
Crypto protocols for the post-quantum era:
PQ-WireGuard and KEMTLS

Peter Schwabe

September 9, 2021



NISTPQC

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

1



Challenges for post-quantum protocols

1. Massively different performance characteristics than ECC

2. Much more complex landscape of crypto primitives

3. No drop-in replacement for DH

4. Most efficient signatures are stateful (and forward secure)

5. Potentially more complex proofs

2



Challenges for post-quantum protocols

1. Massively different performance characteristics than ECC

2. Much more complex landscape of crypto primitives

3. No drop-in replacement for DH

4. Most efficient signatures are stateful (and forward secure)

5. Potentially more complex proofs

2



Challenges for post-quantum protocols

1. Massively different performance characteristics than ECC

2. Much more complex landscape of crypto primitives

3. No drop-in replacement for DH

4. Most efficient signatures are stateful (and forward secure)

5. Potentially more complex proofs

2



Challenges for post-quantum protocols

1. Massively different performance characteristics than ECC

2. Much more complex landscape of crypto primitives

3. No drop-in replacement for DH

4. Most efficient signatures are stateful (and forward secure)

5. Potentially more complex proofs

2



Challenges for post-quantum protocols

1. Massively different performance characteristics than ECC

2. Much more complex landscape of crypto primitives

3. No drop-in replacement for DH

4. Most efficient signatures are stateful (and forward secure)

5. Potentially more complex proofs

2



Challenges for post-quantum protocols

1. Massively different performance characteristics than ECC

2. Much more complex landscape of crypto primitives

3. No drop-in replacement for DH

4. Most efficient signatures are stateful (and forward secure)

5. Potentially more complex proofs

2



Post-quantum WireGuard
Andreas Hülsing, Kai-Chun Ning, Peter Schwabe,

Florian Weber, Philip R. Zimmermann



WireGuard

• Modern Virtual Private Network (VPN) protocol

• Presented by Donenfeld at NDSS 2017

• Merged into Linux kernel in 2020

• Only ≈4000 lines of code

• Runs over UDP

”Compared to horrors that are OpenVPN and IPSec, WireGuard is a work
of art”

—Linus Torvalds

4



“Cryptographically opinionated”

• No “crypto agility”
• Fixed suite of cryptographic primitives:

• X25519 as Diffie-Hellman routine
• ChaCha20-Poly1305 as AEAD
• Blake2s for hashing and keyed hashing
• HKDF for key derivation

5



The WireGuard handshake (basic idea: “4DH”)

Initiator has long-term DH key-pair (sski, spki)
Responder has long-term DH key-pair (sskr, spkr)
Initiator Responder

(eski, epki)← DH.Gen()

epki−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(eskr, epkr)← DH.Gen()

epkr←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

k1 ← DH.Shared(eski, spkr) k1 ← DH.Shared(sskr, epki)
k2 ← DH.Shared(sski, epkr) k2 ← DH.Shared(eskr, spki)
k3 ← DH.Shared(eski, epkr) k3 ← DH.Shared(eskr, epki)
k4 ← DH.Shared(sski, spkr) k4 ← DH.Shared(sskr, spki)

Derive session key from k1, k2, k3, and k4

6



The WireGuard handshake (high-level)
Initiator Responder

1: (eski, epki)← DH.Gen()

2: sidi
$← {0, 1}32

3: ltk← AEAD.Enc(κ3, 0, spki,H3)

4: now← Timestamp()
5: time← AEAD.Enc(κ4, 0,H4, now)
6: m1← MAC(H(lbl3 ∥ spkr), type ∥ 03 ∥ sidi ∥ epki ∥ ltk ∥ time)
7: m2← MAC(cookie, type ∥ 03 ∥ sidi ∥ epki ∥ ltk ∥ time ∥ m1)
8: InitHello← type ∥ 03 ∥ sidi ∥ epki ∥ ltk ∥ time ∥ m1 ∥ m2

InitHello−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

9: (eskr, epkr)← DH.Gen()

10: sidr
$← {0, 1}32

11: zero← AEAD.Enc(κ9, 0,H9, ∅)
12: m1← MAC(H(lbl3 ∥ spki), type ∥ 03 ∥ sidr ∥ sidi ∥ epkr ∥ zero)
13: m2← MAC(cookie, type ∥ 03 ∥ sidr ∥ sidi ∥ epkr ∥ zero ∥ m1)
14: RespHello← type ∥ 03 ∥ sidr ∥ sidi ∥ epkr ∥ zero ∥ m1 ∥ m2

RespHello
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15: tki ← KDF1(C9, ∅)
16: tkr ← KDF2(C9, ∅)

AEAD.Enc(tki, ·, ∅, application data)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 7



Handshake security

• Key confidentiality

• Entity authentication

• Key uniqueness

• Identity hiding

• Replay attack resistance

• Unknown key-share (UKS) attack resistance

• DoS attack resistance (early reject)

8



Handshake security

• Key confidentiality

• Entity authentication

• Key uniqueness

• Identity hiding

• Replay attack resistance

• Unknown key-share (UKS) attack resistance

• DoS attack resistance (early reject)

8



WireGuard security proofs

• Computational: Dowling and Paterson, 2018
• eCK-PFS-PSK
• Assumes additional key-confirmation message
• Missing: key uniqueness, identity hiding, DoS mitigation

• Symbolic: Donenfeld and Milner, 2017
• Missing: perfect forward secrecy, replay attack resistance, DoS

mitigation

9



Post-quantum security of WireGuard

• The optional PSK provides confidentiality against quantum
attacks.

• Assumption: PSK cannot be recovered by quantum attackers

• Post-quantum cryptography: Donenfeld claimed ’not practical for
use here’

• Applebaum, Martindale, Wu, 2019:
• Tweak to WireGuard protocol
• Send H(pk) instead of pk
• Resistance against surveillance attackers

10



PQ-WireGuard – our goals

• Post-quantum confidentiality and authentication

• NIST security level 3 (≈AES-192)

• Retain all security properties of WireGuard

• Efficient 1-round-trip handshake

• No fragmentation
• Remember: WireGuard uses UDP
• Lost packets, filtering ⇒ more complex state machine

• Packet-size constraint:
• IPv6 guarantee: no fragmentation of packets ≤ 1280 bytes
• Fit WireGuard messages into 1232 bytes

11



PQ-WireGuard – our goals

• Post-quantum confidentiality and authentication

• NIST security level 3 (≈AES-192)

• Retain all security properties of WireGuard

• Efficient 1-round-trip handshake
• No fragmentation

• Remember: WireGuard uses UDP
• Lost packets, filtering ⇒ more complex state machine

• Packet-size constraint:
• IPv6 guarantee: no fragmentation of packets ≤ 1280 bytes
• Fit WireGuard messages into 1232 bytes

11



PQ-WireGuard – the idea

1. Replace DH with key-encapsulation mechanisms (KEMs)

2. Instantiate with PQ KEMs achieving desired security

12



Diffie-Hellman

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

13



Diffie-Hellman

Alice Bob

A← ga B← gb

B

A

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

13



KEMs: as close as you’ll get to DH

∗

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

∗Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)

14



KEMs: as close as you’ll get to DH∗

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

∗Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)

14



What can KEMs (not) do?

Initiator Responder

(eski, epki)← DH.Gen()

epki−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(eskr, epkr)← DH.Gen()

epkr←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

k1 ← DH.Shared(eski, spkr) k1 ← DH.Shared(sskr, epki)
k2 ← DH.Shared(sski, epkr) k2 ← DH.Shared(eskr, spki)
k3 ← DH.Shared(eski, epkr) k3 ← DH.Shared(eskr, epki)
k4 ← DH.Shared(sski, spkr) k4 ← DH.Shared(sskr, spki)

15



A first approach with KEMs

Initiator Responder

(eski, epki)← CPAKEM.Gen()
r1

$← {0, 1}λ, (c1, k1)← CCAKEM.Enc(spkr, r1)

epki, c1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

r2
$← {0, 1}λ, (c2, k2)← CCAKEM.Enc(spki, r2)

r3
$← {0, 1}λ, (c3, k3)← CPAKEM.Enc(epki, r3)

c2, c3←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

k1 ← CCAKEM.Dec(sskr, c1)
k2 ← CCAKEM.Dec(sski, c2)
k3 ← CPAKEM.Dec(eski, c3)

16



What are we lacking?

DoS resistance
• First initiator message is unauthenticated

• Solution: Use (optional) pre-shared key for early rejects

“MEX” resistance
• Some security also if all RNGs are insecure

• Static-static DH for confidentiality from long-term keys

• Solution: Use “NAXOS trick”

UKS-attack resistance
• WireGuard does not hash public keys into session key

• UKS resistance derived from static-static DH

• Solution: Use default PSK as H(spki ⊕ spkr)

17



What are we lacking?

DoS resistance
• First initiator message is unauthenticated

• Solution: Use (optional) pre-shared key for early rejects

“MEX” resistance
• Some security also if all RNGs are insecure

• Static-static DH for confidentiality from long-term keys

• Solution: Use “NAXOS trick”

UKS-attack resistance
• WireGuard does not hash public keys into session key

• UKS resistance derived from static-static DH

• Solution: Use default PSK as H(spki ⊕ spkr)

17



What are we lacking?

DoS resistance
• First initiator message is unauthenticated

• Solution: Use (optional) pre-shared key for early rejects

“MEX” resistance
• Some security also if all RNGs are insecure

• Static-static DH for confidentiality from long-term keys

• Solution: Use “NAXOS trick”

UKS-attack resistance
• WireGuard does not hash public keys into session key

• UKS resistance derived from static-static DH

• Solution: Use default PSK as H(spki ⊕ spkr)

17



(Most of) the PQ-WireGuard handshake
Initiator Responder

1: (eski, epki)← CPAKEM.Gen()

2: sidi
$← {0, 1}32

3: ri ← {0, 1}λ

4: (ct1, shk1)← CCAKEM.Enc(spkr, KDF1(σi, ri))
5: ltk← AEAD.Enc(κ3, 0, H(spki),H3)

6: now← Timestamp()
7: time← AEAD.Enc(κ4, 0,H4, now)
8: m1← MAC(H(lbl3 ∥ spkr), type ∥ 03 ∥ sidi ∥ epki ∥ ct1 ∥ ltk ∥ time)
9: m2← MAC(cookie, type ∥ 03 ∥ sidi ∥ epki ∥ ct1 ∥ ltk ∥ time ∥ m1)

10: InitHello← type ∥ 03 ∥ sidi ∥ epki ∥ ct1 ∥ ltk ∥ time ∥ m1 ∥ m2

InitHello−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

11: e, rr ← {0, 1}λ × {0, 1}λ

12: (ct2, shk2)← CPAKEM.Enc(epki, e)
13: (ct3, shk3)← CCAKEM.Enc(spki, KDF1(σr, rr))

14: sidr
$← {0, 1}32

15: zero← AEAD.Enc(κ9, 0,H9, ∅)
16: m1← MAC(H(lbl3 ∥ spki), type ∥ 03 ∥ sidr ∥ sidi ∥ ct2 ∥ ct3 ∥ zero)
17: m2← MAC(cookie, type ∥ 03 ∥ sidr ∥ sidi ∥ ct2 ∥ ct3 ∥ zero ∥ m1)
18: RespHello← type ∥ 03 ∥ sidr ∥ sidi ∥ ct2 ∥ ct3 ∥ zero ∥ m1 ∥ m2

RespHello
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

18



Adding explicit key confirmation

Initiator Responder

19: conf← AEAD.Enc(κ10, 0,H10, ∅)
20: m1← MAC(H(lbl3 ∥ spkr), type ∥ 03 ∥ sidi ∥ sidr ∥ conf)
21: m2← MAC(cookie, type ∥ 03 ∥ sidi ∥ sidr ∥ conf ∥ m1)
22: InitConf← type ∥ 03 ∥ sidi ∥ sidr ∥ conf ∥ m1 ∥ m2

InitConf−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

23: tki ← KDF1(C10, ∅)
24: tkr ← KDF2(C10, ∅)

• Allows proofs to separate handshake from data transmission

• eCK-PFS-PSK proof applies to actual protocol

19



PQ-WireGuard security proofs

• Computational:
• Based on Dowling and Paterson (2018)
• Proof in the eCK-PFS-PSK model
• Standard model proof

• Symbolic:
• Based on Donenfeld and Milner (2017)
• Uses the Tamarin prover
• Cover all desired security properties

20



Instantiation

• Long-term IND-CCA-secure KEM: Classic McEliece
• Smallest ciphertext of all NIST PQC candidates
• Public-key size does not matter
• Key-generation time does not matter

• Ephemeral IND-CPA-secure KEM requirements:
• NIST PQC round-2 candidate at level 3
• High-speed constant-time implementation
• Pick “conservative” primitives
• No patent claims by submitters
• No tweaks that lower security

• Fit into unfragmented IPv6 packet:
• public key of≤928 bytes
• ciphertext of≤984 bytes

21



Instantiation

• Long-term IND-CCA-secure KEM: Classic McEliece
• Smallest ciphertext of all NIST PQC candidates
• Public-key size does not matter
• Key-generation time does not matter

• Ephemeral IND-CPA-secure KEM requirements:
• NIST PQC round-2 candidate at level 3
• High-speed constant-time implementation
• Pick “conservative” primitives
• No patent claims by submitters
• No tweaks that lower security

• Fit into unfragmented IPv6 packet:
• public key of≤928 bytes
• ciphertext of≤984 bytes

21



Instantiation

• Long-term IND-CCA-secure KEM: Classic McEliece
• Smallest ciphertext of all NIST PQC candidates
• Public-key size does not matter
• Key-generation time does not matter

• Ephemeral IND-CPA-secure KEM requirements:
• NIST PQC round-2 candidate at level 3
• High-speed constant-time implementation
• Pick “conservative” primitives
• No patent claims by submitters
• No tweaks that lower security
• Fit into unfragmented IPv6 packet:

• public key of≤928 bytes
• ciphertext of≤984 bytes

21



Dagger

• Only three NIST round-2 candidates within size constraints:
• SIKE – not high-speed
• ROLLO – not conservative
• Round5 – patent encumbered

• Idea: Tweak lattice-based KEM:
• More public-key and ciphertext compression
• Increase hardness of lattice problems
• Increase failure probability (no issue for CPA sec.)

• Tweaked (smaller, more lightweight) Saber: Dagger

22



Dagger

• Only three NIST round-2 candidates within size constraints:
• SIKE – not high-speed
• ROLLO – not conservative
• Round5 – patent encumbered

• Idea: Tweak lattice-based KEM:
• More public-key and ciphertext compression
• Increase hardness of lattice problems
• Increase failure probability (no issue for CPA sec.)

• Tweaked (smaller, more lightweight) Saber: Dagger

22



Dagger

• Only three NIST round-2 candidates within size constraints:
• SIKE – not high-speed
• ROLLO – not conservative
• Round5 – patent encumbered

• Idea: Tweak lattice-based KEM:
• More public-key and ciphertext compression
• Increase hardness of lattice problems
• Increase failure probability (no issue for CPA sec.)

• Tweaked (smaller, more lightweight) Saber: Dagger

22



Implementation and Evaluation

• Implement as Linux kernel module

• Use existing high-speed constant-time software for McEliece and
Dagger (Saber)

• Metrics for comparison:
• Amount of traffic
• Number of packets
• Handshake latency

• Use virtual 10Gbps Ethernet link between two VMs

• Both IPv4 and IPv6: similar results

• Compare with WireGuard, OpenVPN, IPsec, PQCrypto-VPN

23



Implementation and Evaluation

• Implement as Linux kernel module

• Use existing high-speed constant-time software for McEliece and
Dagger (Saber)

• Metrics for comparison:
• Amount of traffic
• Number of packets
• Handshake latency

• Use virtual 10Gbps Ethernet link between two VMs

• Both IPv4 and IPv6: similar results

• Compare with WireGuard, OpenVPN, IPsec, PQCrypto-VPN

23



Implementation and Evaluation

• Implement as Linux kernel module

• Use existing high-speed constant-time software for McEliece and
Dagger (Saber)

• Metrics for comparison:
• Amount of traffic
• Number of packets
• Handshake latency

• Use virtual 10Gbps Ethernet link between two VMs

• Both IPv4 and IPv6: similar results

• Compare with WireGuard, OpenVPN, IPsec, PQCrypto-VPN

23



Results

VPN Software Packet Traffic Client Time Server Time
Number (bytes) (milliseconds) (milliseconds)

WireGuard 3 458 0.592 0.480
(0) (0) (0.399) (0.389)

PQ-WireGuard 3 2654 1.015 0.786
(0) (0) (0.618) (0.621)

IPsec 6 4299 17.188 11.912
(RSA-2048) (0) (0) (0.712) (0.535)
IPsec 4 2281 5.226 2.822
(Curve25519) (0) (0) (0.575) (0.436)
OpenVPN 21.003 7955.409 1148.733 1142.650
(RSA-2048) (0.055) (7.319) (250.513) (243.184)
OpenVPN 19.005 5788.610 1139.140 1133.944
(NIST P-256) (0.007) (9.423) (247.659) (240.691)
OpenVPN-NL 19.005 6065.700 1162.649 1151.790
(RSA-2048) (0.072) (9.665) (261.078) (246.363)
OpenVPN-NL 19.001 6061.138 1159.627 1153.949
(NIST P-256) (0.003) (4.304) (252.989) (247.470)
PQ-OpenVPN 63.006 35608.817 1160.922 1155.713
(Frodo-752) (0.078) (10.324) (259.246) (245.614)
PQ-OpenVPN 23.005 8996.684 1277.172 1269.074
(SIDHp503 ) (0.072) (9.449) (251.461) (257.427)

24



KEMTLS
Peter Schwabe, Douglas Stebila, and Thom Wiggers



The TLS 1.3 handshake

TLS 1.3

Client Server

static (sig): pkS, skS
(pke, ske)← DH.Gen

pke

(pk′e, sk′e)← DH.Gen
sse ← DH.Shared(sk′e, pke)
K,K′,K′′,K′′′ ← KDF(sse)

pk′e,AEADK(cert[pkS]∥SigskS(transcript)∥key confirmation)

AEADK′(application data)

sse ← DH.Shared(ske, pk′e)
K,K′,K′′,K′′′ ← KDF(sse)

AEADK′′(key confirmation)

AEADK′′′(application data)

“Straight-forward” PQTLS

Client Server

static (sig): pkS, skS
(pke, ske)← KEM.Gen

pke

(sse, cte)← KEM.Enc(pke)
K,K′,K′′,K′′′ ← KDF(sse)

cte,AEADK(cert[pkS]∥SigskS(transcript)∥key confirmation)

AEADK′(application data)

sse ← KEM.Dec(cte, ske)
K,K′,K′′,K′′′ ← KDF(sse)

AEADK′′(key confirmation)

AEADK′′′(application data)

26



The TLS 1.3 handshake

TLS 1.3

Client Server

static (sig): pkS, skS
(pke, ske)← DH.Gen

pke

(pk′e, sk′e)← DH.Gen
sse ← DH.Shared(sk′e, pke)
K,K′,K′′,K′′′ ← KDF(sse)

pk′e,AEADK(cert[pkS]∥SigskS(transcript)∥key confirmation)

AEADK′(application data)

sse ← DH.Shared(ske, pk′e)
K,K′,K′′,K′′′ ← KDF(sse)

AEADK′′(key confirmation)

AEADK′′′(application data)

“Straight-forward” PQTLS

Client Server

static (sig): pkS, skS
(pke, ske)← KEM.Gen

pke

(sse, cte)← KEM.Enc(pke)
K,K′,K′′,K′′′ ← KDF(sse)

cte,AEADK(cert[pkS]∥SigskS(transcript)∥key confirmation)

AEADK′(application data)

sse ← KEM.Dec(cte, ske)
K,K′,K′′,K′′′ ← KDF(sse)

AEADK′′(key confirmation)

AEADK′′′(application data)

26



KEMTLS – the idea

• Remove signatures from handshake

• Obtain authentication using long-term KEM keys

• Inspiration from DH-based OPTLS by Krawczyk and Wee (2015)

Motivation
• PQ KEMs are more efficient than PQ signatures

• Cannot build KEM and signature from the same “core TCB”

Challenges
• Public keys are not known in advance

• (Typically only unilateral authentication)

27



KEMTLS – the idea

• Remove signatures from handshake

• Obtain authentication using long-term KEM keys

• Inspiration from DH-based OPTLS by Krawczyk and Wee (2015)

Motivation
• PQ KEMs are more efficient than PQ signatures

• Cannot build KEM and signature from the same “core TCB”

Challenges
• Public keys are not known in advance

• (Typically only unilateral authentication)

27



KEMTLS – the idea

• Remove signatures from handshake

• Obtain authentication using long-term KEM keys

• Inspiration from DH-based OPTLS by Krawczyk and Wee (2015)

Motivation
• PQ KEMs are more efficient than PQ signatures

• Cannot build KEM and signature from the same “core TCB”

Challenges
• Public keys are not known in advance

• (Typically only unilateral authentication)

27



The KEMTLS handshake

TLS 1.3

Client Server

static (sig): pkS, skS
(pke, ske)← DH.Gen

pke

(pk′e, sk′e)← DH.Gen
sse ← DH.Shared(sk′e, pke)
K,K′,K′′,K′′′ ← KDF(sse)

pk′e,AEADK(cert[pkS]∥SigskS(transcript)∥key confirmation)

AEADK′(application data)

sse ← DH.Shared(ske, pk′e)
K,K′,K′′,K′′′ ← KDF(sse)

AEADK′′(key confirmation)

AEADK′′′(application data)

KEMTLS

Client Server

static (KEM): pkS, skS
(pke, ske)← KEM.Gen

pke

(sse, cte)← KEM.Enc(pke)
K1,K′1 ← KDF(sse)

cte,AEADK1
(cert[pkS])

sse ← KEM.Dec(cte, ske)
K1,K′1 ← KDF(sse)
(ssS, ctS)← KEM.Enc(pkS)

AEADK′
1
(ctS)

K2,K′2,K′′2 ,K′′′2 ← KDF(sse∥ssS)

AEADK2
(key confirmation)

AEADK′
2
(application data)

ssS ← KEM.Dec(ctS, skS)
K2,K′2,K′′2 ,K′′′2 ← KDF(sse∥ssS)

AEADK′′
2
(key confirmation)

AEADK′′′
2
(application data)

28



Advantages/Disadvantages of KEMTLS

Advantages
• Faster handshake until first

client payload

• Fewer (server) CPU cycles

• Possible to massively reduce
bandwidth requirements

• Smaller TCB (no signing code!)

• No low-latency requirements
for PQ signatures

Disadvantages
• No payload in first server

message

• Delayed explicit authentication

• Delayed authentication of
cipher suite

29



Advantages/Disadvantages of KEMTLS

Advantages
• Faster handshake until first

client payload

• Fewer (server) CPU cycles

• Possible to massively reduce
bandwidth requirements

• Smaller TCB (no signing code!)

• No low-latency requirements
for PQ signatures

Disadvantages
• No payload in first server

message

• Delayed explicit authentication

• Delayed authentication of
cipher suite

29



Handshake performance

Average time in ms for handshake establishment (fast network)

Handshake time (31.1ms latency, 1000Mbps bandwidth)
Excl. int. CA cert. Incl. int. CA cert.

Client Client Server Client Client Server
sent req. recv. resp. HS done sent req. recv. resp. HS done

TL
S

1.
3

ERRR 66.4 97.7 35.5 66.5 97.7 35.5
SFXr 80.1 111.3 49.2 80.4 111.5 49.4
KDDD 63.8 95.1 32.9 64.1 95.4 33.2
NFFF 64.8 96.0 33.8 65.1 96.4 34.2

KE
M

TL
S SSXr 84.5 124.6 62.5 84.3 124.4 62.3

KKDD 63.3 94.8 32.6 63.7 95.2 32.9
NNFF 63.4 95.0 32.7 63.7 95.3 33.0

Label syntax: ABCD: A = ephemeral key exchange, B = leaf certificate, C = intermediate CA certificate,
D = root certificate.

Label values: Dilithium, ECDH X25519, Falcon, rainbow, Kyber, NTRU, RSA-2048, SIKE, XMSSMT
s ; all

level-1 schemes.

30



Handshake performance

Average computation time in ms for asymmetric crypto

Excl. int. CA cert. Incl. int. CA cert.
Client Server Client Server

TL
S

1.
3

ERRR 0.134 0.629 0.150 0.629
SFXr 11.860 4.410 12.051 4.410
KDDD 0.059 0.072 0.081 0.072
NFFF 0.138 0.241 0.180 0.241

KE
M

TL
S SSXr 15.998 7.173 16.188 7.173

KKDD 0.048 0.017 0.070 0.017
NNFF 0.107 0.021 0.149 0.021

Label syntax: ABCD: A = ephemeral key exchange, B = leaf certificate, C = intermediate CA certificate,
D = root certificate.

Label values: Dilithium, ECDH X25519, Falcon, rainbow, Kyber, NTRU, RSA-2048, SIKE, XMSSMT
s ; all

level-1 schemes.

30



Handshake performance

Transmitted bytes for asymmetric cryptographic objects

Excl. int. CA cert. Incl. int. CA cert.

TL
S

1.
3

ERRR 848 1376
SFXr 2999 3097
KDDD 7720 11452
NFFF 3675 5262

KE
M

TL
S SSXr 1845 1943

KKDD 5556 9288
NNFF 3486 5073

Label syntax: ABCD: A = ephemeral key exchange, B = leaf certificate, C = intermediate CA certificate,
D = root certificate.

Label values: Dilithium, ECDH X25519, Falcon, rainbow, Kyber, NTRU, RSA-2048, SIKE, XMSSMT
s ; all

level-1 schemes.

30



KEMTLS with pre-distributed keys

What if the client already knows the server’s long-term key?

Examples
• IoT devices that only commicate to one server

• Caching of public keys in the browser

• Pre-distribution of keys via, e.g., DNS

• Apps that communicate only to few servers

Summary
• All the advantages of KEMTLS without the disadvantages

• Different PQ-KEMs become best choice (McEliece. . . )

31



KEMTLS with pre-distributed keys

What if the client already knows the server’s long-term key?

Examples
• IoT devices that only commicate to one server

• Caching of public keys in the browser

• Pre-distribution of keys via, e.g., DNS

• Apps that communicate only to few servers

Summary
• All the advantages of KEMTLS without the disadvantages

• Different PQ-KEMs become best choice (McEliece. . . )

31



KEMTLS with pre-distributed keys

What if the client already knows the server’s long-term key?

Examples
• IoT devices that only commicate to one server

• Caching of public keys in the browser

• Pre-distribution of keys via, e.g., DNS

• Apps that communicate only to few servers

Summary
• All the advantages of KEMTLS without the disadvantages

• Different PQ-KEMs become best choice (McEliece. . . )

31



KEMTLS – ongoing work

• “Real-world” experiment in collaboration with Cloudflare:

Celi, Faz-Hernández, Sullivan, Tamvada, Valenta, Wiggers,
Westerbaan, and Wood: Implementing and Measuring KEMTLS.
https://eprint.iacr.org/2021/1019

• Internet draft:

Celi, Schwabe, Stebila, Sullivan, and Wiggers: KEM-based
Authentication for TLS 1.3.
https://datatracker.ietf.org/doc/html/
draft-celi-wiggers-tls-authkem-00

• Formal verification using Tamarin (Hoyland and Wiggers; very
much WIP)

32

https://eprint.iacr.org/2021/1019
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00
https://datatracker.ietf.org/doc/html/draft-celi-wiggers-tls-authkem-00


Resources online

• PQ-WireGuard paper: https://eprint.iacr.org/2020/379

• PQ-WireGuard software:
https://cryptojedi.org/crypto/#pqwireguard

• KEMTLS paper: https://eprint.iacr.org/2020/534

• KEMTLS with predistributed keys:
https://eprint.iacr.org/2021/779

• KEMTLS software:
https://github.com/thomwiggers/kemtls-experiment/

33

https://eprint.iacr.org/2020/379
https://cryptojedi.org/crypto/#pqwireguard
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://github.com/thomwiggers/kemtls-experiment/


Resources online

• PQ-WireGuard paper: https://eprint.iacr.org/2020/379

• PQ-WireGuard software:
https://cryptojedi.org/crypto/#pqwireguard

• KEMTLS paper: https://eprint.iacr.org/2020/534

• KEMTLS with predistributed keys:
https://eprint.iacr.org/2021/779

• KEMTLS software:
https://github.com/thomwiggers/kemtls-experiment/

33

https://eprint.iacr.org/2020/379
https://cryptojedi.org/crypto/#pqwireguard
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2021/779
https://github.com/thomwiggers/kemtls-experiment/

