#### PQ-WireGuard – our goals

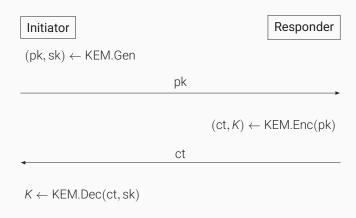
- Post-quantum confidentiality and authentication
- NIST security level 3 (≈AES-192)
- Retain all security properties of WireGuard
- Efficient 1-round-trip handshake


#### PQ-WireGuard - our goals

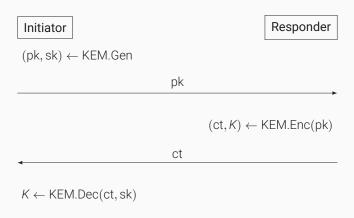
- Post-quantum confidentiality and authentication
- NIST security level 3 (≈AES-192)
- · Retain all security properties of WireGuard
- · Efficient 1-round-trip handshake
- No fragmentation
  - · Remember: WireGuard uses UDP
  - Lost packets, filtering ⇒ more complex state machine
- Packet-size constraint:
  - IPv6 guarantee: no fragmentation of packets  $\leq 1280$  bytes
  - Fit WireGuard messages into  $1232\ \mathrm{bytes}$


#### PQ-WireGuard – the idea

- 1. Replace DH with key-encapsulation mechanisms (KEMs)
- 2. Instantiate with PQ KEMs achieving desired security

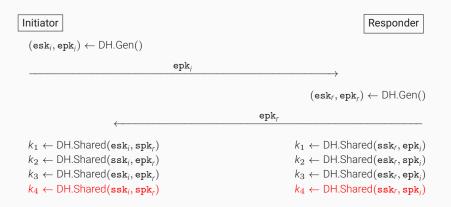

#### Diffie-Hellman




#### Diffie-Hellman



## KEMs: as close as you'll get to DH




#### KEMs: as close as you'll get to DH\*



<sup>\*</sup>Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)

#### What can KEMs (not) do?



## A first approach with KEMs

# $\begin{array}{c} \boxed{ \text{Initiator} } & \boxed{ \text{Responder} } \\ \\ (\texttt{esk}_i, \texttt{epk}_i) \leftarrow \texttt{CPAKEM.Gen}() \\ \\ r_1 \overset{\$}{\leftarrow} \{0, 1\}^{\lambda}, (c_1, k_1) \leftarrow \texttt{CCAKEM.Enc}(\texttt{spk}_r, r_1) \\ \\ & \stackrel{\texttt{epk}_i, \, C_1}{} \\ \\ & r_2 \overset{\$}{\leftarrow} \{0, 1\}^{\lambda}, (c_2, k_2) \leftarrow \texttt{CCAKEM.Enc}(\texttt{spk}_i, r_2) \\ \\ r_3 \overset{\$}{\leftarrow} \{0, 1\}^{\lambda}, (c_3, k_3) \leftarrow \texttt{CPAKEM.Enc}(\texttt{epk}_i, r_3) \\ \end{array}$

 $C_2, C_3$ 

 $k_1 \leftarrow \text{CCAKEM.Dec}(ssk_r, c_1)$ 

 $k_2 \leftarrow \text{CCAKEM.Dec}(\mathbf{ssk}_i, c_2)$  $k_3 \leftarrow \text{CPAKEM.Dec}(\mathbf{esk}_i, c_3)$ 

# What are we lacking?

#### DoS resistance

- First initiator message is unauthenticated
- Solution: Use (optional) pre-shared key for early rejects

## What are we lacking?

#### DoS resistance

- · First initiator message is unauthenticated
- Solution: Use (optional) pre-shared key for early rejects

#### "MEX" resistance

- · Some security also if all RNGs are insecure
- Static-static DH for confidentiality from long-term keys
- Solution: Use "NAXOS trick"

## What are we lacking?

#### DoS resistance

- · First initiator message is unauthenticated
- Solution: Use (optional) pre-shared key for early rejects

#### "MEX" resistance

- Some security also if all RNGs are insecure
- Static-static DH for confidentiality from long-term keys
- · Solution: Use "NAXOS trick"

#### UKS-attack resistance

- WireGuard does not hash public keys into session key
- UKS resistance derived from static-static DH
- Solution: Use default PSK as  $H(spk_i \oplus spk_r)$

#### (Most of) the PQ-WireGuard handshake

```
Initiator
                                                                                                                                                                         Responder
 1: (esk_i, epk_i) \leftarrow CPAKEM.Gen()
 2: sid \leftarrow \{0,1\}^{32}
 3: r_i \leftarrow \{0, 1\}^{\lambda}
 4: (ct1, shk1) \leftarrow CCAKEM.Enc(spk_r, KDF_1(\sigma_i, r_i))
 5: ltk \leftarrow AEAD.Enc(\kappa_3, 0, H(spk<sub>i</sub>), H_3)
 6: now ← Timestamp()
 7: time \leftarrow AEAD.Enc(\kappa_4, 0, H_4, now)
 8: m1 \leftarrow MAC(H(lbl_3 \parallel spk_r), type \parallel 0^3 \parallel sid_i \parallel epk_i \parallel ct1 \parallel ltk \parallel time)
 9: m2 \leftarrow MAC(cookie, type \parallel 0^3 \parallel \operatorname{sid}_i \parallel \operatorname{epk}_i \parallel \operatorname{ct1} \parallel \operatorname{ltk} \parallel \operatorname{time} \parallel \operatorname{m1})
10. InitHello \leftarrow type \parallel 0^3 \parallel \text{sid}_i \parallel \text{epk}_i \parallel \text{ct1} \parallel \text{ltk} \parallel \text{time} \parallel \text{m1} \parallel \text{m2}
                                                                     InitHello
11:
                                                                                                                                           e, r_r \leftarrow \{0, 1\}^{\lambda} \times \{0, 1\}^{\lambda}
12.
                                                                                                                        (ct2, shk2) \leftarrow CPAKEM.Enc(epk_i, e)
13.
                                                                                                  (ct3, shk3) \leftarrow CCAKEM.Enc(spk_i, KDF_1(\sigma_r, r_r))
                                                                                                                                                              sid_{c} \stackrel{\$}{\leftarrow} \{0,1\}^{32}
14.
15.
                                                                                                                                zero \leftarrow AEAD.Enc(\kappa_0, 0, H_0, \emptyset)
16:
                                                    m1 \leftarrow MAC(H(lbl_3 \parallel spk_i), type \parallel 0^3 \parallel sid_i \parallel sid_i \parallel ct2 \parallel ct3 \parallel zero)
17:
                                                           m2 \leftarrow MAC(cookie, type \parallel 0^3 \parallel sid_i \parallel sid_i \parallel ct2 \parallel ct3 \parallel zero \parallel m1)
18.
                                                             \texttt{RespHello} \leftarrow \texttt{type} \parallel 0^3 \parallel \texttt{sid}_{\ell} \parallel \texttt{sid}_{\ell} \parallel \texttt{ct2} \parallel \texttt{ct3} \parallel \texttt{zero} \parallel \texttt{m1} \parallel \texttt{m2}
```

RespHello

#### Adding explicit key confirmation

```
Initiator

19: conf \leftarrow AEAD.Enc(\kappa_{10}, 0, H_{10}, \emptyset)

20: m1 \leftarrow MAC(H(lbl<sub>3</sub> || spk<sub>r</sub>), type || 0<sup>3</sup> || sid<sub>i</sub> || sid<sub>r</sub> || conf)

21: m2 \leftarrow MAC(cookie, type || 0<sup>3</sup> || sid<sub>i</sub> || sid<sub>r</sub> || conf || m1)

22: InitConf \leftarrow type || 0<sup>3</sup> || sid<sub>i</sub> || sid<sub>r</sub> || conf || m1 || m2

InitConf

23: tk_i \leftarrow \text{KDF}_1(C_{10}, \emptyset)

24: tk_r \leftarrow \text{KDF}_2(C_{10}, \emptyset)
```

- Allows proofs to separate handshake from data transmission
- · eCK-PFS-PSK proof applies to actual protocol

Responder

# PQ-WireGuard security proofs

- · Computational:
  - Based on Dowling and Paterson (2018)
  - · Proof in the eCK-PFS-PSK model
  - · Standard model proof
- · Symbolic:
  - · Based on Donenfeld and Milner (2017)
  - · Uses the Tamarin prover
  - Cover all desired security properties

#### Instantiation

- Long-term IND-CCA-secure KEM: Classic McEliece
  - · Smallest ciphertext of all NIST PQC candidates
  - Public-key size does not matter
  - · Key-generation time does not matter

#### Instantiation

- Long-term IND-CCA-secure KEM: Classic McEliece
  - · Smallest ciphertext of all NIST PQC candidates
  - · Public-key size does not matter
  - Key-generation time does not matter
- Ephemeral IND-CPA-secure KEM requirements:
  - · NIST PQC round-2 candidate at level 3
  - · High-speed constant-time implementation
  - · Pick "conservative" primitives
  - · No patent claims by submitters
  - · No tweaks that lower security

#### Instantiation

- Long-term IND-CCA-secure KEM: Classic McEliece
  - · Smallest ciphertext of all NIST PQC candidates
  - · Public-key size does not matter
  - Key-generation time does not matter
- Ephemeral IND-CPA-secure KEM requirements:
  - NIST PQC round-2 candidate at level 3
  - · High-speed constant-time implementation
  - Pick "conservative" primitives
  - · No patent claims by submitters
  - · No tweaks that lower security
  - · Fit into unfragmented IPv6 packet:
    - public key of ≤928 bytes
    - ciphertext of ≤984 bytes

#### Dagger

- Only three NIST round-2 candidates within size constraints:
  - · SIKE not high-speed
  - · ROLLO not conservative
  - Round5 patent encumbered

### Dagger

- Only three NIST round-2 candidates within size constraints:
  - · SIKE not high-speed
  - · ROLLO not conservative
  - · Round5 patent encumbered
- · Idea: Tweak lattice-based KEM:
  - · More public-key and ciphertext compression
  - Increase hardness of lattice problems
  - Increase failure probability (no issue for CPA sec.)

### Dagger

- Only three NIST round-2 candidates within size constraints:
  - · SIKE not high-speed
  - ROLLO not conservative
  - · Round5 patent encumbered
- Idea: Tweak lattice-based KEM:
  - · More public-key and ciphertext compression
  - Increase hardness of lattice problems
  - · Increase failure probability (no issue for CPA sec.)
- · Tweaked (smaller, more lightweight) Saber: Dagger

# Implementation and Evaluation

- · Implement as Linux kernel module
- Use existing high-speed constant-time software for McEliece and Dagger (Saber)

# Implementation and Evaluation

- · Implement as Linux kernel module
- Use existing high-speed constant-time software for McEliece and Dagger (Saber)
- · Metrics for comparison:
  - Amount of traffic
  - · Number of packets
  - · Handshake latency

# Implementation and Evaluation

- Implement as Linux kernel module
- Use existing high-speed constant-time software for McEliece and Dagger (Saber)
- · Metrics for comparison:
  - Amount of traffic
  - Number of packets
  - · Handshake latency
- Use virtual 10Gbps Ethernet link between two VMs
- Both IPv4 and IPv6: similar results
- Compare with WireGuard, OpenVPN, IPsec, PQCrypto-VPN

# Results

| VPN Software | Packet  | Traffic   | Client Time    | Server Time    |
|--------------|---------|-----------|----------------|----------------|
| VPN Software | Number  | (bytes)   | (milliseconds) | (milliseconds) |
| WireGuard    | 3       | 458       | 0.592          | 0.480          |
|              | (0)     | (0)       | (0.399)        | (0.389)        |
| PQ-WireGuard | 3       | 2654      | 1.015          | 0.786          |
|              | (0)     | (0)       | (0.618)        | (0.621)        |
| IPsec        | 6       | 4299      | 17.188         | 11.912         |
| (RSA-2048)   | (0)     | (0)       | (0.712)        | (0.535)        |
| IPsec        | 4       | 2281      | 5.226          | 2.822          |
| (Curve25519) | (0)     | (0)       | (0.575)        | (0.436)        |
| OpenVPN      | 21.003  | 7955.409  | 1148.733       | 1142.650       |
| (RSA-2048)   | (0.055) | (7.319)   | (250.513)      | (243.184)      |
| OpenVPN      | 19.005  | 5788.610  | 1139.140       | 1133.944       |
| (NIST P-256) | (0.007) | (9.423)   | (247.659)      | (240.691)      |
| OpenVPN-NL   | 19.005  | 6065.700  | 1162.649       | 1151.790       |
| (RSA-2048)   | (0.072) | (9.665)   | (261.078)      | (246.363)      |
| OpenVPN-NL   | 19.001  | 6061.138  | 1159.627       | 1153.949       |
| (NIST P-256) | (0.003) | (4.304)   | (252.989)      | (247.470)      |
| PQ-OpenVPN   | 63.006  | 35608.817 | 1160.922       | 1155.713       |
| (Frodo-752)  | (0.078) | (10.324)  | (259.246)      | (245.614)      |
| PQ-OpenVPN   | 23.005  | 8996.684  | 1277.172       | 1269.074       |
| (SIDHp503)   | (0.072) | (9.449)   | (251.461)      | (257.427)      |


# **KEMTLS**

Peter Schwabe, Douglas Stebila, and Thom Wiggers

VEIVI LO

### The TLS 1.3 handshake

### TLS 1.3



### The TLS 1.3 handshake

### TLS 1.3

#### Client Server static (sig): pks, sks $(pk_{\rho}, sk_{e}) \leftarrow DH.Gen$ pk<sub>e</sub> $(pk'_{o}, sk'_{o}) \leftarrow DH.Gen$ $ss_e \leftarrow DH.Shared(sk'_e, pk_e)$ $K, K', K'', K''' \leftarrow KDF(ss_e)$ pk', AEADK(cert[pks]|| Sigsko(transcript)||key confirmation) AEAD<sub>K'</sub> (application data) $ss_e \leftarrow DH.Shared(sk_e, pk'_e)$ $K, K', K'', K''' \leftarrow KDF(ss_o)$ AEADK" (key confirmation) AEAD<sub>K</sub>,,, (application data)

### "Straight-forward" PQTLS

| Client                                                                                                                                                                                         | Server<br>static (sig): pks, sk                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| $(pk_e, sk_e) \leftarrow KEM.Gen$                                                                                                                                                              |                                                                               |
|                                                                                                                                                                                                | pk <sub>e</sub>                                                               |
|                                                                                                                                                                                                |                                                                               |
|                                                                                                                                                                                                | $(ss_e, ct_e) \leftarrow KEM.Enc(pk_e \ K, K', K'', K''' \leftarrow KDF(ss_e$ |
| $ct_e, AEAD_K(cert[pk_S] \   Sig_{sk_S}$                                                                                                                                                       | (transcript)  key confirmation                                                |
| AEAD <sub>K'</sub> (ap                                                                                                                                                                         | plication data)                                                               |
| •                                                                                                                                                                                              |                                                                               |
|                                                                                                                                                                                                |                                                                               |
|                                                                                                                                                                                                |                                                                               |
| $\begin{aligned} & \text{ss}_e \leftarrow \text{KEM.Dec}(\text{ct}_e, \text{sk}_e) \\ & \textit{K}, \textit{K'}, \textit{K''}, \textit{K'''} \leftarrow \text{KDF}(\text{ss}_e) \end{aligned}$ |                                                                               |
| AEAD <sub>K''</sub> (key                                                                                                                                                                       | y confirmation)                                                               |
|                                                                                                                                                                                                |                                                                               |

### KEMTLS – the idea

- Remove signatures from handshake
- · Obtain authentication using long-term KEM keys
- Inspiration from DH-based OPTLS by Krawczyk and Wee (2015)

### KEMTLS - the idea

- Remove signatures from handshake
- · Obtain authentication using long-term KEM keys
- Inspiration from DH-based OPTLS by Krawczyk and Wee (2015)

### Motivation

- PQ KEMs are more efficient than PQ signatures
- Cannot build KEM and signature from the same "core TCB"

### KEMTLS - the idea

- · Remove signatures from handshake
- · Obtain authentication using long-term KEM keys
- Inspiration from DH-based OPTLS by Krawczyk and Wee (2015)

#### Motivation

- PQ KEMs are more efficient than PQ signatures
- Cannot build KEM and signature from the same "core TCB"

### Challenges

- Public keys are not known in advance
- (Typically only unilateral authentication)

### The KEMTLS handshake

### TLS 1.3

### Client Server static (sig): pks, sks $(pk_{\rho}, sk_{e}) \leftarrow DH.Gen$ pk<sub>e</sub> $(pk'_e, sk'_e) \leftarrow DH.Gen$ $ss_e \leftarrow DH.Shared(sk'_e, pk_e)$ $K, K', K'', K''' \leftarrow KDF(ss_e)$ pk', AEADK(cert[pks]|| Sigsko(transcript)||key confirmation) AEAD<sub>K'</sub> (application data) $ss_e \leftarrow DH.Shared(sk_e, pk'_e)$ $K, K', K'', K''' \leftarrow KDF(ss_e)$ AEADK" (key confirmation) AEAD<sub>K</sub>,,, (application data)

### **KEMTLS**

| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Serv static (KEM): pk <sub>S</sub> , s                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| $(pk_e, sk_e) \leftarrow KEM.Gen$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pk <sub>e</sub>                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ (ss_e, ct_e) \leftarrow KEM.Enc(p \\  \mathcal{K}_1, \mathcal{K}_1' \leftarrow KDF(s \\ $ |
| ct <sub>e</sub> , A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $EAD_{K_1}(cert[pk_S])$                                                                     |
| $ss_e \leftarrow KEM.Dec(ct_e, sk$<br>$K_1, K'_1 \leftarrow KDF(ss_e)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| $K_1, K_1' \leftarrow KDF(ss_e)$<br>$(ss_S, ct_S) \leftarrow KEM.Enc($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| $K_1, K_1' \leftarrow KDF(ss_e)$<br>$(ss_S, ct_S) \leftarrow KEM.Enc($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $pk_{S})$ $AEAD_{K_{1}^{c}}(ct_{S})$                                                        |
| $K_1, K_1' \leftarrow KDF(ss_e)$ $(ss_S, ct_S) \leftarrow KEM.Enc($ $K_2, K_2', K_2'', K_2''' \leftarrow KDF(st_S)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $pk_{S})$ $AEAD_{K_{1}^{c}}(ct_{S})$                                                        |
| $K_1, K_1' \leftarrow \text{KDF}(ss_e)$ $(ss_s, ct_s) \leftarrow \text{KEM.Enc}(ss_s, ct_s) \leftarrow $ | $pk_S$ ) AEAD $_{K_1'}(ct_S)$ SSe $_{\mathbb{R}}$                                           |

AEADK" (application data)

# Advantages/Disadvantages of KEMTLS

### Advantages

- Faster handshake until first client payload
- Fewer (server) CPU cycles
- Possible to massively reduce bandwidth requirements
- Smaller TCB (no signing code!)
- No low-latency requirements for PQ signatures

# Advantages/Disadvantages of KEMTLS

### Advantages

- Faster handshake until first client payload
- Fewer (server) CPU cycles
- Possible to massively reduce bandwidth requirements
- Smaller TCB (no signing code!)
- No low-latency requirements for PQ signatures

### Disadvantages

- No payload in first server message
- · Delayed explicit authentication
- Delayed authentication of cipher suite

# Handshake performance

### Average time in ms for handshake establishment (fast network)

|                 |     | Han                 | dshake time | (31.1 ms la | tency, 1000 N | ∕lbps bandw         | idth)   |  |
|-----------------|-----|---------------------|-------------|-------------|---------------|---------------------|---------|--|
|                 |     | Excl. int. CA cert. |             |             | Inc           | Incl. int. CA cert. |         |  |
|                 |     | Client              | Client      | Server      | Client        | Client              | Server  |  |
|                 |     | sent req.           | recv. resp. | HS done     | sent req.     | recv. resp.         | HS done |  |
| ER              | RRR | 66.4                | 97.7        | 35.5        | 66.5          | 97.7                | 35.5    |  |
|                 | Xr  | 80.1                | 111.3       | 49.2        | 80.4          | 111.5               | 49.4    |  |
| LS NE           | DDD | 63.8                | 95.1        | 32.9        | 64.1          | 95.4                | 33.2    |  |
| ≓ NF            | FFF | 64.8                | 96.0        | 33.8        | 65.1          | 96.4                | 34.2    |  |
| က္ SS           | SXr | 84.5                | 124.6       | 62.5        | 84.3          | 124.4               | 62.3    |  |
| Ę ĸĸ            | (DD | 63.3                | 94.8        | 32.6        | 63.7          | 95.2                | 32.9    |  |
| KEMTLS<br>NN KK | NFF | 63.4                | 95.0        | 32.7        | 63.7          | 95.3                | 33.0    |  |

Label syntax: ABCD: A = ephemeral key exchange, B = leaf certificate, C = intermediate CA certificate, D = root certificate.

Label values:  $\underline{D}$ ilithium,  $\underline{E}$ CDH X25519,  $\underline{F}$ alcon,  $\underline{r}$ ainbow,  $\underline{K}$ yber,  $\underline{N}$ TRU,  $\underline{R}$ SA-2048,  $\underline{S}$ IKE,  $\underline{X}$ MSS $_s^{MT}$ ; all level-1 schemes.

# Handshake performance

#### Average computation time in ms for asymmetric crypto

|         |      | Excl. int.<br>Client | CA cert.<br>Server | Incl. int.<br>Client | <b>CA cert</b> .<br>Server |
|---------|------|----------------------|--------------------|----------------------|----------------------------|
| TLS 1.3 | ERRR | 0.134                | 0.629              | 0.150                | 0.629                      |
|         | SFXr | 11.860               | 4.410              | 12.051               | 4.410                      |
|         | KDDD | 0.059                | 0.072              | 0.081                | 0.072                      |
|         | NFFF | 0.138                | 0.241              | 0.180                | 0.241                      |
| KEMTLS  | SSXr | 15.998               | 7.173              | 16.188               | 7.173                      |
|         | KKDD | 0.048                | 0.017              | 0.070                | 0.017                      |
|         | NNFF | 0.107                | 0.021              | 0.149                | 0.021                      |

Label syntax: ABCD: A = ephemeral key exchange, B = leaf certificate, C = intermediate CA certificate, D = root certificate.

 $\begin{array}{l} \text{Label values: } \underline{\textit{D}} \text{ilithium, } \underline{\textit{E}} \text{CDH X25519, } \underline{\textit{F}} \text{alcon, } \underline{\textit{r}} \text{ainbow, } \underline{\textit{K}} \text{yber, } \underline{\textit{N}} \text{TRU, } \underline{\textit{R}} \text{SA-2048, } \underline{\textit{S}} \text{IKE, } \underline{\textit{X}} \text{MSS}_s^{\text{MT}} \text{; all level-1 schemes.} \end{array}$ 

# Handshake performance

### Transmitted bytes for asymmetric cryptographic objects

|                          | Excl. int. CA cert. | Incl. int. CA cert.           |
|--------------------------|---------------------|-------------------------------|
| ERF<br>SFX<br>KDE<br>NFF | %r 2999<br>DD 7720  | 1376<br>3097<br>11452<br>5262 |
| S SSX                    | DD 5556             | 1943<br>9288<br>5073          |

Label syntax: ABCD: A = ephemeral key exchange, B = leaf certificate, C = intermediate CA certificate, D = root certificate.

Label values:  $\underline{D}$ ilithium,  $\underline{E}$ CDH X25519,  $\underline{F}$ alcon,  $\underline{r}$ ainbow,  $\underline{K}$ yber,  $\underline{N}$ TRU,  $\underline{R}$ SA-2048,  $\underline{S}$ IKE,  $\underline{X}$ MSS $_s^{MT}$ ; all level-1 schemes.

# KEMTLS with pre-distributed keys

What if the client already knows the server's long-term key?

# KEMTLS with pre-distributed keys

What if the client already knows the server's long-term key?

### Examples

- · IoT devices that only commicate to one server
- · Caching of public keys in the browser
- Pre-distribution of keys via, e.g., DNS
- Apps that communicate only to few servers

# KEMTLS with pre-distributed keys

What if the client already knows the server's long-term key?

### Examples

- · IoT devices that only commicate to one server
- · Caching of public keys in the browser
- Pre-distribution of keys via, e.g., DNS
- Apps that communicate only to few servers

### Summary

- All the advantages of KEMTLS without the disadvantages
- Different PQ-KEMs become best choice (McEliece...)

# KEMTLS – ongoing work

• "Real-world" experiment in collaboration with Cloudflare:

```
Celi, Faz-Hernández, Sullivan, Tamvada, Valenta, Wiggers, Westerbaan, and Wood: Implementing and Measuring KEMTLS. https://eprint.iacr.org/2021/1019
```

Internet draft.

Celi, Schwabe, Stebila, Sullivan, and Wiggers: *KEM-based Authentication for TLS 1.3.* 

```
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
```

 Formal verification using Tamarin (Hoyland and Wiggers; very much WIP)

### Resources online

- PQ-WireGuard paper: https://eprint.iacr.org/2020/379
- PQ-WireGuard software:
   https://cryptojedi.org/crypto/#pqwireguard

### Resources online

- PQ-WireGuard paper: https://eprint.iacr.org/2020/379
- PQ-WireGuard software: https://cryptojedi.org/crypto/#pqwireguard
- KEMTLS paper: https://eprint.iacr.org/2020/534
- KEMTLS with predistributed keys: https://eprint.iacr.org/2021/779
- KEMTLS software: https://github.com/thomwiggers/kemtls-experiment/