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Asymmetric cryptography heavily relies on arithmetic on “big
integers’

Example 1: RSA-2048 needs (modular) multiplication and squaring
of 2048-bit numbers

Example 2:

» Elliptic curves defined over finite fields
» Typically use EC over large-characteristic prime fields
> Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits ...

Example 3: Poly1305 needs arithmetic on 130-bit integers

An integer is “big" if it's not natively supported by the machine
architecture

Example: AMDG64 supports up to 64-bit integers, multiplication
produces 128-bit result, but not bigger than that.

We call arithmetic on such “big integers” multiprecision arithmetic
For now mainly interested in 160-bit and 256-bit arithmetic
Example architecture for today (most of the time): AVR ATmega
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The first year of primary school

Available numbers (digits): (0),1,2,3,4,5,6,7,8,9

Addition Subtraction
3+5= 7 7—5= 7
24+7= 7 5—1= 7
44+3= 7 9-3= 7

» All results are in the set of available numbers

» No confusion for first-year school kids
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Programming today

Available numbers: 0,1, ...

Addition

uint8_t a
uint8_t b
uint8_t r

42
89;
a + b,

,255

Subtraction

uint8_t a
uint8_t b
uint8_t r

157;
23;

a



Programming today

Available numbers: 0,1,...,255

Addition Subtraction
uint8_t a = 42; uint8_t a = 157;
uint8_t b = 89; uint8_t b = 23;
uint8_t r = a + b; uint8_t r = a - b;

» All results are in the set of available numbers
» Larger set of available numbers: uint16_t, uint32_t, uint64_t
» Basic principle is the same; for the moment stick with uint8_t



Still in the first year of primary school
Crossing the ten barrier
6+5= 7

9+7=
448= 7
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Still in the first year of primary school

Crossing the ten barrier

6+5= 7
9+7=
448= 7

» Inputs to addition are still from the set of available numbers
> Results are allowed to be larger than 9

» Addition is allowed to produce a carry

What happens with the carry?

» Introduce the decimal positional system
» Write an integer A in two digits a;1ag with

A=10-a1 +ag

> Note that at the moment a; € {0,1}



.back to programming

uint8_t a
uint8_t b
uint8_t r

184;
203;
a + b;



.back to programming

uint8_t a = 184;
uint8_t b = 203;
uint8_t r a + b;

» The result r now has the value of 131

» The carry is lost, what do we do?



... back to programming

uint8_t a = 184;
uint8_t b = 203;
uint8_t r = a + b;

» The result r now has the value of 131
» The carry is lost, what do we do?

» Could cast to uint16_t, uint32_t etc.,
but that solves the problem only for this uint8_t example

» We really want to obtain the carry, and put it into another uint8_t



The AVR ATmega

> 8-bit RISC architecture

> 32 registers RO...R31, some of those are “special”:
(R26,R27) aliased as X

(R28,R29) aliased as Y

(R30,R31) aliased as Z

X, Y, Z are used for addressing

> 2-byte output of a multiplication always in RO, R1

>
| 2
>
>

» Most arithmetic instructions cost 1 cycle

» Multiplication and memory access takes 2 cycles



184 + 203

LDI R5, 184

LDI R6, 203

ADD R5, R6 ; result in R5, sets carry flag
CLR R6 ; set R6 to zero

ADC R6,R6 ; add with carry, R6 now holds the carry



Later in primary school

Addition

42+ 78 = 7

789 + 543 = 7
7862 + 5275 = 7
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Addition

42+ 78 = 7

789 + 543 = 7
7862 + 5275 = 7

7862
+ 5275
+ 37
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Addition

42+ 78 = 7

789 + 543 = 7
7862 + 5275 = 7

7862
+ 5275
+ 137



Later in primary school

Addition

42+ 78 = 7

789 + 543 = 7
7862 + 5275 = 7

7862
+ 5275
+ 13137



Later in primary school

Addition » Once school kids can add
42478 = 7 beyond 1000, they can add
789 + 543 = ? arbitrary numbers

786245275 = 7

7862
+ 5275
+ 13137



Multiprecision addition is old

“Oh Lilavati, intelligent girl, if you understand addition and sub-
traction, tell me the sum of the amounts 2, 5, 32, 193, 18, 10,
and 100, as well as [the remainder of] those when subtracted
from 10000.”

—"Lilavati” by Bhaskara (1150)

10



AVR multiprecision addition. . .

» Add two n-byte numbers, returning an n + 1 byte result:
» Input pointers X,Y, output pointer Z

LD R5,X+ LD R5,X+ CLR Rb5

LD R6,Y+ LD R6,Y+ ADC R5,R5
ADD R5,R6 ADC R5,R6 ST Z+,Rb
ST Z+,R5 ST Z+,R5

LD R5,X+ LD R5,X+

LD R6,Y+ LD R6,Y+

ADC R5,R6 ADC R5,R6

ST Z+,R5 ST Z+,R5

11



...and subtraction

» Subtract two n-byte numbers, returning an n 4 1 byte result:
» Input pointers X,Y, output pointer Z
» Use highest byte = —1 to indicate negative result

LD R5,X+ LD R5,X+ CLR R5

LD R6,Y+ LD R6,Y+ SBC R5,R5
SUB R5,R6 SBC R5,R6 ST Z+,R5
ST Z+,R5 ST Z+,R5

LD R5,X+ LD R5,X+

LD R6,Y+ LD R6,Y+

SBC R5,R6 SBC R5,R6

ST Z+,R5 ST Z+,R5



How about multiplication?

» Consider multiplication of 1234 by 789
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How about multiplication?

» Consider multiplication of 1234 by 789

1234 - 789
11106
+ 9872
+ 8638
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How about multiplication?

» Consider multiplication of 1234 by 789

1234 - 789
11106
+ 9872
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How about multiplication?

» Consider multiplication of 1234 by 789

1234 - 789
20978
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How about multiplication?

» Consider multiplication of 1234 by 789

1234 - 789
20978
+ 8638

13



How about multiplication?

» Consider multiplication of 1234 by 789

1234 - 789
973626

13



How about multiplication?

» Consider multiplication of 1234 by 789

1234 - 789
973626

» This is also an old technique
> Earliest reference | could find is again the Lilavati (1150)

13



Let's do that on the AVR

LD R2, X+
LD R3, X+
LD R4, X+

LD R7, Y+

MUL

R2,R7

ST Z+,R0O

MOV

MUL
ADD
CLR
ADC

ADD
CLR
ADC

R8,R1

R3,R7
R8,R0O
R9

R9,R1

R4,R7
R9,RO
R10
R10,R1

14



Let's do that on the AVR

LD R2, X+
LD R3, X+
LD R4, X+

LD R7, Y+

MUL

R2,R7

ST Z+,RO

MOV

MUL
ADD
CLR
ADC

ADD
CLR
ADC

R8,R1

R3,R7
R8,R0O
R9

R9,R1

R4,R7
R9,RO
R10
R10,R1

LD R7, Y+

MUL R2,R7
MOVW R12,RO

MUL R3,R7
ADD R13,RO
CLR R14

ADC R14,R1

MUL R4,R7
ADD R14,RO
CLR R15

ADC R15,R1

ADD R8,R12
ST Z+,R8
ADC R9,R13
ADC R10,R14
CLR R11

ADC R11,R15

14



Let's do that on the AVR

LD R2, X+
LD R3, X+
LD R4, X+

LD R7, Y+

MUL

R2,R7

ST Z+,RO

MOV

MUL
ADD
CLR
ADC

ADD
CLR
ADC

R8,R1

R3,R7
R8,R0O
R9

R9,R1

R4,R7
R9,RO
R10
R10,R1

LD R7, Y+

MUL R2,R7
MOVW R12,RO

MUL R3,R7
ADD R13,RO
CLR R14

ADC R14,R1

MUL R4,R7
ADD R14,RO
CLR R15

ADC R15,R1

ADD R8,R12
ST Z+,R8
ADC R9,R13
ADC R10,R14
CLR R11

ADC R11,R15

LD R7, Y+

MUL R2,R7
MOVW R12,RO

MUL R3,R7
ADD R13,R0
CLR R14

ADC R14,R1

MUL R4,R7
ADD R14,RO
CLR R15

ADC R15,R1

ADC R9,R12
ST Z+,R9
ADC R10,R13
ADC R11,R14
CLR R12
ADC R12,R15

14



Let's do that on the AVR

LD R2, X+
LD R3, X+
LD R4, X+

LD R7, Y+

MUL

R2,R7

ST Z+,RO

MOV

MUL
ADD
CLR
ADC

ADD
CLR
ADC

R8,R1

R3,R7
R8,R0O
R9

R9,R1

R4,R7
R9,RO
R10
R10,R1

LD R7, Y+

MUL R2,R7
MOVW R12,RO

MUL R3,R7
ADD R13,RO
CLR R14

ADC R14,R1

MUL R4,R7
ADD R14,RO
CLR R15

ADC R15,R1

ADD R8,R12
ST Z+,R8
ADC R9,R13
ADC R10,R14
CLR R11

ADC R11,R15

LD R7, Y+

MUL R2,R7
MOVW R12,RO

MUL R3,R7
ADD R13,R0
CLR R14

ADC R14,R1

MUL R4,R7
ADD R14,RO
CLR R15

ADC R15,R1

ADC R9,R12
ST Z+,R9
ADC R10,R13
ADC R11,R14
CLR R12
ADC R12,R15

ST Z+,R10
ST Z+,R11
ST Z+,R12

14



Let's do that on the AVR

» Problem: Need 3n + c registers for nxn-byte multiplication
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Let's do that on the AVR

» Problem: Need 3n + c registers for nxn-byte multiplication
» Can add on the fly, get down to 2n + ¢, but more carry handling

14



Can we do better?

"Again as the information is understood, the multiplication of
2345 by 6789 is proposed; therefore the numbers are written
down; the 5 is multiplied by the 9, there will be 45; the 5 is put,
the 4 is kept,; and the 5 is multiplied by the 8, and the 9 by the
4 and the products are added to the kept 4; there will be 80; the
0 is put and the 8 is kept; and the 5 is multiplied by the 7 and
the 9 by the 3 and the 4 by the 8, and the products are added
to the kept 8; there will be 102; the 2 is put and the 10 is kept
in hand..."

From “Fibonacci’s Liber Abaci” (1202) Chapter 2
(English translation by Sigler)

15



Product scanning on the AVR

LD
LD
LD
LD
LD
LD

MOV
STD
CLR
CLR

ADD
ADC

ADD
ADC
ADC
STD
CLR

R2,
R3,
R4,
R7,
RS,
R,

X+
X+
X+
Y+
Y+
Y+

R2, R7
R13, R1
Z+0, RO

R14
R15

R2, RS
R13, RO
R14, R1
R3, R7

R13
R14
R15
Z+1
R16

3

3

RO
R1

R13

ADD
ADC
ADC

ADD
ADC
ADC

ADD
ADC
ADC
STD
CLR

R2, RO
R14, RO
R15, R1
R16, RS
R3, RS
R14, RO
R15, R1
R16, R5
R4, R7
R14, RO
R15, R1
R16, R5
Z+2, R14
R17

MUL
ADD
ADC
ADC
MUL
ADD
ADC
ADC
STD

MUL
ADD
ADC
STD

STD

R3, R9

R15, RO
R16, R1
R17, R5
R4, R8

R15, RO
R16, R1
R17, R5
Z+3, R15

R4, R9
R16, RO
R17, R1
Z+4, R16

Z+5, R17

16



Even better...?

y 6 72 9
N |

><\>\l\l\bi+lé
55 ﬁb\ \4 ’
1\[ Niz N2 z\|3
18 51: Q\l \'llé
}\o\\ \l Bk
Sima 2 o o

From the Treviso Arithmetic, 1478 (http://www.republicaveneta.
com/doc/abaco.pdf)


http://www.republicaveneta.com/doc/abaco.pdf
http://www.republicaveneta.com/doc/abaco.pdf

Hybrid multiplication

» ldea: Chop whole multiplication into smaller blocks
» Compute each of the smaller multiplications by schoolbook
» Later add up to the full result

> See it as two nested loops:

» Inner loop performs operand scanning
» Quter loop performs product scanning

18
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Idea: Chop whole multiplication into smaller blocks
Compute each of the smaller multiplications by schoolbook
Later add up to the full result

See it as two nested loops:

» Inner loop performs operand scanning
» Quter loop performs product scanning

Originally proposed by Gura, Patel, Wander, Eberle, Chang Shantz,

2004
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Hybrid multiplication

Idea: Chop whole multiplication into smaller blocks
Compute each of the smaller multiplications by schoolbook
Later add up to the full result

See it as two nested loops:

» Inner loop performs operand scanning
» Quter loop performs product scanning

vvyyvyy

» Originally proposed by Gura, Patel, Wander, Eberle, Chang Shantz,
2004
» Various improvements, consider 160-bit multiplication:
» Originally: 3106 cycles
» Uhsadel, Poschmann, Paar (2007): 2881 cycles
> Scott, Szczechowiak (2007): 2651 cycles
> Kargl, Pyka, Seuschek (2008): 2593 cycles

18



Operand-caching multiplication

» Hutter, Wenger, 2011: More efficient way to decompose
multiplication

» Inside separate chunks use product-scanning
» Main idea: re-use values in registers for longer
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Operand-caching multiplication

» Hutter, Wenger, 2011: More efficient way to decompose
multiplication

» Inside separate chunks use product-scanning

» Main idea: re-use values in registers for longer

» Performance:

» 2393 cycles for 160-bit multiplication
» 6121 cycles for 256-bit multiplication

» Followup-paper by Seo and Kim: “Consecutive operand caching’

» 2341 cycles for 160-bit multiplication
» 6115 cycles for 256-bit multiplication

19



Multiplication complexity

» So far, multiplication of 2 n-byte numbers needs n? MULs

» Kolmogorov conjectured 1952: You can't do better, multiplication
has quadratic complexity
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Multiplication complexity

» So far, multiplication of 2 n-byte numbers needs n? MULs

» Kolmogorov conjectured 1952: You can't do better, multiplication
has quadratic complexity

» Proven wrong by 23-year old student Karatsuba in 1960

> ldea: write A- B as (Ao +2™A1)(Bo + 2™ B;y) for half-size
Ao, Bo, A1, By

» Compute
AoBo + 2™(AgBy + BoA;) +22m A By
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Multiplication complexity

So far, multiplication of 2 n-byte numbers needs n? MULs

Kolmogorov conjectured 1952: You can't do better, multiplication
has quadratic complexity

Proven wrong by 23-year old student Karatsuba in 1960

Idea: write A- B as (Ag +2™A;)(Boy + 2™ By) for half-size
Ao, Bo, A1, By

Compute

AoBo + 2™(AgBy + BoA;) +22m A By
=AoBo +2™((Ag + A1) (By + By) — AgBy — A1By) + 2™ A By

Recursive application yields ©(n!'°823) runtime

20



Does that help on the AVR?

21



The straight-forward approach

Consider multiplication of n-byte numbers

A= (ag,...,an—1) and
B=(byy.-,bn-1)
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The straight-forward approach

Consider multiplication of n-byte numbers

A= (ag,...,an—1) and
B=(byy.-,bn-1)

» Write A= A, + 2% A, and B = B, + 2% B,
for k-byte integers Ay, Ay, By, and By, and k =n/2

» Compute L =A;- By= (Lo, ..., ln_1)
» Compute H = Ay, - Br, = (ho, ..., hn—1)
» Compute M = (Ay+ Ap) - (Be+ Bp) = (mo, ... ,my)

22



The straight-forward approach

Consider multiplication of n-byte numbers

A= (ag,...,an—1) and
B=(byy.-,bn-1)

» Write A= A, + 2% A, and B = B, + 2% B,
for k-byte integers Ay, Ay, By, and By, and k =n/2

» Compute L =A;- By= (Lo, ..., ln_1)

» Compute H = Ay, - Br, = (ho, ..., hn—1)

» Compute M = (A;+ Ap) - (Be+ Br) = (mo, ..., my)
» Obtain result as A- B=L+2%(M — L — H) + 2%"H

22



Multiplication by the carry in M

» Can expand carry to 0xff or 0x00
» Use AND instruction for multiplication
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Multiplication by the carry in M

» Can expand carry to 0xff or 0x00
» Use AND instruction for multiplication

» Does not help for recursive Karatsuba
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Multiplication by the carry in M

>
>
>

Can expand carry to 0xff or 0x00
Use AND instruction for multiplication

Does not help for recursive Karatsuba

Subtractive Karatsuba

>
>
>
>
>

>

Compute L = Ay - Be = (o, .., €n—1)
Compute H = Ay, - B, = (ho, -+ -, hn—1)
Compute M = |A; — Ap| - |Be — Br| = (Mo, .-« yMp—1)
Sett=0,if M =(A¢— Ap) - (Be — Bp); t = 1 otherwise
Compute M = (=1)!M = (A; — A,)(By — By)

= (1o, -+ 5 T—1)
Obtain result as A- B =L+ 2%%(L + H — M) + 2°"H

23



Conditional negation

The easy solution

if(b) a = -a

24
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Conditional negation

The easy solution
if(b) a = -a

» NEG instruction does not help for multiprecision
» Can subtract from zero, but subtraction would overwrite zero
» Even worse, the if would create a timing side-channel!

The constant-time solution
» Produce condition bit as byte Oxff or 0x00
» XOR all limbs with this condition byte
» Negate the condition byte and obtain 0x01 or 0x00
» Add this value to the lowest byte
> Ripple through the carry (ADC with zero)

24



Conditional negation

The easy solution
if(b) a = -a

» NEG instruction does not help for multiprecision
» Can subtract from zero, but subtraction would overwrite zero
» Even worse, the if would create a timing side-channel!

The constant-time solution
» Produce condition bit as byte Oxff or 0x00
» XOR all limbs with this condition byte
» Don't negate the condition byte
> Subtract the condition byte (0xff or 0x00 from all bytes)
> Saves two NEG instructions and the zero register

24



Refined Karatsuba

» Consider example of 4x4-byte Karatsuba multiplication:

o
—

++

25



Refined Karatsuba

» Consider example of 4x4-byte Karatsuba multiplication:
l() lh h2 h3
+ lo l1

+ ha  h3
» Karatsuba performs some additions twice

» Refined Karatsuba: do them only once
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Refined Karatsuba

» Consider example of 4x4-byte Karatsuba multiplication:
l() lh h2 h3

+ lo l1
+ ha  h3
Karatsuba performs some additions twice

Refined Karatsuba: do them only once
Merge additions into computation of H
Compute H= (hg,hy, ha, hs) = H + (I2,13)

vV vvyVvVYyy

Note that H cannot “overflow”
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Refined Karatsuba

» Consider example of 4x4-byte Karatsuba multiplication:
lo lh h2 h3

+ lo l1
+ ha  h3
Karatsuba performs some additions twice

Refined Karatsuba: do them only once
Merge additions into computation of H
Compute H= (hg,hy, ha, hs) = H + (I2,13)

vV vvyVvVYyy

Note that H cannot “overflow”
lo l] h2 h3

+ b L
.
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Refined Karatsuba

» Consider example of 4x4-byte Karatsuba multiplication:
lo lh h2 h3

+ lo l1
+ ha  h3
Karatsuba performs some additions twice

Refined Karatsuba: do them only once
Merge additions into computation of H
Compute H= (hg,hy, ha, hs) = H + (I2,13)

vV vvyVvVYyy

Note that H cannot “overflow”
lo kL

+ o U1 hzy hg

hy hs
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Refined Karatsuba

>

vV vvyVvVYyy

Consider example of 4x4-byte Karatsuba multiplication:

lo U

+ lo l1
+ ha  h3
Karatsuba performs some additions twice

hy  hs

Refined Karatsuba: do them only once
Merge additions into computation of H
Compute H= (hg,hy, ha, hs) = H + (I2,13)

Note that H cannot “overflow”
lo kL

+ o U1 hy g

hy hs

Consequence: fewer additions, easier register allocation

25



Putting it together

Arithmetic cost of n-byte Karatsuba on AVR
» Cost of computing L, M, and H
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» Cost of computing L, M, and H

» 4k + 2 SUB/SBC, 2k EOR for absolute differences

» n+1 ADD/ADC to add (lo, ..., lk—1, i, ..., hn_1)
» One EOR to compute ¢

» A BRNE instruction to branch, then either

» n + 2 SUB/SBC instructions and one RIMP, or
»> n+ 1 ADD/ADC, one CLR, and one NOP
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Putting it together

Arithmetic cost of n-byte Karatsuba on AVR

>

>
>
>
>

Cost of computing L, M, and H

4k + 2 SUB/SBC, 2k EOR for absolute differences
n+ 1 ADD/ADC to add (lo, ..., lp—1,hi, ..., ha_1)
One EOR to compute ¢

A BRNE instruction to branch, then either

» n + 2 SUB/SBC instructions and one RIMP, or
»> n+ 1 ADD/ADC, one CLR, and one NOP

k ADD/ADC instructions to ripple carry to the end

26



CLR R22
CLR R23
MOVW R12, R22
MOVW R20, R22

LD R2, X+
LD R3, X+
LD R4, X+
LDD R5, Y+0
LDD R6, Y+1
LDD R7, Y+2

MUL R2, R7
MOVW R10, RO
MUL R2, RS
MOVW RS, RO
MUL R2, R6
ADD R9, RO
ADC R10, R1
ADC R11, R23

48-bit Karatsuba on AVR

MUL R3, R7
MOVW R14, RO
MUL R3, R5
ADD R9, RO
ADC R10, R1
ADC Ri1, R14
ADC R15, R23
MUL R3, R6
ADD R10, RO
ADC R11, R1
ADC R12, R15

MUL R4, R7
MOVW R14, RO
MUL R4, R5
ADD R10, RO
ADC R11, R1
ADC R12, R14
ADC R15, R23
MUL R4, R6
ADD R11, RO
ADC R12, R1
ADC R13, R15
STD Z+0, R8
STD Z+1, R9
STD Z+2, R10

LD R14, X+
LD R15, X+
LD R16, X+

LDD
LDD
LDD

SUB
SBC
SBC
SBC

SUB
SBC
SBC
SBC

R17, Y+3
R18, Y+4
R19, Y+5

R2, R14
R3, R15
R4, R16
R26, R26

RS, R17
R6, R18
R7, R19
R27, R27

EOR
EOR
EOR
EOR
EOR
EOR

SUB
SBC
SBC
SUB
SBC
SBC

R2,
R3,
R4,
R5,
R6,
R7,

R2,
R3,
R4,
R5,

R7,

R26
R26
R26
R27
R27
R27

R26
R26
R26
R27
R27
R27

27



MUL R14, R19
MOVW R24, RO
MUL R14, R17
ADD R11, RO
ADC R12, R1
ADC R13, R24
ADC R25, R23
MUL R14, R18
ADD R12, RO
ADC R13, R1
ADC R20, R25

MUL R15, R19
MOVW R24, RO
MUL R15, R17
ADD R12, RO
ADC R13, R1
ADC R20, R24
ADC R25, R23
MUL R15, R18
ADD R13, RO
ADC R20, R1
ADC R21, R25

48-bit Karatsuba on AVR

MUL R16, R19
MOVW R24, RO
MUL R16, R17
ADD R13, RO
ADC R20, Ri
ADC R21, R24
ADC R25, R23
MUL R16, R18
MOVW R18,R22
ADD R20, RO
ADC R21, R1
ADC R22, R25

MUL R2, R7
MOVW R16, RO
MUL R2, R5
MOVW R14, RO
MUL R2, R6
ADD R15, RO
ADC R16, R1
ADC R17, R23

MUL R3, R7
MOVW R24, RO
MUL R3, R5
ADD R15, RO
ADC R16, R1
ADC R17, R24
ADC R25, R23
MUL R3, R6
ADD R16, RO
ADC R17, R1
ADC R18, R25

MUL R4, R7
MOVW R24, RO
MUL R4, R5
ADD R16, RO
ADC R17, R1
ADC R18, R24
ADC R25, R23
MUL R4, R6
ADD R17, RO
ADC R18, R1
ADC R19, R25
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48-bit Karatsuba on AVR

ADD
ADC
ADC
ADC
ADC
ADC
ADC

EOR

RS, Ril
R9, R12
R10, R13
R11, R20
R12, R21
R13, R22
R23, R23

R26, R27

BRNE add_M

SUB
SBC
SBC
SBC
SBC
SBC

RS, R14
R9, R15
R10, R16
R11, R17
R12, R18
R13, R19

SBCI R23, 0

SBC

R24, R24

RJMP final

add_M:
ADD
ADC
ADC
ADC
ADC
ADC
CLR
ADC
NOP

final:
STD
STD
STD
STD
STD
STD

ADD
ADC
ADC

STD
STD
STD

RS, R14
R9, R15
R10, R16
R11, R17
R12, R18
R13, R19
R24

R23, R24

Z+3, R8
Z+4, R9
Z+5, R10
Z+6, R11
Z+7, R12
Z+8, R13

R20, R23
R21, R24
R22, R24

Z+9, R20
Z+10, R21
Z+11, R22

27



Larger Karatsuba multiplication

> 48-bit Karatsuba is friendly; everything fits into registers

» Remember that previous speed records were achieved by eliminating
loads/stores
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Larger Karatsuba multiplication

vy
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48-bit Karatsuba is friendly; everything fits into registers

Remember that previous speed records were achieved by eliminating
loads/stores

Karatsuba structure needs additional temporary storage

Good performance needs careful scheduling and register allocation
Very important is to compute H = H + (lx4+1,...,l,—1) on the fly
Use 1-level Karatsuba for 48-bit, 64-bit, 80-bit, 96-bit inputs

Use 2-level Karatsuba for 128-bit, 160-bit, 192-bit inputs

Use 3-level Karatsuba for 256-bit inputs

28



Results

Cycle counts for n-bit multiplication

Input size n
Approach 48 | 64| 80| 96 128 160 192 256
Product scanning: 235 | 395 | 595 | 836 — — — —
Hutter, Wenger, 2011: | — | — | — | — — | 2393 | 3467 | 6121
Seo, Kim, 2012: — | — | — | — | 1532 | 2356 | 3464 | 6180
Seo, Kim, 2013: — | — | — | — | 1523 | 2341 | 3437 | 6115
Karatsuba: 217 | 360 | 522 | 780 | 1325 | 1976 | 2923 | 4797
— w/o branches: 222 | 368 | 533 | 800 | 1369 | 2030 | 2987 | 4961

> 160-bit multiplication now > 18% faster
> 256-bit multiplication now > 23% faster
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From 8-bit to 64-bit processors

Main differences (for us)

> Arithmetic on larger (64-bit) integers
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From 8-bit to 64-bit processors

Main differences (for us)

> Arithmetic on larger (64-bit) integers
» Arithmetic on floating-point numbers
» Pipelined and superscalar execution

> (Arithmetic on vectors)

30



Radix-2%* representation

> Let's consider representing 255-bit integers

» Obvious choice: use 4 64-bit integers ag, a1, az, az with

3
A= Z ;204
i=0

> Arithmetic works just as before (except with larger registers)

31



Radix-2°! representation

» Radix-254 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries
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Radix-254 representation works and is sometimes a good choice
Highly depends on the efficiency of handling carries

Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

Let's get rid of the carries, represent A as (ag, a1, as, as,as) with

4
A= Z ;201
i=0

This is called radix-2%" representation
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Radix-254 representation works and is sometimes a good choice
Highly depends on the efficiency of handling carries

Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

Let's get rid of the carries, represent A as (ag, a1, as, as,as) with

4
A= Z ;201
i=0

This is called radix-2%" representation

Multiple ways to write the same integer A, for example A = 252
> (2527 0,0,0,0)
> (0,2,0,0,0)
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Radix-2°! representation

>
>
>

Radix-254 representation works and is sometimes a good choice
Highly depends on the efficiency of handling carries

Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

Let's get rid of the carries, represent A as (ag, a1, as, as,as) with

4
A= Z ;201
i=0

This is called radix-2%" representation

Multiple ways to write the same integer A, for example A = 252
> (252,07 0,0,0)
> (0,2,0,0,0)

Let's call a representation (ag, a1, as, as,aq) reduced, if all

a; € [O,...,252—1]

32



Addition of two bigint255

typedef struct{
unsigned long long al[5];
} Dbigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

r->al[0] = x->a[0] + y->a[0];

"
r->al[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al[4] = x->a[4] + y->al4];



Addition of two bigint255

typedef struct{
unsigned long long al[5];
} Dbigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

r->al[0] = x->a[0] + y->a[0];

"
r->al[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al[4] = x->a[4] + y->al4];

3

» This definitely works for reduced inputs
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Addition of two bigint255

typedef struct{
unsigned long long a[5];
} Dbigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

r->al[0] = x->a[0] + y->a[0];

+
r->a[1] = x->a[1] + y->all];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al[4] = x->a[4] + y->al4];

3

» This definitely works for reduced inputs

> This actually works as long as all coefficients are in [0, ...
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Addition of two bigint255

typedef struct{
unsigned long long a[5];
} Dbigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

{
r->al0] = x->a[0] + y->al[0];
r->al[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->al3] + y->al3];
r->a[4] = x->a[4] + y->al4];
}

» This definitely works for reduced inputs
» This actually works as long as all coefficients are in [0, ..., 253 — 1]
» We can do quite a few additions before we have to carry (reduce)
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Subtraction of two bigint255

typedef struct{
signed long long al[5];
} bigint255;

void bigint255_sub(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

r->al0] = x->a[0] - y->al[0];

r->al1] = x->a[1] - y->a[1];

r->a[2] = x->a[2] - y->a[2];

r->a[3] = x->a[3] - y->al3];

r->al4] = x->al4] - y->al4];
}

» Slightly update our bigint255 definition to work with signed 64-bit
integers

34



Subtraction of two bigint255

typedef struct{
signed long long al[5];
} bigint255;

void bigint255_sub(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

r->al[0] = x->a[0] - y->al0];

r->a[1] = x->a[1] - y->all]l;

r->a[2] = x->a[2] - y->a[2];

r->a[3] = x->a[3] - y->al3];

r->al4] = x->al4] - y->al4];
}

» Slightly update our bigint255 definition to work with signed 64-bit
integers

» Reduced if coefficients are in [—252 + 1,252 — 1]
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Carrying in radix-2°1

» With many additions, coefficients may grow larger than 63 bits

» They grow even faster with multiplication
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Carrying in radix-2°1

» With many additions, coefficients may grow larger than 63 bits
» They grow even faster with multiplication
» Eventually we have to carry en bloc:

signed long long carry = r.al[0] >> b51;
r.a[1] += carry;

carry <<= 51;

r.a[0] -= carry;
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Big integers and polynomials

» Note: Addition code would look exactly the same for 5-coefficient
polynomial addition
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Big integers and polynomials
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Note: Addition code would look exactly the same for 5-coefficient
polynomial addition

This is no coincidence: We actually perform arithmetic in Z|x]
Inputs to addition are 5-coefficient polynomials
Nice thing about arithmetic in Z[x]: no carries!

To go from Z[z] to Z, evaluate at the radix (this is a ring
homomorphism)

Carrying means evaluating at the radix

36



Big integers and polynomials
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Note: Addition code would look exactly the same for 5-coefficient
polynomial addition

This is no coincidence: We actually perform arithmetic in Z|x]
Inputs to addition are 5-coefficient polynomials
Nice thing about arithmetic in Z[x]: no carries!

To go from Z[z] to Z, evaluate at the radix (this is a ring
homomorphism)

Carrying means evaluating at the radix

Thinking of multiprecision integers as polynomials is very powerful
for efficient arithmetic
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Using floating-point limbs

» On some microarchitectures floating-point arithmetic is much faster
than integer arithmetic

» An IEEE-754 floating-point number has value

(—1)8 . (1.bm,1bm,2 R b()) - 267 with b; € {0, 1}
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Using floating-point limbs

» On some microarchitectures floating-point arithmetic is much faster

>

v

than integer arithmetic
An |EEE-754 floating-point number has value

(—1)8 . (1.bm,1bm,2 .. b()) - 267 with b; € {0, 1}

For double-precision floats:
> s e {0,1} “sign bit"
> m = 52 "mantissa bits"
> ec{l,...,2046} “exponent”
> ¢t =1023
For single-precision floats:
> se{0,1} “sign bit"
> m = 23 "mantissa bits"
> ec{l,...,254} “exponent”
>t =127

Exponent = 0 used to represent 0
Any number that can be represented like this, will be precise
Other numbers will be rounded, according to a rounding mode
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Addition and subtraction

typedef struct{
double a[12];
} bigint255;

void bigint255_add(bigint255 *r,
const bigint255 *x,
const bigint255 *y)

int i;
for(i=0;i<12;i++)
r->ali] = x->al[i] + y->alil;

void bigint255_sub(bigint255 x*r,
const bigint255 *x,
const bigint255 *y)

int i;
for(i=0;i<12;i++)
r->ali] = x->al[i] - y->alil;



Carrying

> For carrying integers we used a right shift (discard lowest bits)
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Carrying

> For carrying integers we used a right shift (discard lowest bits)

» For floating-point numbers we can use multiplication by the inverse
of the radix

222 2722

» Example: Radix 2%, multiply by

» This does not cut off lowest bits, need to round
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Carrying

> For carrying integers we used a right shift (discard lowest bits)

v

For floating-point numbers we can use multiplication by the inverse
of the radix

v

Example: Radix 222, multiply by 2722

v

This does not cut off lowest bits, need to round
» Some processors have efficient rounding instructions, e.g., vroundpd
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Carrying
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For carrying integers we used a right shift (discard lowest bits)
For floating-point numbers we can use multiplication by the inverse
of the radix

Example: Radix 222

, multiply by 2722

This does not cut off lowest bits, need to round
Some processors have efficient rounding instructions, e.g., vroundpd

Otherwise (for double-precision):
> add constant 252 4 251
> subtract constant 252 + 25*
» This will round the number to an integer according to the rounding
mode (to nearest, towards zero, away from zero, or truncate)
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Modular reduction

» We don't just need arithmetic on big integers
» We need arithmetic in finite fields
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Modular reduction

We don't just need arithmetic on big integers

>

» We need arithmetic in finite fields

» In other words, we need reduction modulo a prime p
> Let's fix some size and representation:

/* 256-bit integers in radix 2716 */
typedef signed long long bigint[16];

v

Integer A is obtained as "1~ a;2'%

Lot of space in top of limbs to accumulate carries

v

40



A quick look at product-scanning multiplication

/* 256-bit integers in radix 2716 */
typedef signed long long bigint[16];

void mul_prodscan(signed long long r[31],

r[0]
r[1]
r[1]
r[2]
r[2]
r[2]
r[29]
r[29]
r [30]

x[0]
x[1]
x[0]
x[2]
x[1]
x[0]

* ¥ ¥ X X ¥

const bigint x,
const bigint y)

y[0];
y[0];
y[11;
y[0];
y[1];
y[2];

x[15] * y[14];
x[14] * y[15];
x[16] * y[15];
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Modular reduction

> Let's fix some p, say p = 22°° — 19
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> Let's fix some p, say p = 22°° — 19
> We know that 22°° = 19 (mod p)
» This means that 22°6 = 38 (mod p)
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> Let's fix some p, say p = 22°° — 19
> We know that 22°° = 19 (mod p)
» This means that 22°6 = 38 (mod p)
» Reduce 31-bit intermediate result r as follows:
for(i=0;i<15;i++)
r[i] += 38*r[i+16];
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Modular reduction

> Let's fix some p, say p = 22°° — 19
> We know that 22°° = 19 (mod p)
» This means that 22°6 = 38 (mod p)
» Reduce 31-bit intermediate result r as follows:
for(i=0;i<15;i++)
r[i] += 38*r[i+16];

» Resultis in r[0],...,r[15]

42



Primes are not rabbits

» “You cannot just simply pull some nice prime out of your hat!”
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Primes are not rabbits

» “You cannot just simply pull some nice prime out of your hat!”
» In fact, very often we can.
» For cryptography we construct curves over fields of “nice” order
» Examples:

> 2192 264 1 (“NIST-P192", FIPS186-2, 2000)
2224 _ 996 1 1 (“NIST-P224", FIPS186-2, 2000)
2256 _ 9224 4 9192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
22%5 — 19 (Bernstein, 2006)
2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
Q448 _ 9224 _ (Hamburg, 2015)

vVvVvvyVyYy
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Primes are not rabbits

“You cannot just simply pull some nice prime out of your hat!”

In fact, very often we can.

For cryptography we construct curves over fields of “nice” order

Examples:

—204 1 (“NIST-P192", FIPS186-2, 2000)
9224 _

9256 _
9255 _

>

vvyy

>

2192

2251

296 11 (“NIST-P224", FIPS186-2, 2000)
2224 4 2192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
19 (Bernstein, 2006)

— 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
Q148 _

2224 _1q (Hamburg, 2015)

All these primes come with (more or less) fast reduction algorithms
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Primes are not rabbits

vvyyvyy

v

“You cannot just simply pull some nice prime out of your hat!”

In fact, very often we can.

For cryptography we construct curves over fields of “nice” order

Examples:

—204 1 (“NIST-P192", FIPS186-2, 2000)
9224 _

9256 _
9255 _

>

vvyy

>

2192

2251

296 11 (“NIST-P224", FIPS186-2, 2000)
2224 4 2192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
19 (Bernstein, 2006)

— 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
Q148 _

2224 _1q (Hamburg, 2015)

All these primes come with (more or less) fast reduction algorithms

More about general primes later
For the moment let’s stick to 225% — 19
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Carrying after multiplication

long long c;
for(i=0;i<15;i++)
{
c = r[i] >> 16;
rli+1] += c;
c <<= 16;
r[i] -= c;
}
c = r[15] >> 16;
r[0] += 38%c;
c <<= 16;
r[15] -= c;
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Carrying after multiplication

long long c;
for(i=0;i<15;i++)
{
c = r[i] >> 16;
rli+1] += c;
c <<= 16;
rli] -= c;
}
c = r[15] >> 16;
r[0] += 38%c;
c <<= 16;
r[15] -= c;

» Coefficient r[0] may still be too large: carry again to r[1]



How about squaring?

#define bigint_square(R,X) bigint_mul(R,X,X)
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How about squaring?

/* 256-bit integers in radix 2716 */
typedef signed long long bigint[16];

void square_prodscan(signed long long r[31],

{
r[0] =
r[1] =
r[1] +=
r[2] =
r[2] +=
r[2] +=

ri20] =
r[29] +=
r[30] =

x[0]
x[1]
x[0]
x[2]
x[1]
x[0]

* X ¥ X ¥ ¥

const bigint x)

x[0];
x[0];
x[1];
x[0];
x[11;
x[2];

x[15] * x[14];
x[14] * x[15];
x[15] * x[15];

45



How about squaring?

/* 256-bit integers in radix 2716 */
typedef signed long long bigint[16];

void square_prodscan(signed long long r[31],
const bigint x)
{
signed long long _2x[16];
int i;
for(i=0;i<16;i++)
_2x[i] = 2*x[i];

rfol] = x[0] * x[0];
r[1] = _2x[1] * x[0];
r[2] = _2x[2] * x[0];
r[2] += x[1] * x[1];

r[29]
r[30]

_2x[15] = x[14];
x[15] * x[15];



Squaring vs. multiplication

Multiplication needs
» 256 multiplications
» 225 additions
Squaring needs
» 136 multiplications
» 105 additions
» 15 additions or shifts or multiplications by 2 for precomputation
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How about other prime fields?

» So far: reductions only modulo “nice” primes
» What if somebody just throws an ugly prime at you?
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How about other prime fields?

» So far: reductions only modulo “nice” primes

» What if somebody just throws an ugly prime at you?
» Example: German BSI is pushing the “Brainpool curves”, over fields
F,, with
pa2a =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDASYF5TEC8COFF

or

pase =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751
=0zA9F B5TDBA1EEA9BC3E660A909D838D726 E3BF 623D\
52620282013481D1F6E5377
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How about other prime fields?

» So far: reductions only modulo “nice” primes

» What if somebody just throws an ugly prime at you?
» Example: German BSI is pushing the “Brainpool curves”, over fields
F,, with
pa2a =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDASYF5TEC8COFF
or
pase =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751
=02z A9F B57TDBA1EFEA9BC3E660A909D838 D726 E3BF623D\
52620282013481D1F6E5377

» Another example: Pairing-friendly curves are typically defined over
fields I, where p has some structure, but hard to exploit for fast
arithmetic
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Montgomery representation

» We have the following problem:

> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» We need to find ¢ mod p
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> |dea: Perform big-integer division with remainder (expensive!)
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Montgomery representation

» We have the following problem:
> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» We need to find ¢ mod p

> |dea: Perform big-integer division with remainder (expensive!)

> Better idea (Montgomery, 1985):

> Let R be such that gcd(R,p) =1landt<p-R

> Represent an element a of F, as aR mod p

> Multiplication of aR and bR vyields t = abR* (2n limbs)
> Now compute Montgomery reduction: tR™' mod p
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Montgomery representation

» We have the following problem:

| 2
>

We multiply two n-limb big integers and obtain a 2n-limb result ¢
We need to find ¢ mod p

> |dea: Perform big-integer division with remainder (expensive!)
> Better idea (Montgomery, 1985):

>

vyvyvyvVvy

Let R be such that gcd(R,p) =1landt<p-R
Represent an element a of Fj, as aR mod p
Multiplication of aR and bR vyields t = abR* (2n limbs)
Now compute Montgomery reduction: tR™' mod p
For some choices of R this is more efficient than division
Typical choice for radix-b representation: R = b"

48



Montgomery reduction (pseudocode)

Require: p = (pn—1,...,P0)p With ged(p,b) =1, R =b",
p'=—p~! modbandt=(tan_1,...,t0)s
Ensure: tR~' mod p
At
for i from0ton —1do
u <+ a;p’ mod b
A—A+u-p-bv
end for
A+ AL
if A> p then
A—A-p
end if
return A
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Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

» Only efficient if many operations are performed in Montgomery
representation
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Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

» Only efficient if many operations are performed in Montgomery
representation

» The algorithms takes n? + n multiplication instructions

> n of those are “shortened” multiplications (modulo b)
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Some notes about Montgomery reduction

v

Some cost for transforming to Montgomery representation and back

Only efficient if many operations are performed in Montgomery
representation

The algorithms takes n2 + n multiplication instructions
n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication
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Some notes about Montgomery reduction

vy

vvyYyy

Some cost for transforming to Montgomery representation and back

Only efficient if many operations are performed in Montgomery
representation

The algorithms takes n2 + n multiplication instructions
n of those are “shortened” multiplications (modulo b)
The cost is roughly the same as schoolbook multiplication

Careful about conditional subtraction (timing attacks!)
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Some notes about Montgomery reduction

vy

vvyyVvyyvyy

Some cost for transforming to Montgomery representation and back

Only efficient if many operations are performed in Montgomery
representation

The algorithms takes n2 + n multiplication instructions

n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication
Careful about conditional subtraction (timing attacks!)

One can merge schoolbook multiplication with Montgomery
reduction: “Montgomery multiplication”

50



Still missing: inversion

» Inversion is typically much more expensive than multiplication

51



Still missing: inversion

» Inversion is typically much more expensive than multiplication
» Efficient ECC arithmetic avoids frequent inversions

» ECC can typically not avoid all inversions

> We need inversion, but we do (usually) not need it often
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Still missing: inversion

» Inversion is typically much more expensive than multiplication
» Efficient ECC arithmetic avoids frequent inversions

» ECC can typically not avoid all inversions

> We need inversion, but we do (usually) not need it often

» Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat's little theorem
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Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a - u + b - v = ged(a, b)
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Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a - u + b - v = ged(a, b)

» |t is based on the observation that

ged(a, b) = ged(b,a — gb) Vg e Z
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Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a - u + b - v = ged(a, b)

> |t is based on the observation that
ged(a,b) = ged(b,a — gb) Vg eZ
» To compute a~! (mod p), use the algorithm to compute
a-u+p-v=ged(a,p) =1

» Now it holds that u = a~! (mod p)

52



Extended Euclidean algorithm (pseudocode)

Require: Integers a and b.
Ensure: An integer tuple (u,v,d) satisfying a-u+b-v = d = ged(a, b)
u <1
v 0
d+a
vy < 0
v3 < b
while (vs # 0) do
d
q < LEJ
t3 < d mod U3
t1 < u — qup
U < V1
d <+ v3
v1 —
V3 < t3
end while
v i
return (u,v,d)
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Some notes about the Extended Euclidean algorithm

> Core operation are divisions with remainder

» This lecture: no details about big-integer division

» Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
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Some notes about the Extended Euclidean algorithm

> Core operation are divisions with remainder
» This lecture: no details about big-integer division
» Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
» The running time (number of loop iterations) depends on the inputs
» We usually do not want this for cryptography (timing attacks!)
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Some notes about the Extended Euclidean algorithm

> Core operation are divisions with remainder

v

This lecture: no details about big-integer division
» Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
» The running time (number of loop iterations) depends on the inputs
» We usually do not want this for cryptography (timing attacks!)

» Possible protection: blinding

> Multiply a by random integer r
> Invert, obtain r~'a™!

> Multiply again by r to obtain a ™!

» Note that this requires a source of randomness
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Some notes about the Extended Euclidean algorithm

> Core operation are divisions with remainder

v

This lecture: no details about big-integer division
» Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
» The running time (number of loop iterations) depends on the inputs
» We usually do not want this for cryptography (timing attacks!)

» Possible protection: blinding

> Multiply a by random integer r
> Invert, obtain r~'a™!

> Multiply again by r to obtain a ™!

» Note that this requires a source of randomness

» Other option: constant-time EEA, Bernstein-Yang, 2019:
https://eprint.iacr.org/2019/266.pdf
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Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)
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Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

» This implies that a?~2 = a~! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2
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Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

» This implies that a?~2 = a~! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2
> The exponent is quite large (e.g., 255 bits), is that efficient?
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Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

» This implies that a?~2 = a~! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2
> The exponent is quite large (e.g., 255 bits), is that efficient?
> Yes, fairly:
» Exponent is fixed and known at compile time
» Can spend quite some time on finding an efficient addition chain
(next lecture)

> Inversion modulo 22°® — 19 needs 254 squarings and 11
multiplications in Fy2s5_ 19
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Inversion in 255 19

void gfe_invert(gfe r, const gfe x)

gfe z2, z9, zl11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t;

{

int i;

/* 2 %/

/* 4 x/

/*x 8 */

/* 9 x/

/* 11 %/

/* 22 %/

/% 2°5 - 270 = 31 %/
/* 276 - 271 %/
/* 2710 - 275 */
/* 2710 - 270 */
/* 2711 - 2~1 %/
/* 2720 - 2710 */
/* 2720 - 2°0 */
/% 2721 - 2~1 %/
/* 2740 - 2720 */
/* 2740 - 270 */

gfe_square(z2,x);

gfe_square(t,z2);

gfe_square(t,t);

gfe_mul(z9,t,%);

gfe_mul(z11,z9,2z2);

gfe_square(t,z11);

gfe_mul(z2_5_0,t,29);

gfe_square(t,z2_5_0);

for (i = 1;i < 5;i++) { gfe_square(t,t); }
gfe_mul(z2_10_0,t,2z2_5_0);
gfe_square(t,z2_10_0);

for (i = 1;i < 10;i++) { gfe_square(t,t); }
gfe_mul(z2_20_0,t,z2_10_0);
gfe_square(t,z2_20_0);

for (i = 1;i < 20;i++) { gfe_square(t,t); }
gfe_mul(t,t,z2_20_0);
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Inversion in 255 19

/*x 2741 - 271 %/ gfe_square(t,t);

/* 2750 - 2710 */ for (i = 1;i < 10;i++) { gfe_square(t,t); }
/* 2750 - 270 *x/ gfe_mul(z2_50_0,t,22_10_0);

/* 2751 - 271 %/ gfe_square(t,z2_50_0);

/* 27100 - 2750 */ for (i = 1;i < 50;i++) { gfe_square(t,t); }
/* 27100 - 2°0 */ gfe_mul(z2_100_0,t,z2_50_0);

/* 27101 - 271 */ gfe_square(t,z2_100_0);

/* 27200 - 27100 */ for (i = 1;i < 100;i++) { gfe_square(t,t); }
/* 27200 - 2~0 %/ gfe_mul(t,t,z2_100_0);

/* 27201 - 271 %/ gfe_square(t,t);

/* 27250 - 2750 */  for (i = 1;i < 50;i++) { gfe_square(t,t); }

/* 27250 - 270 */ gfe_mul(t,t,z2_50_0);
/* 27261 - 271 */ gfe_square(t,t);
/* 27252 - 272 */ gfe_square(t,t);
/* 27253 - 273 */ gfe_square(t,t);
/* 27254 - 274 x/ gfe_square(t,t);
/* 27255 - 275 x/ gfe_square(t,t);

/* 27255 - 21 %/ gfe_mul(r,t,z11);
}
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Multiprecision libraries

» Why would you write low-level arithmetic yourself?
» Aren't there some good libraries for this?
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Multiprecision libraries

» Why would you write low-level arithmetic yourself?
» Aren't there some good libraries for this?

» There are:

» GMP (http://gmplib.org), high-performance arithmetic on
multiprecision numbers

> NTL (http://shoup.net/ntl/), number-theory library, higher level
than GMP, uses GMP

» OpenSSL Bignum (http://openssl.org), low-level routines in
OpenSSL

» mpF, (http://mpfq.gforge.inria.fr/), a finite-field library
(generator)
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Limitations of libraries

» Libraries don’t know the modulus (except for mpF,), cannot
optimize for a fixed modulus
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Limitations of libraries

» Libraries don’t know the modulus (except for mpF,), cannot
optimize for a fixed modulus

» Libraries don't know the sequence of field operations you're
computing (e.g., point addition), cannot use lazy reduction

» Libraries are not always timing-attack protected

» Consequence: ECC speed records are achieved with hand-optimized
assembly implementations
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