
Cryptographic Engineering 2019 – Software Assignment

January 28, 2019

Submission Deadline: Apr. 5, 23:59 (Amsterdam time)
Submission via Brightspace only!
Submission in groups of two!

Assignment
Download C reference implementations of

• ChaCha20 (http://cr.yp.to/papers.html#chacha),

• Poly1303 (http://cr.yp.to/papers.html#poly1305), and

• ECDH key exchange on Curve25519 in Edwards form

from https://cryptojedi.org/peter/teaching/ce2019/ce2019-sw-assignment.tar.bz2 and
optimize all three primitives for the ARM Cortex-M4 microcontroller.

Code requirements
In order to get a passing grade (i.e., ≥ 6) for Part I of the Cryptographic Engineering course, the
code you submit must fulfill the following minimal requirements:

1. It must not have any secret-dependent branches or access to memory at secret-dependent
locations.

2. The submitted software must offer the same functionality as the C reference implementations,
i.e., regression tests must pass.

3. All three primitives must be substantially (i.e., at least 20%) faster than the C reference
implementations compiled with gcc-5.4.1 -O3, i.e., substantially faster than

• 44747 cycles for ChaCha20,

• 164231 cycles for Poly1305, and

• 47493242 cycles for ECDH scalarmult_base and 44308530 cycles for ECDH scalarmult.

4. The crypto_core_chacha20 function must be rewritten in assembly.

Submission requirements
Each submission must consist of two parts:

1. A tar.bz archive containing your code. This should be simply the original code package
with additional files and modified Makefiles as required for your optimized versions.

1

http://cr.yp.to/papers.html#chacha
http://cr.yp.to/papers.html#poly1305
https://cryptojedi.org/peter/teaching/ce2019/ce2019-sw-assignment.tar.bz2


2. A pdf document briefly describing the optimization techniques you applied for each of the
three primitives.

Additionally, please keep the following in mind when submitting:

• Only one student of each group of two should submit; make sure to mention both names
and both S-numbers in the submission documents.

• Do not modify the files called test.c and speed.c from the original code package.

Hints for optimizing the three primitives

Optimizing ChaCha20
The natural way to reimplement the core of ChaCha20 in assembly are the following steps:

• Write quarterround function in assembly.

• Merge 4 quarterround functions into a full round.

• Implement loop over 20 rounds in assembly.

For further optimization you might want to also write the loop over the message length in assembly.

Optimizing Poly1305
The reference implementation is using a very small radix of 28 for arithmetic in Fp with p = 2130−5.
An obvious strategy for optimizing is to rewrite the field arithmetic using a larger radix, for example
226.

Optimizing ECDH
Before optimizing the ECDH sofware, it makes sense to investigate for possible timing leaks
(secret-dependent branches and/or memory addresses) and eliminate those.

There are many ways how the ECDH software can be sped up, for example:

• more efficient scalar multiplication,

• specialized base-point scalar multiplication,

• optimized group arithmetic, and

• optimized field arithmtic (using larger radix).

2


