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WireGuard

• Modern Virtual Private Network (VPN) protocol

• Presented by Donenfeld at NDSS 2017

• Merged into Linux kernel in 2020

• Only ≈4000 lines of code

• Runs over UDP

”Compared to horrors that are OpenVPN and IPSec, WireGuard is a work
of art”

—Linus Torvalds
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“Cryptographically opinionated”

• No “crypto agility”
• Fixed suite of cryptographic primitives:

• X25519 as Diffie-Hellman routine
• ChaCha20-Poly1305 as AEAD
• Blake2s for hashing and keyed hashing
• HKDF for key derivation

• Focus today: the WireGuard handshake
• Authenticate parties to each other
• Establish a session key to encrypt payload data
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Diffie-Hellman reminder

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab
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Diffie-Hellman reminder

Attacker who can compute x given gx breaks Diffie-Hellman

This is known as Discrete-Logarithm Problem
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“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m thinking
like it’s 15 or a little more. It’s within reach. It’s within our lifetime. It’s
going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

6



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

6



NISTPQC

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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State of NIST PQC

• Nov 2017: 69 “complete and proper” submissions

• Jan. 2019: Round-2 announcement planned at RWC

• Feb. 2019: 26 round-2 candidates

• Jun. 2020: Round-3 announcement planned
• Jul. 2020: Round-3 announcement:

• 7 finalists
• 8 alternate schemes
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What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?

9



What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?

9



What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?

9



What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?

9



The WireGuard handshake (basic idea: “4DH”)

Initiator has long-term DH key-pair (sski, spki)

Responder has long-term DH key-pair (sskr, spkr)

Initiator Responder

(eski, epki)← DH.Gen()

epki−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(eskr, epkr)← DH.Gen()

epkr←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

k1 ← DH.Shared(eski, spkr) k2 ← DH.Shared(sskr, epki)
k2 ← DH.Shared(sski, epkr) k3 ← DH.Shared(eskr, spki)
k3 ← DH.Shared(eski, epkr) k4 ← DH.Shared(eskr, epki)
k4 ← DH.Shared(sski, spkr) k1 ← DH.Shared(sskr, spki)

Derive session key from k1, k2, k3, and k4
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The WireGuard handshake (high-level)
Initiator Responder

1: (eski, epki)← DH.Gen()

2: sidi
$← {0, 1}32

3: ltk← AEAD.Enc(κ3, 0, spki,H3)

4: now← Timestamp()
5: time← AEAD.Enc(κ4, 0,H4, now)
6: m1← MAC(H(lbl3 ∥ spkr), type ∥ 03 ∥ sidi ∥ epki ∥ ltk ∥ time)
7: m2← MAC(cookie, type ∥ 03 ∥ sidi ∥ epki ∥ ltk ∥ time ∥ m1)
8: InitHello← type ∥ 03 ∥ sidi ∥ epki ∥ ltk ∥ time ∥ m1 ∥ m2

InitHello−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

9: (eskr, epkr)← DH.Gen()

10: sidr
$← {0, 1}32

11: zero← AEAD.Enc(κ9, 0,H9, ∅)
12: m1← MAC(H(lbl3 ∥ spki), type ∥ 03 ∥ sidr ∥ sidi ∥ epkr ∥ zero)
13: m2← MAC(cookie, type ∥ 03 ∥ sidr ∥ sidi ∥ epkr ∥ zero ∥ m1)
14: RespHello← type ∥ 03 ∥ sidr ∥ sidi ∥ epkr ∥ zero ∥ m1 ∥ m2

RespHello
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15: tki ← KDF1(C9, ∅)
16: tkr ← KDF2(C9, ∅)

AEAD.Enc(tki, ·, ∅, application data)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 11



Handshake security

• Key confidentiality

• Entity authentication

• Key uniqueness

• Identity hiding

• Replay attack resistance

• Unknown key-share (UKS) attack resistance

• DoS attack resistance (early reject)
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WireGuard security proofs

• Computational: Dowling and Paterson, 2018
• eCK-PFS-PSK
• Assumes additional key-confirmation message
• Missing: key uniqueness, identity hiding, DoS mitigation

• Symbolic: partially by Donenfeld and Milner, 2017
• Missing: perfect forward secrecy, replay attack resistance, DoS
mitigation
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Post-quantum security of WireGuard

• The optional PSK provides confidentiality against quantum
attacks.

• Assumption: PSK cannot be recovered by quantum attackers

• Post-quantum cryptography: Donenfeld claimed ’not practical for
use here’

• Applebaum, Martindale, Wu, 2019:
• Tweak to WireGuard protocol
• Send H(pk) instead of pk
• Quantum attacker does not easily get pk
• Resistance against mass-surveillance attackers
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PQ-WireGuard – our goals

• Post-quantum confidentiality and authentication

• NIST security level 3 (≈AES-192)
• Retain all security properties of WireGuard

• Efficient 1-round-trip handshake

• No fragmentation
• Remember: WireGuard uses UDP
• Lost packets, filtering⇒more complex state machine

• Packet-size constraint:
• IPv6 guarantee: no fragmentation of packets ≤ 1280 bytes
• Fit WireGuard messages into 1232 bytes
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PQ-WireGuard – the idea

1. Replace DH with key-encapsulation mechanisms (KEMs)

2. Instantiate with PQ KEMs achieving desired security
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Diffie-Hellman

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab
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KEMs: as close as you’ll get to DH

∗

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

∗Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)
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What can KEMs (not) do?

Initiator Responder

(eski, epki)← DH.Gen()

epki−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(eskr, epkr)← DH.Gen()

epkr←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

k1 ← DH.Shared(eski, spkr) k1 ← DH.Shared(sskr, epki)
k2 ← DH.Shared(sski, epkr) k2 ← DH.Shared(eskr, spki)
k3 ← DH.Shared(eski, epkr) k3 ← DH.Shared(eskr, epki)
k4 ← DH.Shared(sski, spkr) k4 ← DH.Shared(sskr, spki)
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A first approach with KEMs

Initiator Responder

(eski, epki)← CPAKEM.Gen()
r1

$← {0, 1}λ, (c1, k1)← CCAKEM.Enc(spkr, r1)

epki, c1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

r2
$← {0, 1}λ, (c2, k2)← CCAKEM.Enc(spki, r2)

r3
$← {0, 1}λ, (c3, k3)← CPAKEM.Enc(epki, r3)

c2, c3←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

k1 ← CCAKEM.Dec(sskr, c1)
k2 ← CCAKEM.Dec(sski, c2)
k3 ← CPAKEM.Dec(eski, c3)
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What are we lacking?

DoS resistance
• First initiator message is unauthenticated

• Solution: Use (optional) pre-shared key for early rejects

“MEX” resistance
• Some security also if all RNGs are insecure

• Static-static DH for confidentiality from long-term keys

• Solution: Use “NAXOS trick”

UKS-attack resistance
• WireGuard does not hash public keys into session key

• UKS resistance derived from static-static DH

• Solution: Use default PSK as H(spki ⊕ spkr)
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(Most of) the PQ-WireGuard handshake
Initiator Responder

1: (eski, epki)← CPAKEM.Gen()

2: sidi
$← {0, 1}32

3: ri ← {0, 1}λ
4: (ct1, shk1)← CCAKEM.Enc(spkr, KDF1(σi, ri))
5: ltk← AEAD.Enc(κ3, 0,H(spki),H3)

6: now← Timestamp()
7: time← AEAD.Enc(κ4, 0,H4, now)
8: m1← MAC(H(lbl3 ∥ spkr), type ∥ 03 ∥ sidi ∥ epki ∥ ct1 ∥ ltk ∥ time)
9: m2← MAC(cookie, type ∥ 03 ∥ sidi ∥ epki ∥ ct1 ∥ ltk ∥ time ∥ m1)
10: InitHello← type ∥ 03 ∥ sidi ∥ epki ∥ ct1 ∥ ltk ∥ time ∥ m1 ∥ m2

InitHello−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

11: e, rr ← {0, 1}λ × {0, 1}λ

12: (ct2, shk2)← CPAKEM.Enc(epki, e)
13: (ct3, shk3)← CCAKEM.Enc(spki, KDF1(σr, rr))

14: sidr
$← {0, 1}32

15: zero← AEAD.Enc(κ9, 0,H9, ∅)
16: m1← MAC(H(lbl3 ∥ spki), type ∥ 03 ∥ sidr ∥ sidi ∥ ct2 ∥ ct3 ∥ zero)
17: m2← MAC(cookie, type ∥ 03 ∥ sidr ∥ sidi ∥ ct2 ∥ ct3 ∥ zero ∥ m1)
18: RespHello← type ∥ 03 ∥ sidr ∥ sidi ∥ ct2 ∥ ct3 ∥ zero ∥ m1 ∥ m2

RespHello
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Adding explicit key confirmation

Initiator Responder

19: conf← AEAD.Enc(κ10, 0,H10, ∅)
20: m1← MAC(H(lbl3 ∥ spkr), type ∥ 03 ∥ sidi ∥ sidr ∥ conf)
21: m2← MAC(cookie, type ∥ 03 ∥ sidi ∥ sidr ∥ conf ∥ m1)
22: InitConf← type ∥ 03 ∥ sidi ∥ sidr ∥ conf ∥ m1 ∥ m2

InitConf−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

23: tki ← KDF1(C10, ∅)
24: tkr ← KDF2(C10, ∅)

• Allows proofs to separate handshake from data transmission

• eCK-PFS-PSK proof applies to actual protocol
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PQ-WireGuard security proofs

• Computational:
• Based on Dowling and Paterson (2018)
• Proof in the eCK-PFS-PSK model
• Standard model proof

• Symbolic:
• Based on Donenfeld and Milner (2017)
• Uses the Tamarin prover
• Cover all desired security properties
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Instantiation

• Long-term IND-CCA-secure KEM: Classic McEliece
• Smallest ciphertext of all NIST PQC candidates
• Public-key size does not matter
• Key-generation time does not matter

• Ephemeral IND-CPA-secure KEM requirements:
• NIST PQC round-2 candidate at level 3
• High-speed constant-time implementation
• Pick “conservative” primitives
• No patent claims by submitters
• No tweaks that lower security

• Fit into unfragmented IPv6 packet:
• public key of≤928 bytes
• ciphertext of≤984 bytes
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Dagger

• Only three NIST round-2 candidates within size constraints:
• SIKE – not high-speed
• ROLLO – not conservative
• Round5 – patent encumbered

• Idea: Tweak lattice-based KEM:
• More public-key and ciphertext compression
• Increase hardness of lattice problems
• Increase failure probability (no issue for CPA sec.)

• Tweaked (smaller, more lightweight) Saber: Dagger
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Implementation and Evaluation

• Implement as Linux kernel module

• Use existing high-speed constant-time software for McEliece and
Dagger (Saber)

• Metrics for comparison:
• Amount of traffic
• Number of packets
• Handshake latency

• Use virtual 10Gbps Ethernet link between two VMs

• Both IPv4 and IPv6: similar results

• Compare with WireGuard, OpenVPN, IPsec, PQCrypto-VPN
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Results

VPN Software Packet Traffic Client Time Server Time
Number (bytes) (milliseconds) (milliseconds)

WireGuard 3 458 0.592 0.480
(0) (0) (0.399) (0.389)

PQ-WireGuard 3 2654 1.015 0.786
(0) (0) (0.618) (0.621)

IPsec 6 4299 17.188 11.912
(RSA-2048) (0) (0) (0.712) (0.535)
IPsec 4 2281 5.226 2.822
(Curve25519) (0) (0) (0.575) (0.436)
OpenVPN 21.003 7955.409 1148.733 1142.650
(RSA-2048) (0.055) (7.319) (250.513) (243.184)
OpenVPN 19.005 5788.610 1139.140 1133.944
(NIST P-256) (0.007) (9.423) (247.659) (240.691)
OpenVPN-NL 19.005 6065.700 1162.649 1151.790
(RSA-2048) (0.072) (9.665) (261.078) (246.363)
OpenVPN-NL 19.001 6061.138 1159.627 1153.949
(NIST P-256) (0.003) (4.304) (252.989) (247.470)
PQ-OpenVPN 63.006 35608.817 1160.922 1155.713
(Frodo-752 [BCD+16]) (0.078) (10.324) (259.246) (245.614)
PQ-OpenVPN 23.005 8996.684 1277.172 1269.074
(SIDHp503 ) (0.072) (9.449) (251.461) (257.427)

28



More online

Paper:

https://cryptojedi.org/papers/#pqwireguard

Code:

https://cryptojedi.org/crypto/#pqwireguard
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