
Hacking in C
Attacks, part III

Radboud University, Nijmegen, The Netherlands

Spring 2018

A short recap

◮ Overwrite the return address: Manipulating program flow
◮ Return to other existing code
◮ Return to code that we inject ← last week

◮ Shell code: tiny piece of assembly code that spawns a shell
◮ Stay clear of NULL-bytes

◮ Mitigations
◮ Less code means less liability
◮ libsafe
◮ Dynamic analysis (valgrind, clang’s AddressSanitizer)
◮ Static analysis (CCured, PREfast, Flawfinder)
◮ Stack canaries
◮ Data Execution Prevention

2

Return to libc

◮ Attacker cannot execute his code on the stack anymore

◮ Workaround: execute code that is already in the program

◮ (Almost) always mapped into the programs memory space: C
standard library

◮ Idea:
◮ Somehow prepare arguments for system()
◮ overwrite return address with address of system()

◮ Obtain the address of libc with
cat /proc/$PID/maps | grep libc

◮ Obtain the offset of system() through

nm -D /lib/x86_64-linux-gnu/libc.so.6 | grep system

3

Preparing arguments

int system(const char *command);

◮ Target: first argument to system() should be address of "/bin/sh"

◮ Can write "/bin/sh" somewhere

◮ Alternative: find "/bin/sh" somewhere in the binary or libraries

◮ Then obtain address of "/bin/sh"

4

”The old days” (x86)

◮ Arguments are passed through the stack

◮ Write behind buffer

1. Address of system()

2. Address of exit()

3. Address of "/bin/sh"

◮ Address of system() must overwrite return address in current frame

◮ Code will return to system() with
◮ return address pointing to exit(), and
◮ argument pointing to "/bin/sh"

5

Nowadays: AMD64 (x64, x86-64)

◮ Arguments are passed through registers

◮ Somehow need to get the address of "/bin/sh" into %rdi

◮ Idea: find “gadget”
pop %rdi

retq

◮ Overwrite return address with that gadget

◮ Put address of "/bin/sh" behind this new “return address”

◮ Put address of system() behind

◮ What will happen?:
◮ Gadget will pop the address of "/bin/sh" into %rdi
◮ retq will return into system()

◮ ROP-technique generalizes this (later)

6

Countermeasures

◮ Can make sure that \0 is in the address of libc

◮ Many functions (like gets) won’t read past the \0

◮ Does not generally help, can overflow some buffers also with \0

◮ Can remove some critical functions from (reduced) libc

◮ Problems:
◮ Can break functionality
◮ What functions exactly can cause problems. . . ?

7

Return Oriented Programming (ROP)

◮ We do not have to return to libc functions

◮ Can also return to arbitrary addresses (e.g., the pop-retq gadget)

◮ Can chain such returns, if each targeted block ends in return

◮ Attack idea: Collect pieces of code from binary (each ending in
return)

◮ Chain these pieces to an attack program

◮ This idea is called return-oriented programming

◮ Concept introduced by Shacham in 2007

◮ ACM CCS 2017 Test of Time Award

◮ Collected pieces of code are called gadgets

◮ Attacker now has to program with “gadget-instructions”

◮ Slight generalization: Can also use gadgets ending in jumps

◮ Important concept: can obtain malicious computation without
malicious code!

◮ Searching for gadgets (and to some extent chaining) can be
automated

8

ROP: Example

vulnfunc()

...

retq

0xcafebabe

...

pop %rdi

retq

0xfeedface

...

xor %rax, %rax

retq

0xdeadbeef

...

mov %rdx, %rax

pop %rsi

retq

(corrupted) stack

0x7f1229d0f4a0 (execlp)

0x7f1229dd9f20 (“/bin/sh”)

0xdeadbeef

0xfeedface

0x7f1229dd9f20 (“/bin/sh”)

0xcafebabe

0x414141414141414141

registers

rax unknown0x0

rdx unknown0x0

rdi unknown 0x7f1229dd9f20

rsi unknown0x7f1229dd9f20

Will now jump to execlp with arguments in rdi, rsi, rdx

i.e. execlp(“/bin/sh”, “/bin/sh”, NULL);
9

ASLR

◮ Return to libc and ROP need to know the addresses of code

◮ Idea: randomize position of dynamic libraries

◮ This approach is called address space layout randomization (ASLR)

◮ Does not only randomize position of dynamic libraries, but also:
◮ position of stack
◮ position of data segment
◮ position of heap

◮ To also randomize the position of the binary itself need to use
gcc -fpie

◮ pie stands for “position independent executable”

◮ Disable ASLR in Linux:
echo 0 > /proc/sys/kernel/randomize_va_space

or boot with parameter norandmaps

◮ Disable ASLR for one process:
setarch `uname -m` -R PROGRAMNAME

10

Attacks against ASLR

◮ ASLR is generally effective as a defense

◮ Problem if address of one instruction leaks to the attacker:
◮ Format-string attacks
◮ Using overflows to overwrite null-termination
◮ Memory content written to disk
◮ All libraries must be randomized

◮ Can ROP on a non-randomized library
◮ For a while, linux-gate.so.1 was not randomized

◮
. . .

◮ Problem on 32-bit machines: not enough entropy
◮ Cannot randomize lower 12 bits of address (that would break page

alignment)
◮ Cannot randomize upper 4 bits (limits capabilities of large memory

mappings)
◮ Result: only 16 bits of entropy (65536 possibilities)
◮ Shacham, Page, Pfaff, Goh, Modadugu, Boneh, 2004: brute-force

attack that took 216 seconds on average

11

Spot the defect – Heartbleed

/* Process incoming message with the format

| hbtype | len | payload[0] payload [len-1] |

one byte two bytes len bytes payload */

unsigned char *p; // pointer to the incoming message

unsigned int len; // called payload in the original code

unsigned short hbtype;

hbtype = *p++;

// Puts *p into hbtype

n2s(p, len);

// Takes two bytes from p, and puts them in len

// This is the length of the payload

unsigned char* buffer = malloc(1 + 2 + len);

/* Enter response type, length and copy payload */

buffer++ = TLS1_HB_RESPONSE;

s2n(len, buffer);

// takes 16-bit value len and puts it into two bytes

memcpy(buffer, p, len); // copy len bytes from p into buffer

տ Possible uninitialized data read
12

Spot the defect – Cloudbleed

// char* p is a pointer to a buffer containing the

// incoming messages to be processed

// char* end is a pointer to the end of this buffer

....

// code inspecting *p, which increases p

....

if (++p == end) goto _test_eof;

More secure code

....

if (++p >= end) goto _test_eof;

13

How common are these problems?

Look at websites such as

◮ https://www.us-cert.gov/ncas/bulletins

◮ http://cve.mitre.org/

◮ http://www.securityfocus.com/vulnerabilities

Vulnerability descriptions that mention

◮ ’buffer’

◮ ’boundary condition error’

◮ ’lets remote users execute arbitrary code’

◮ or simply ’remote security vulnerability’

are often caused by buffer overflows. Some sites use the CWE (Common
Weakness Enumeration) to classify vulnerabilities.

14

https://www.us-cert.gov/ncas/bulletins
http://cve.mitre.org/
http://www.securityfocus.com/vulnerabilities

CWE classification

The CWE (Common Weakness Enumeration) provides a standardised
classfication of security vulnerabilities https://cwe.mitre.org/ NB the
classification is long (over 800 classes!) and confusing! Eg

◮ CWE-118 ... CWE-129, CWE-680, and CWE 787 are buffer errors

◮ CWE-822 ... CWE-835 and CWE-465 are pointer errors

◮ CWE-872 are integer-related issues

Have a look at

◮ https://cwe.mitre.org/data/definitions/787.html - buffer
issues

◮ https://cwe.mitre.org/data/definitions/465.html - pointer
issues

◮ https://cwe.mitre.org/data/definitions/872.html - integer
issuess

15

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/872.html

Example vulnerable code

void m() {

int x = 4;

f(); // return_to_m

printf ("x is %d", x);

}

void f() {

int y = 7;

g(); // return_to_f

printf ("y+10 is %d", y+10);

}

void g() {

char buf[80];

gets(buf); ← potential overflow of buf

printf(buf); ← potential format string attack
gets(buf); ← potential overflow of buf

}

An attacker could

1. first inspect the stack using a
malicious format string (entered
in first gets and printed with
printf)

2. then overflow buf to corrupt the
stack (with the second gets)

16

Example vulnerable code

void m() {

int x = 4;

f(); // return_to_m

printf ("x is %d", x);

}

void f() {

int y = 7;

g(); // return_to_f

printf ("y+10 is %d", y+10);

}

void g() {

char buf[80];

gets(buf);

printf(buf);

gets(buf);

}

stack
frame
for mx 4

return_to_m stack
frame
for f

fp_m
y 7

return_to_f

stack
frame
for g

fp_f
buf[72..79]

...

...

buf[0..7]

17

Normal execution

◮ After completing g

execution continues with f from program point return_to_f

This will print 17.

◮ After completing f

execution continues with main from program point return_to_m

This will print 4.

If we start smashing the stack different things can happen

18

Attack scenario 1

stack
frame
for mx 4

return_to_m stack
frame
for f

fp_m
y 7

return_to_f

stack
frame
for g

fp_f
buf[72..79]

...

...

buf[0..7]

in g() we overflow buf to overwrite values
of x or y.

◮ After completing g

execution continues with f from
program point return_to_f

This will print whatever value we
gave to y +10.

◮ After completing f

execution continues with main from
program point return_to_m

This will print whatever value we
gave to x.

Of course, it is easier to overwrite local
variables in the current frame than variables
in ’lower’ frames

19

Attack scenario 2

stack
frame
for mx 4

return_to_m stack
frame
for f

fp_m
y 7

return_to_f

stack
frame
for g

fp_f
buf[72..79]

...

...

buf[0..7]

in g() we overflow buf to overwrite return
address return_to_f with return_to_m

◮ After completing g

execution continues with m instead
of f but with f’s stack frame.

This will print 7.

◮ After completing m

execution continues with m

This will print 4;

20

Attack scenario 3

stack
frame
for mx 4

return_to_m stack
frame
for f

fp_m
y 7

return_to_f

stack
frame
for g

fp_f
buf[72..79]

...

...

buf[0..7]

in g() we overflow buf to overwrite frame
pointer fp_f with fp_m.

◮ After completing g

execution continues with f
but with m’s stack frame.

This will print 14.

◮ After completing f

execution continues with whatever
code called m.

So we never finish the function call m, the
remaining part of the code (after the call to
f) will never be executed.

21

Attack scenario 4

stack
frame
for mx 4

return_to_m stack
frame
for f

fp_m
y 7

return_to_f

stack
frame
for g

fp_f
buf[72..79]

...

...

buf[0..7]

in g() we overflow buf to overwrite frame
pointer fp_f with fp_g.

◮ After completing g

execution continues with f
but with g’s stack frame.

This will print (some bytes of buf
+10).

◮ After completing f

execution might continue with f,
again with g’s stack frame, repeating
this forever.

This depends on whether the compiled code
looks up values from the top of g’s stack
frame, or the bottom of g’s stack frame. In
the latter case the code will jump to some
code depending on the contents of buf.

22

Attack scenario 5

stack
frame
for mx 4

return_to_m stack
frame
for f

fp_m
y 7

return_to_f

stack
frame
for g

fp_f
buf[72..79]

...

...

buf[0..7]

in g() we overflow buf to overwrite frame
pointer fp_f with some pointer into buf.

◮ After completing g

execution continues with f
but with part of buf as stack frame.

This will print (some bytes of buf
+10).

◮ After completing f

execution continues with an address
and frame pointer taken from buf

23

Attack scenario 6

stack
frame
for mx 4

return_to_m stack
frame
for f

fp_m
y 7

return_to_f

stack
frame
for g

fp_f
buf[72..79]

...

...

buf[0..7]

in g() we overflow buf to overwrite the
return address return_to_f to point in
some code somewhere, and the
framepointer to point inside buf.

◮ After completing g

execution continues executing that
code using part of buf as stack
frame.

This can do all sorts of things!
If we have enough code to choose
from, this can do anything we want.

Often the address of a function in libc is
used, in what is called a return-to-libc
attack.

24

Attack scenario 7

stack
frame
for mx 4

return_to_m stack
frame
for f

fp_m
y 7

return_to_f

stack
frame
for g

fp_f
buf[72..79]

...

...

buf[0..7]

in g() we overflow buf to overwrite the
return address return_to_f to point inside
buf

◮ After completing g

execution continues with whatever
code (aka shell code) was written in
buf, using f’s stack frame. This can
do anything we want.

This is the classic buffer overflow attack
discussed last week

◮ The attack requires that the computer
(OS + hardware) can be tricked into
executing data allocated on the stack.
Many systems will no longer execute
data (code) on the stack or on the
heap (last week).

25

