
Cryptographic Engineering
Symmetric crypto in software

Radboud University, Nijmegen, The Netherlands

Spring 2019

Symmetric crypto overview

Primitives and algorithms

◮ Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, . . .

◮ Stream ciphers: RC4, Salsa20, ChaCha20, HC-128, Rabbit,
SOSEMANUK, Grain, MICKEY, Trivium, . . .

◮ Hash functions: SHA-256, SHA-512, SHA-3, Blake, Blake2, . . .

◮ Authenticated encryption: AES-GCM, Poly-1305, CAESAR, . . .

Architectures and microarchitectures

◮ Architectures: x86, AMD64, ARMv6, ARMv7, ARMv8, AVR,
32-bit PowerPC, 64-bit PowerPC, SPARCv9, . . .

◮ Microarchitectures: Pentium 4, Penryn, Nehalem, Sandy Bridge,
Haswell, Cortex-A8, Cortex-A9, Cortex-A53, . . .

◮ Instruction-set extensions: SSE, SSE2, SSE3, SSSE3, AVX,
AVX2, AltiVec, NEON, . . .

2

The Advanced Encryption Standard (AES)

◮ Block cipher Rijndael proposed by Rijmen, Daemen in 1998

◮ Selected as AES by NIST in October 2000

◮ Block size: 128 bits (AES state: 4× 4 matrix of 16 bytes)

◮ Key size 128128/192/256 bits (resp. 1010/12/14 rounds)

◮ AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

◮ Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

◮ Last round does not have MixColumns

3

High-level pseudocode AES-128

Require: 128-bit input block B, 128-bit AES round keys K0, . . . ,K10

Ensure: 128-bit block of encrypted output
B ← AddRoundKey(B,K0)
for i from 1 to 9 do

B ← SubBytes(B)
B ← ShiftRows(B)
B ← MixColumns(B)
B ← AddRoundKey(B,Ki)

end for
B ← SubBytes(B)
B ← ShiftRows(B)
B ← AddRoundKey(B,K10)
return B

4

AES on 32-bit and 64-bit processors

◮ Idea from the AES proposal: Merge SubBytes, ShiftRows, and
MixColumns

◮ Use 4 lookup tables T0, T1, T2, and T3 (1 KB each)

The first round of AES in C

◮ Input: 32-bit integers y0, y1, y2, y3

◮ Output: 32-bit integers z0, z1, z2, z3

◮ Round keys in 32-bit-integer array rk[44]

z0 = T0[y0 >> 24] ^ T1[(y1 >> 16) & 0xff] \

^ T2[(y2 >> 8) & 0xff] ^ T3[y3 & 0xff] ^ rk[4];

z1 = T0[y1 >> 24] ^ T1[(y2 >> 16) & 0xff] \

^ T2[(y3 >> 8) & 0xff] ^ T3[y0 & 0xff] ^ rk[5];

z2 = T0[y2 >> 24] ^ T1[(y3 >> 16) & 0xff] \

^ T2[(y0 >> 8) & 0xff] ^ T3[y1 & 0xff] ^ rk[6];

z3 = T0[y3 >> 24] ^ T1[(y0 >> 16) & 0xff] \

^ T2[(y1 >> 8) & 0xff] ^ T3[y2 & 0xff] ^ rk[7];

5

What a machine is really doing
unsigned char rk[176], T0[1024], T1[1024], T2[1024], T3[1024];

z0 = *(uint32 *)(rk + 16);

z1 = *(uint32 *)(rk + 20);

z2 = *(uint32 *)(rk + 24);

z3 = *(uint32 *)(rk + 28);

z0 ^= *(uint32 *) (T0 + ((y0 >> 22) & 0x3fc)) \

^ *(uint32 *) (T1 + ((y1 >> 14) & 0x3fc)) \

^ *(uint32 *) (T2 + ((y2 >> 6) & 0x3fc)) \

^ *(uint32 *) (T3 + ((y3 << 2) & 0x3fc));

z1 ^= *(uint32 *) (T0 + ((y1 >> 22) & 0x3fc)) \

^ *(uint32 *) (T1 + ((y2 >> 14) & 0x3fc)) \

^ *(uint32 *) (T2 + ((y3 >> 6) & 0x3fc)) \

^ *(uint32 *) (T3 + ((y0 << 2) & 0x3fc));

z2 ^= *(uint32 *) (T0 + ((y2 >> 22) & 0x3fc)) \

^ *(uint32 *) (T1 + ((y3 >> 14) & 0x3fc)) \

^ *(uint32 *) (T2 + ((y0 >> 6) & 0x3fc)) \

^ *(uint32 *) (T3 + ((y1 << 2) & 0x3fc));

z3 ^= *(uint32 *) (T0 + ((y3 >> 22) & 0x3fc)) \

^ *(uint32 *) (T1 + ((y0 >> 14) & 0x3fc)) \

^ *(uint32 *) (T2 + ((y1 >> 6) & 0x3fc)) \

^ *(uint32 *) (T3 + ((y2 << 2) & 0x3fc));

6

AES instruction counts

◮ Each round has 20 loads, 16 shifts, 16 masks and 16 xors

◮ Last round is slightly different: Needs 16 more mask instructions

◮ 4 load instructions to load input, 4 stores for output

◮ In CTR mode: 4 xors with the key stream, incrementing the counter

◮ . . . some more overhead

◮ Results in 720 instructions needed to encrypt a block of 16 bytes

◮ Specifically: 208 loads, 4 stores, 508 arithmetic instructions

7

Case study: AES on an UltraSPARC
(My first project as Ph.D. student)

◮ 64-bit architecture

◮ Up to 4 instructions per cycle

◮ At most 2 integer-arithmetic
instructions per cycle

◮ At most 1 load/store
instruction per cycle

◮ 24 integer registers available

◮ Previous AES speed:
◮ 20.75 cycles/byte by

Bernstein (public domain)
◮ 16.875 cycles/byte (270

cycles/block) by Lipmaa
(unpublished)

8

Making AES fast on an UltraSPARC
(My first project as Ph.D. student)

Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block

◮ Only one load or store per cycle (⇒ at least 212 cycles)

◮ Only 2 arithmetic instructions per cycle (⇒ at least 254 cycles)

Making it fast

◮ After quite some instruction scheduling: 269 cycles per block

◮ My supervisor’s reaction:

“ . . . this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)”

◮ After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

◮ What now? Is this already a bloody pulp?

9

Making AES fast on an UltraSPARC
Lowering the lower bound

◮ We have to reduce the number of (arithmetic) instructions
◮ Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values

with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

◮ Do that consistently for values in registers, the tables and the round
keys

◮ Interleave entries in tables T0 and T1 and in T2 and T3

◮ Instruction set supports 32-bit shifts that zero out the upper 32 bits
◮ Apply some more optimizations
◮ Final result: AES in CTR mode on UltraSPARC III at 12.06

cycles/byte

Without padded registers
t0 = (uint32) y0 >> 22

t1 = (uint32) y0 >> 14

t2 = (uint32) y0 >> 6

t3 = (uint32) y0 << 2

t0 &= 0x3fc

t1 &= 0x3fc

t2 &= 0x3fc

t3 &= 0x3fc

With padded registers
t0 = (uint64) y0 >> 48

t1 = (uint64) y0 >> 32

t2 = (uint64) y0 >> 16

t1 &= 0xff0

t2 &= 0xff0

t3 = y0 & 0xff0

t0 = (uint64) y0 >> 48

t1 = (uint64) y0 >> 32

t2 = (uint32) y0 >> 16

t1 &= 0xff0

t3 = y0 & 0xff0

10

More arithmetic tricks for AES I

Combined Shift-and-mask

◮ Some architectures have combined shift-and-mask instructions (e.g.,
PowerPC)

◮ Combine 160 shifts and 160 masks and save 160 instructions

Scaled-index loads

◮ Some architectures can combine shift and load (e.g., x86, AMD64)

◮ Use this to get rid of the mask instruction for top and shift
instruction for bottom byte

◮ Overall save: 80 instructions

11

More arithmetic tricks for AES II

Various memory/arithmetic tradeoffs

◮ Can extract 4 bytes by one store and 4 loads

◮ Saves 160 mask instructions (or 320 if we have scaled-index loads)

◮ Costs 40 store and 160 load instructions

Counter-mode caching

◮ In CTR mode we encrypt a counter, then XOR keystream with
plaintext

◮ Last counter byte only changes every 256 blocks

◮ Do computations depending on this byte in the first round only
once, cache the state

◮ Similar in second round: only one 32-bit word changes every round

◮ Do computations depending on this word in the second round only
once, cache the state

◮ Overall save: ≈ 100 instructions

12

Now forget everything I just said

Timing attacks

◮ The lookup-table-based approach is inherently vulnerable to
cache-timing attacks

◮ Extensive literature on AES cache-timing attacks

◮ Osvik, Shamir, Tromer, 2006: Obtain AES-256 key in just 65 ms

Then why did I tell you this?

◮ You have to be able to recognize and understand table-based AES
implementations

◮ Optimizations show how to make best use of the instruction set

◮ General trick: Change your data representation

13

Looking for an alternative approach

◮ Remember bitslicing: vectorized “hardware emulation”

◮ Every algorithm can be implemented with bitslicing

◮ Bitslicing is inherently protected against timing attacks

◮ Efficiency depends on algorithm and micro-architecture

◮ Some crypto primitives are designed for efficient bitslicing

◮ AES was designed for table-based implementations

◮ Obvious question: Can bitsliced AES be fast?

◮ Common target for bitslicing AES: Intel Core 2

14

The Intel Core 2 processor

◮ 16 128-bit XMM vector registers

◮ 16 64-bit integer registers

◮ SSE (Streaming SIMD Extension) instructions
◮ followed by SSE2, SSE3, SSSE3 (Intel), SSE4 (Intel), SSE5 (AMD),

AVX, AVX2 (Intel) etc.

◮ Native 128-bit wide execution units

◮ 3 ALUs – up to 3 bit-logical instructions per cycle

◮ Some differences between 65 nm (Core) and 45 nm (Penryn)

15

Bitslicing AES on Intel Core 2 I

Matsui & Nakajima, 2007

◮ Process 128 blocks in parallel

◮ Performance: 9.2 cycles/byte

◮ Additional overhead for converting to/from bitsliced representation

◮ Great for, e.g., hard-disk encryption

◮ Bad for encryption of small Internet packets

Könighofer, 2008

◮ Process only 4 blocks in parallel

◮ Use 64-bit integer registers

◮ Performance: 19.6 cycles/byte

16

Bitslicing AES on Core 2 II

Käsper & Schwabe, 2009

◮ Similar idea to Könighofer:
◮ Most expensive operation in AES is SubBytes
◮ SubBytes is already 16-times parallel
◮ Exploit this parallelism and reduce number of required blocks

◮ Different from Könighofer:
◮ Use 128-bit XMM registers instead of 64-bit registers
◮ Factor-2 speedup for doing more bit ops per instruction
◮ Different optimization (need to use SSE* instructions)

◮ Use CTR mode (parallel and does not need decryption)

◮ Corresponding decryption later implemented by Azad (2011)

17

The Bitslicing approach

◮ Process 8 AES blocks (= 128 bytes) in parallel

◮ Collect bits according to their position in the byte: i.e., the first
register contains least significant bits from each byte, etc.

◮ AES state stored in 8 XMM registers

◮ Compute 128 S-Boxes in parallel, using bit-logical instructions

◮ For a simpler linear layer, collect the 8 bits from identical positions
in each block into the same byte

◮ Never need to mix bits from different blocks – all instructions
byte-level

18

Implementing the AES S-Box

◮ Start from the most compact hardware S-box, 117 gates
(Canright 2005; Boyar, Peralta, 2009)

◮ Use equivalent 128-bit bit-logical instructions

◮ Problem 1: instructions are two-operand, output overwrites one
input

◮ Hence, sometimes need extra register-register moves to preserve
input

◮ Problem 2: not enough free registers for intermediate values

◮ Recompute some values multiple times (alternative: use stack)

◮ Total 163 instructions – 15% shorter than previous results

xor and/or mov TOTAL
Hardware 82 35 – 117
Software 93 35 35 163

19

Implementing the AES linear layer

◮ Each byte in the bitsliced vector corresponds to a different byte
position in the AES state

◮ Thus, ShiftRows is a permutation of bytes

◮ Use SSSE3 dedicated byte-shuffle instruction pshufb

◮ Repeat for each bit position (register) ⇒ 8 instructions

◮ MixColumns uses byte shuffle and XOR, total 43 instructions

◮ AddRoundKey also requires only 8 XORs from memory

◮ Some caveats:
◮ Bitsliced key is larger – 8× 128 bits per round, key expansion slower
◮ SSSE3 available only on Intel, not on AMD processors

20

Putting it all together

xor/and/or pshufb/d xor (mem-reg) mov (reg-reg) TOTAL
SubBytes 128 – – 35 163

ShiftRows – 8 – – 8

MixColumns 27 16 – – 43

AddRoundKey – – 8 – 8

TOTAL 155 24 8 35 222

◮ One AES round requires 222 instructions

◮ Last round omits MixColumns: 171 instructions

◮ Input/output transform 84 instructions/each

◮ Excluding data loading etc, we get a lower bound

222× 9 + 171 + 2× 84

3× (8 · 16)
≈ 6.1 cycles/byte

◮ Actual performance on Core 2 (Penryn): 7.58 cycles/byte

21

Back to (small) lookup tables

◮ AltiVec offers a vperm instruction
◮ 3 128-bit vector arguments: a, b, c
◮ Replace each byte ci in c by a byte from a or b, indexed by lowest 5

bits of ci

◮ SSSE3 offers a pshufb instruction
◮ 2 128-bit vector arguments: a, c
◮ Shuffle bytes in a (in place) according to indices in c

◮ For constant indices in c these instruction implement a permutation

◮ For constant inputs a, b they implement a lookup table
◮ 5-bit to 8-bit lookup for vperm (32 entries)
◮ 4-bit to 8-bit lookup for pshufb (16 entries)

22

How do these lookup tables help?

◮ Idea by Hamburg (2009):
◮ Use arithmetic representation of AES S-Box (inversion in F28)
◮ Represent F28 as quadratic extension of F24

◮ Use vector-permute lookup tables for arithmetic in F24

◮ Approach is fully constant time

◮ Not available on every architecture

◮ Can combine with counter-mode caching

◮ Performance:
◮ 5.4 cyles/byte on Power G4 (CTR mode, 16 parallel blocks)
◮ 21.8 cycles/byte on Core 2 (Core microarch, CTR, no parallel blocks)
◮ 11.1 cycles/byte on Core 2 (Penryn microarch, CTR, no parallel

blocks)

23

AES nowadays

pxor %xmm5, %xmm0

aesenc %xmm6, %xmm0

aesenc %xmm7, %xmm0

aesenc %xmm8, %xmm0

aesenc %xmm9, %xmm0

aesenc %xmm10, %xmm0

aesenc %xmm11, %xmm0

aesenc %xmm12, %xmm0

aesenc %xmm13, %xmm0

aesenc %xmm14, %xmm0

aesenclast %xmm15, %xmm0

◮ AESNI instructions on Intel processors

◮ Introduced with Westmere
microarchitecture

◮ State in %xmm0

◮ Round keys in %xmm5 . . . %xmm15

◮ Also instructions for key expansion,
decryption

◮ AES instructions take constant time

◮ For parallel modes up to 0.625
cycles/byte (Ivy Bridge)

24

AES summary

◮ Best case: hardware support is available (e.g., AESNI)

◮ If not:
◮ Bitslicing (performance highly depends on micro-architecture)
◮ Vector-permute instructions (availability depends on architecture and

instruction-set extensions; performance depends on
micro-architecture)

◮ Table-based approach is typically fast but vulnerable to timing
attacks (almost everywhere)

Why was Rijndael chosen as AES?

◮ Faster than, e.g., SERPENT in software (for table-based
implementations)

◮ From the Report on the Development of the Advanced Encryption
Standard (AES), October 2000:

“Table lookup: not vulnerable to timing attacks; relatively easy to
effect a defense against power attacks by software balancing of the
lookup address.”

25

AES on Cortex-A8 with NEON

Cortex-A8

◮ 32-bit ARMv7 core (2 instructions per cycle with various restrictions)

◮ NEON vector coprocessor working on 128-bit vectors

◮ Present in a large variety of mobile devices, e.g., Apple iPhone 3GS,
Apple iPhone 4, 3rd generation Apple iPod touch (late 2009), Apple
iPad 1, Nokia N9, Nokia N900, Palm Pre Plus, Samsung/Google
Nexus S, Samsung Galaxy S

◮ Today very cheap (e.g., Allwinner A10 for ≈ US$5)

AES performance

◮ Table-based (ARM): 28.08 cycles/byte (C code, not optimized for
ARM)

◮ Bitsliced (NEON): 18.94 cycles/byte

◮ Both numbers are for counter mode

◮ Vector permute: ???

26

From AES to Salsa20

◮ High-speed AES is typically for streaming modes (e.g., CTR)

◮ Simple reason: larger degree of parallelism

◮ If we don’t need chaining modes, can also use stream cipher (should
be faster)

◮ Traditional stream cipher: RC4
◮ Broken by Fluhrer, Mantin, and Shamir in 2001
◮ More broken by Klein in 2005
◮ Broken even more by AlFardan, Bernstein, Paterson, Poettering,

Schuldt in 2013
◮ . . . and even more by Garman, Paterson, and van der Merwe in 2015
◮ . . . and by Vanhoef and Piessens in 2015
◮ . . . and by Bricout, Murphy, Paterson, and van der Merwe in 2016

27

From AES to Salsa20

◮ High-speed AES is typically for streaming modes (e.g., CTR)

◮ Simple reason: larger degree of parallelism

◮ If we don’t need chaining modes, can also use stream cipher (should
be faster)

◮ Traditional stream cipher: RC4
◮ Broken by Fluhrer, Mantin, and Shamir in 2001
◮ More broken by Klein in 2005
◮ Broken even more by AlFardan, Bernstein, Paterson, Poettering,

Schuldt in 2013
◮ . . . and even more by Garman, Paterson, and van der Merwe in 2015
◮ . . . and by Vanhoef and Piessens in 2015
◮ . . . and by Bricout, Murphy, Paterson, and van der Merwe in 2016

◮ Better candidates are in eSTREAM portfolio:
◮ Competition to find good stream ciphers organized by ECRYPT
◮ Running from 2004–2008
◮ Final decision: 3 ciphers in “hardware” portfolio; 4 in “software”

portfolio
◮ One cipher in the “software” portfolio: Salsa20 by Bernstein

27

Salsa20

◮ Generates random stream in 64-byte blocks, works on 32-bit integers

◮ Blocks are independent

◮ Per block: 20 rounds; each round doing 16 add-rotate-xor
sequences, such as

s4 = x0 + x12

x4 ^= (s4 >>> 25)

◮ These sequences are 4-way parallel

◮ In ARM without NEON: 2 instructions, 1 cycle

◮ Sounds like total of (20 · 16)/64 = 5 cycles/byte, but:
◮ Only 14 integer registers (need at least 17)
◮ Latencies cause big trouble
◮ Actual implementations slower than 15 cycles/byte

28

A first approach in NEON

◮ Per round do 4× something like:

4x a0 = diag1 + diag0

4x b0 = a0 << 7

4x a0 unsigned >>= 25

diag3 ^= b0

diag3 ^= a0

◮ + some (free) shuffles

◮ Intuitive cycle lower bound:
(5 · 4 · 20)/64 = 6.25 cycles/byte

◮ Problem: The above sequence has a 9-cycle latency, thus:
(9 · 4 · 20)/64 = 11.25 cycles/byte

29

Trading parallelism

◮ Salsa20 rounds have 4-way data-level parallelism

◮ In a scalar implementations this turns into 4-way instruction-level
parallelism

◮ Good for pipelined and superscalar execution

◮ The vector implementation needs 4-way data parallelism, there is
(almost) no instruction-level parallelism left

◮ Bad for pipelined and superscalar execution

◮ Idea: Blocks are independent, use this to re-introduce
instruction-level parallelism

◮ Lower bound when interleaving 2 blocks: 6.875 cycles/byte

◮ Lower bound when interleaving 3 blocks: 6.25 cycles/byte

30

Going even further

◮ NEON is basically a coprocessor to the ARM core

◮ ARM decodes instructions, forwards NEON instructions to the
NEON unit

◮ Idea: Also keep the ARM core busy with Salsa20 computations

◮ New bottleneck: ARM core decodes at most 2 instructions per cycle

◮ Add-rotate-xor is only 2 ARM instructions

◮ Best tradeoff: One block on ARM, two blocks on NEON

31

A flavor of the code

4x a0 = diag1 + diag0

4x next_a0 = next_diag1 + next_diag0

s4 = x0 + x12

s9 = x5 + x1

4x b0 = a0 << 7

4x next_b0 = next_a0 << 7

4x a0 unsigned>>= 25

4x next_a0 unsigned>>= 25

x4 ^= (s4 >>> 25)

x9 ^= (s9 >>> 25)

s8 = x4 + x0

s13 = x9 + x5

diag3 ^= b0

next_diag3 ^= next_b0

diag3 ^= a0

next_diag3 ^= next_a0

x8 ^= (s8 >>> 23)

x13 ^= (s13 >>> 23)

32

Result

5.47 cycles/byte for Salsa20 encryption on ARM Cortex-A8 with NEON

33

References

◮ Daniel J. Bernstein, Peter Schwabe. New AES software speed
records. Indocrypt 2008.
http://cryptojedi.org/papers/#aesspeed

◮ Robert Könighofer. A Fast and Cache-Timing Resistant
Implementation of the AES. CT-RSA 2008.

◮ Mitsuru Matsui, Junko Nakajima. On the Power of Bitslice
Implementation on Intel Core2 Processor. CHES 2007.
www.iacr.org/archive/ches2007/47270121/47270121.ps

◮ Emilia Käsper, Peter Schwabe. Faster and Timing-Attack Resistant
AES-GCM. CHES 2009.
http://cryptojedi.org/papers/#aesbs

◮ Mike Hamburg. Accelerating AES with Vector Permute Instructions.
CHES 2009.
http://mikehamburg.com/papers/vector_aes/vector_aes.

pdf

◮ Daniel J. Bernstein, Peter Schwabe. NEON crypto. CHES 2012.
http://cryptojedi.org/papers/#neoncrypto

34

http://cryptojedi.org/papers/#aesspeed
www.iacr.org/archive/ches2007/47270121/47270121.ps
http://cryptojedi.org/papers/#aesbs
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://cryptojedi.org/papers/#neoncrypto

