
Hacking in C
Assignment 5, Thursday, Februari 28, 2018

Handing in your answers: Submission via Brightspace (http://brightspace.ru.nl)

Deadline: Wednesday, March 14, 23:59:59 (midnight)

1. In this assignment you will perform a remote exploit on an echo server we provide. The echo server echoes
input, and as attackers you can repeatedly supply format strings or long inputs to reveal or corrupt data
on the stack. Please be considerate of your fellow students: If you intentionally break the server, they
cannot complete the exercise until we fix it.

Remember that these exercises do not count to your final grade. However, you should make an effort
to at least partially answer all questions If you get stuck on a question, clearly explain why you cannot
continue.

The hostname of the echo server is hackme.cs.ru.nl, the port is 2266. If you connect to this address
with e.g. netcat aka nc (nc hackme.cs.ru.nl 2266, see also man nc) it will simply print everything
you send back to you.

~$ echo "Hello there!" | nc hackme.cs.ru.nl 2266

Hello there!

The command netcat takes input from files, commands or scripts if you simply redirect the standard
input, and send them over a network connection. For example, nc hackme.cs.ru.nl 2266 <file will
establish a connection to the echo server and send the contents of file to it. As another example,
./exploit.sh | nc hackme.cs.ru.nl 2266 will send the output of the script exploit.sh to the echo
server. Since you are not giving the input on the command line, all you see is what the server echoes
back.

For the purpose of this exercise, we went out of our way to do this insecurely. We have manually disabled
several security mechanisms on the program you connect with. There is no reason to ever do this on
modern systems, so you are unlikely to encounter programs in the wild which are exploited as easily as
this one.

For this exercise you will need to figure out what the program does without access to the program. The
source code or binary executable are not provided. Rather, you must use the knowledge gained from the
previous lectures and exercises to figure out how to exploit this program with the shellcode we provide.

Preparation

(a) Download and extract the assignment code package from https://rded.nl/hic/assignment5.

tar.gz.

(b) Read the source code of shellcode.c to learn what shellcode.c does and compile it using make.

(c) You will also find a helper program reverseaddr that helps with reversing an address and printing
it in little-endian byte form.

Note: you do not need to use either program (you may write your own), but they will probably be quite
helpful.

Gathering intelligence

(a) Create a file called exercise5 to do your notetaking in. This will be one of the files you will hand
in.

(b) There is a buffer overflow vulnerability in the program. Figure out how many bytes you need to
send before the program crashes. Why is the program likely to be crashing when you send that
many bytes? Write your answer down.
Hint: It is probably easiest to write a shell script that prints however many characters as you want.
The code package contains attack.sh which you could use as a starting point.

http://brightspace.ru.nl
https://rded.nl/hic/assignment5.tar.gz
https://rded.nl/hic/assignment5.tar.gz

(c) There is also a vulnerable printf statement. Use this to read the stack. Add the format string
you’ve used and the memory contents you obtained to exercise5. Try to identify certain items in
the output, think of:

• Stack addresses

• Return addresses

• The frame pointer

• The contents of your buffer

Add your guesses to your notes.
Hint 1: It is probably again easiest if you add some functionality to your attack script to print
your format string.
Hint 2: Remember that addresses pointing to values on the stack usually start with 0x7f.

(d) If you’ve found the frame pointer, you can try to estimate where the start of the vulnerable buffer
may be. Write down what you think, and add an explanation.

(e) Recall the layout of the stack: there may be other local variables in the memory output between
the buffer and the return address. You may be able to guess what sort of values are there. Write
down your thoughts.

Exploitation You should now have a rough idea of the following:

• The (relative) location of the return address on the stack

• Some idea of where the start of the buffer is

If you’re unsure, it is prefectly valid to apply some amount of brute force to figure out the exact addresses;
adding a for loop to your script to try out some values may be very useful.

(a) Combine all the information you’ve obtained to obtain a shell on the server.

i. Add the shellcode to your attack script. The provided shellcode program should be helpful.
It can also print however many NOPs you want.
Hint 1: Start out with ./shellcode list <nops>. This shell code will execute /bin/ls,
which immediately gives you output.
Hint 2: to add the output of ./shellcode list <nops> to your attack string in attack.sh,
write attackstr="${attackstr}$(./shellcode list <nops>)".

ii. Add the address you want to overwrite the return address with to your attack script.
Hint 1: Don’t forget that addresses should be supplied little-endian!
Hint 2: You may use the supplied reverseaddr program to help you reverse and print
the bytes of an address. If it seems you don’t get visible output when run by itself, that
may be because the characters printed are not valid ASCII. You could check that by doing
./reverseaddr 0xAAAAAA | xxd to have xxd print the output in hexadecimal.

iii. Figure out how many bytes you should print to overwrite the return address and execute your
shell code. If your script by this point expects any arguments, add the correct way to invoke it
to your notes.

iv. Once you have obtained the /bin/ls output, switch the ./shellcode list command over to
the ./shellcode shell command. Also, switch the command that executes the attack (the
ones with echo $attackstr) to the one that says “uncomment if you want to run the shell
code”. If your script by this point expects any arguments, add the correct way to invoke it to
your notes.
Hint: If it appears the command hangs, try typing whoami. You will not get the layout of a
normal command prompt.

v. Once you’ve obtained a shell, run the command proof, and follow the instructions on-screen.
Do not forget to send the e-mail.

vi. Please do not try to further exploit the machine. Do not run anything that may hinder other
students.

2. Place the file with your notes and everything you used to exploit the machine in a folder called
hic-assignment5-STUDENTNUMBER1-STUDENTNUMBER2. Crucially, include your attack script. Do not
forget to add any instructions on how to run your script. Again, add in your student numbers and create
a tar archive of the folder. Hand it in on Brightspace.

