
Hacking in C
The C programming language

Radboud University, Nijmegen, The Netherlands

Spring 2019

The C programming language

◮ Invented by Dennis Ritchie in the early 70s

◮ First “Hello World” program written in C

Source: Wikipedia

2

The C programming language

◮ Invented by Dennis Ritchie in the early 70s

◮ First “Hello World” program written in C

◮ UNIX (and Linux) is written in C

◮ Still one of the top-5 most used
programming languages

◮ Compilers for almost all platforms

Source: Wikipedia

2

The C programming language

◮ Invented by Dennis Ritchie in the early 70s

◮ First “Hello World” program written in C

◮ UNIX (and Linux) is written in C

◮ Still one of the top-5 most used
programming languages

◮ Compilers for almost all platforms

◮ Many “interesting” security issues

Source: Wikipedia

2

C standards and “standards”

◮ First definition in Kernighan&Ritchie: “The C Programming
Language”

◮ Also known as K&R C, book appared in 1978

3

C standards and “standards”

◮ First definition in Kernighan&Ritchie: “The C Programming
Language”

◮ Also known as K&R C, book appared in 1978

◮ Standardized by ANSI in 1989 (C89) and ISO (C90)

◮ Second edition of K&R book used “ANSI C”, i.e., C89

3

C standards and “standards”

◮ First definition in Kernighan&Ritchie: “The C Programming
Language”

◮ Also known as K&R C, book appared in 1978

◮ Standardized by ANSI in 1989 (C89) and ISO (C90)

◮ Second edition of K&R book used “ANSI C”, i.e., C89

◮ In 1995, ANSI published an amendment to the C standard (“C95”)

3

C standards and “standards”

◮ First definition in Kernighan&Ritchie: “The C Programming
Language”

◮ Also known as K&R C, book appared in 1978

◮ Standardized by ANSI in 1989 (C89) and ISO (C90)

◮ Second edition of K&R book used “ANSI C”, i.e., C89

◮ In 1995, ANSI published an amendment to the C standard (“C95”)

◮ In 1999, ISO standardized updated C, ANSI adopted (C99)

3

C standards and “standards”

◮ First definition in Kernighan&Ritchie: “The C Programming
Language”

◮ Also known as K&R C, book appared in 1978

◮ Standardized by ANSI in 1989 (C89) and ISO (C90)

◮ Second edition of K&R book used “ANSI C”, i.e., C89

◮ In 1995, ANSI published an amendment to the C standard (“C95”)

◮ In 1999, ISO standardized updated C, ANSI adopted (C99)

◮ Current standard is C11, standardized (ANSI and ISO) in 2011

◮ Standard draft online: https://port70.net/~nsz/c/c11/n1570.

html

3

https://port70.net/~nsz/c/c11/n1570.html
https://port70.net/~nsz/c/c11/n1570.html

C standards and “standards”

◮ First definition in Kernighan&Ritchie: “The C Programming
Language”

◮ Also known as K&R C, book appared in 1978

◮ Standardized by ANSI in 1989 (C89) and ISO (C90)

◮ Second edition of K&R book used “ANSI C”, i.e., C89

◮ In 1995, ANSI published an amendment to the C standard (“C95”)

◮ In 1999, ISO standardized updated C, ANSI adopted (C99)

◮ Current standard is C11, standardized (ANSI and ISO) in 2011

◮ Standard draft online: https://port70.net/~nsz/c/c11/n1570.

html

◮ Compilers like gcc or clang also support GNU extensions

◮ Default for gcc: C11 plus GNU extensions (aka gnu11)

3

https://port70.net/~nsz/c/c11/n1570.html
https://port70.net/~nsz/c/c11/n1570.html

C standards and “standards”

◮ First definition in Kernighan&Ritchie: “The C Programming
Language”

◮ Also known as K&R C, book appared in 1978

◮ Standardized by ANSI in 1989 (C89) and ISO (C90)

◮ Second edition of K&R book used “ANSI C”, i.e., C89

◮ In 1995, ANSI published an amendment to the C standard (“C95”)

◮ In 1999, ISO standardized updated C, ANSI adopted (C99)

◮ Current standard is C11, standardized (ANSI and ISO) in 2011

◮ Standard draft online: https://port70.net/~nsz/c/c11/n1570.

html

◮ Compilers like gcc or clang also support GNU extensions

◮ Default for gcc: C11 plus GNU extensions (aka gnu11)

◮ You can switch gcc to other C standards using, e.g., -std=c89

◮ Use -pedantic flag to issue warnings if your code doesn’t conform
to the standard

3

https://port70.net/~nsz/c/c11/n1570.html
https://port70.net/~nsz/c/c11/n1570.html

C vs. C++

◮ C is the basis for C++, Objective-C, and many other languages

◮ C is not a subset of C++, e.g.,

int *x = malloc(sizeof(int) * 10);

is valid (and perfectly reasonable) C, but not valid C++!

4

C vs. C++

◮ C is the basis for C++, Objective-C, and many other languages

◮ C is not a subset of C++, e.g.,

int *x = malloc(sizeof(int) * 10);

is valid (and perfectly reasonable) C, but not valid C++!

◮ You can “mix” C and C++ code, but you have to be very careful

◮ In C++, declare C functions as extern "C", for example:

extern "C" int mycfunction(int);

◮ Now you can call mycfunction from your C++ code

◮ Use compiler by the same vendor to compile

4

C vs. C++

◮ C is the basis for C++, Objective-C, and many other languages

◮ C is not a subset of C++, e.g.,

int *x = malloc(sizeof(int) * 10);

is valid (and perfectly reasonable) C, but not valid C++!

◮ You can “mix” C and C++ code, but you have to be very careful

◮ In C++, declare C functions as extern "C", for example:

extern "C" int mycfunction(int);

◮ Now you can call mycfunction from your C++ code

◮ Use compiler by the same vendor to compile

◮ Lets you use, e.g., highly optimized C libraries

◮ Common scenario:
◮ Write high-speed code in C (and assembly)
◮ Write so-called wrappers around this for easy access in C++

4

A “portable assembler”

C has been characterized (both admiringly and invidiously) as a portable
assembly language
—Dennis Ritchie

◮ Idea of assembly:
◮ Programmer has full control over the program
◮ Choice of instructions, register allocation etc. left to programmer
◮ Programmer has “raw access” to memory

5

A “portable assembler”

C has been characterized (both admiringly and invidiously) as a portable
assembly language
—Dennis Ritchie

◮ Idea of assembly:
◮ Programmer has full control over the program
◮ Choice of instructions, register allocation etc. left to programmer
◮ Programmer has “raw access” to memory
◮ Need to rewrite programs for each architecture
◮ Need to re-optimize for each microarchitecture

5

A “portable assembler”

C has been characterized (both admiringly and invidiously) as a portable
assembly language
—Dennis Ritchie

◮ Idea of assembly:
◮ Programmer has full control over the program
◮ Choice of instructions, register allocation etc. left to programmer
◮ Programmer has “raw access” to memory
◮ Need to rewrite programs for each architecture
◮ Need to re-optimize for each microarchitecture

◮ Idea of C:
◮ Take away some bits of control from the programmer
◮ Stay as close as possible to assembly, but stay portable
◮ In particular: give programmer raw access to memory

5

A “portable assembler”

C has been characterized (both admiringly and invidiously) as a portable
assembly language
—Dennis Ritchie

◮ Idea of assembly:
◮ Programmer has full control over the program
◮ Choice of instructions, register allocation etc. left to programmer
◮ Programmer has “raw access” to memory
◮ Need to rewrite programs for each architecture
◮ Need to re-optimize for each microarchitecture

◮ Idea of C:
◮ Take away some bits of control from the programmer
◮ Stay as close as possible to assembly, but stay portable
◮ In particular: give programmer raw access to memory
◮ Use compiler to generate code for different architectures
◮ Use compiler to optimize for different microarchitectures

5

“If programming languages were. . . ”

◮ . . . vehicles
http://crashworks.org/if_programming_languages_were_vehicles/

◮ . . . countries
https://www.quora.com/

If-programming-languages-were-countries-which-country-would-each-language-rep

◮ . . . GoT characters
https://techbeacon.com/

if-programming-languages-were-game-thrones-characters

◮ . . . beer
https://www.topcoder.com/blog/if-programming-languages-were-beer/

6

http://crashworks.org/if_programming_languages_were_vehicles/
https://www.quora.com/If-programming-languages-were-countries-which-country-would-each-language-represent
https://www.quora.com/If-programming-languages-were-countries-which-country-would-each-language-represent
https://techbeacon.com/if-programming-languages-were-game-thrones-characters
https://techbeacon.com/if-programming-languages-were-game-thrones-characters
https://www.topcoder.com/blog/if-programming-languages-were-beer/

“If programming languages were. . . ”

◮ . . . vehicles
http://crashworks.org/if_programming_languages_were_vehicles/

◮ . . . countries
https://www.quora.com/

If-programming-languages-were-countries-which-country-would-each-language-rep

◮ . . . GoT characters
https://techbeacon.com/

if-programming-languages-were-game-thrones-characters

◮ . . . beer
https://www.topcoder.com/blog/if-programming-languages-were-beer/

◮ . . . boats
http://compsci.ca/blog/if-a-programming-language-was-a-boat/

6

http://crashworks.org/if_programming_languages_were_vehicles/
https://www.quora.com/If-programming-languages-were-countries-which-country-would-each-language-represent
https://www.quora.com/If-programming-languages-were-countries-which-country-would-each-language-represent
https://techbeacon.com/if-programming-languages-were-game-thrones-characters
https://techbeacon.com/if-programming-languages-were-game-thrones-characters
https://www.topcoder.com/blog/if-programming-languages-were-beer/
http://compsci.ca/blog/if-a-programming-language-was-a-boat/

“If programming languages were. . . ”

“C is a nuclear submarine. The instructions are probably in a foreign
language, but all of the hardware itself is optimized for performance.

6

Syntax and semantics

Syntax of a programming language

◮ Spelling and grammar rules

◮ Defines the language of valid programs

◮ Syntax errors are caught by the compiler

◮ Classical example: forget a ; at the end of a line

7

Syntax and semantics

Syntax of a programming language

◮ Spelling and grammar rules

◮ Defines the language of valid programs

◮ Syntax errors are caught by the compiler

◮ Classical example: forget a ; at the end of a line

Semantics of a programming language

◮ Defines the meaning of a valid program

◮ In many languages semantics are fully specified

◮ Runtime errors (exceptions) are part of the semantics

◮ C is not fully specified!

7

Unspecified behavior

◮ Unspecified behavior is “implementation-specific”

◮ Semantics not defined by the standard, but have to specified by the
compiler

◮ Reason: allow better optimization

8

Unspecified behavior

◮ Unspecified behavior is “implementation-specific”

◮ Semantics not defined by the standard, but have to specified by the
compiler

◮ Reason: allow better optimization

◮ Examples:
◮ Shifting negative values to the right (e.g., int a = (-42) >> 3)

8

Unspecified behavior

◮ Unspecified behavior is “implementation-specific”

◮ Semantics not defined by the standard, but have to specified by the
compiler

◮ Reason: allow better optimization

◮ Examples:
◮ Shifting negative values to the right (e.g., int a = (-42) >> 3)
◮ Order of subexpression evaluation (e.g., f(g(), h()))

8

Unspecified behavior

◮ Unspecified behavior is “implementation-specific”

◮ Semantics not defined by the standard, but have to specified by the
compiler

◮ Reason: allow better optimization

◮ Examples:
◮ Shifting negative values to the right (e.g., int a = (-42) >> 3)
◮ Order of subexpression evaluation (e.g., f(g(), h()))
◮ Sizes of of various types (more later)
◮ Representation of data types (more later)

8

Unspecified behavior

◮ Unspecified behavior is “implementation-specific”

◮ Semantics not defined by the standard, but have to specified by the
compiler

◮ Reason: allow better optimization

◮ Examples:
◮ Shifting negative values to the right (e.g., int a = (-42) >> 3)
◮ Order of subexpression evaluation (e.g., f(g(), h()))
◮ Sizes of of various types (more later)
◮ Representation of data types (more later)
◮ Number of bits in one byte

8

Unspecified behavior

◮ Unspecified behavior is “implementation-specific”

◮ Semantics not defined by the standard, but have to specified by the
compiler

◮ Reason: allow better optimization

◮ Examples:
◮ Shifting negative values to the right (e.g., int a = (-42) >> 3)
◮ Order of subexpression evaluation (e.g., f(g(), h()))
◮ Sizes of of various types (more later)
◮ Representation of data types (more later)
◮ Number of bits in one byte

◮ Fairly hard to write fully specified C programs

◮ For this course: if not otherwise stated assume gcc (version 6.x, 7.x,
or 8.x) compiling for AMD64.

8

Undefined behavior

◮ Different from unspecified behavior: undefined behavior

◮ Program reaches a state in which it may do anything
◮ It may crash with arbitrary error code
◮ It may silently corrupt data
◮ It may give the right result
◮ The behavior may be randomly different in independent runs

9

Undefined behavior

◮ Different from unspecified behavior: undefined behavior

◮ Program reaches a state in which it may do anything
◮ It may crash with arbitrary error code
◮ It may silently corrupt data
◮ It may give the right result
◮ The behavior may be randomly different in independent runs

◮ Undefined behavior means that the whole program has no

meaning anymore!

◮ This is essentially always a bug, often security critical

9

Undefined behavior

◮ Different from unspecified behavior: undefined behavior

◮ Program reaches a state in which it may do anything
◮ It may crash with arbitrary error code
◮ It may silently corrupt data
◮ It may give the right result
◮ The behavior may be randomly different in independent runs

◮ Undefined behavior means that the whole program has no

meaning anymore!

◮ This is essentially always a bug, often security critical
◮ Examples:

◮ Access an array outside the bounds
◮ More generally: access memory at “illegal” position

9

Undefined behavior

◮ Different from unspecified behavior: undefined behavior

◮ Program reaches a state in which it may do anything
◮ It may crash with arbitrary error code
◮ It may silently corrupt data
◮ It may give the right result
◮ The behavior may be randomly different in independent runs

◮ Undefined behavior means that the whole program has no

meaning anymore!

◮ This is essentially always a bug, often security critical
◮ Examples:

◮ Access an array outside the bounds
◮ More generally: access memory at “illegal” position
◮ Overflowing a signed integer ((INT_MAX+1))

9

Undefined behavior

◮ Different from unspecified behavior: undefined behavior

◮ Program reaches a state in which it may do anything
◮ It may crash with arbitrary error code
◮ It may silently corrupt data
◮ It may give the right result
◮ The behavior may be randomly different in independent runs

◮ Undefined behavior means that the whole program has no

meaning anymore!

◮ This is essentially always a bug, often security critical
◮ Examples:

◮ Access an array outside the bounds
◮ More generally: access memory at “illegal” position
◮ Overflowing a signed integer ((INT_MAX+1))
◮ Left-shifting a signed integer ((-42) << 3)

9

Undefined behavior

◮ Different from unspecified behavior: undefined behavior

◮ Program reaches a state in which it may do anything
◮ It may crash with arbitrary error code
◮ It may silently corrupt data
◮ It may give the right result
◮ The behavior may be randomly different in independent runs

◮ Undefined behavior means that the whole program has no

meaning anymore!

◮ This is essentially always a bug, often security critical
◮ Examples:

◮ Access an array outside the bounds
◮ More generally: access memory at “illegal” position
◮ Overflowing a signed integer ((INT_MAX+1))
◮ Left-shifting a signed integer ((-42) << 3)

◮ It is totally acceptable for a program to delete all your data when
running into undefined behavior

9

Undefined behavior

◮ Different from unspecified behavior: undefined behavior

◮ Program reaches a state in which it may do anything
◮ It may crash with arbitrary error code
◮ It may silently corrupt data
◮ It may give the right result
◮ The behavior may be randomly different in independent runs

◮ Undefined behavior means that the whole program has no

meaning anymore!

◮ This is essentially always a bug, often security critical
◮ Examples:

◮ Access an array outside the bounds
◮ More generally: access memory at “illegal” position
◮ Overflowing a signed integer ((INT_MAX+1))
◮ Left-shifting a signed integer ((-42) << 3)

◮ It is totally acceptable for a program to delete all your data when
running into undefined behavior

◮ Sometimes we can make a program do this (or something similar)

◮ Most attacks in the course: exploit undefined behavior

9

C compilation

◮ Four steps involved in compilation, can stop at any of those

◮ First step: Run the preprocessor (gcc -E)
◮ Include code from #include directives
◮ Expand macros from #define directives
◮ Expand compile-time (static) conditionals #if
◮ The C preprocessor is almost Turing complete
◮ See https://github.com/orangeduck/CPP_COMPLETE for a

Brainfuck interpreter written in the C preprocessor

10

https://github.com/orangeduck/CPP_COMPLETE

C compilation

◮ Four steps involved in compilation, can stop at any of those

◮ First step: Run the preprocessor (gcc -E)
◮ Include code from #include directives
◮ Expand macros from #define directives
◮ Expand compile-time (static) conditionals #if
◮ The C preprocessor is almost Turing complete
◮ See https://github.com/orangeduck/CPP_COMPLETE for a

Brainfuck interpreter written in the C preprocessor

◮ Second step: Run compilation proper (gcc -S)
◮ Go from C to assembly level
◮ This is where you get syntax errors

10

https://github.com/orangeduck/CPP_COMPLETE

C compilation

◮ Four steps involved in compilation, can stop at any of those

◮ First step: Run the preprocessor (gcc -E)
◮ Include code from #include directives
◮ Expand macros from #define directives
◮ Expand compile-time (static) conditionals #if
◮ The C preprocessor is almost Turing complete
◮ See https://github.com/orangeduck/CPP_COMPLETE for a

Brainfuck interpreter written in the C preprocessor

◮ Second step: Run compilation proper (gcc -S)
◮ Go from C to assembly level
◮ This is where you get syntax errors

◮ Third step: Generate machine code (gcc -c)
◮ Generates so-called object files

10

https://github.com/orangeduck/CPP_COMPLETE

C compilation

◮ Four steps involved in compilation, can stop at any of those

◮ First step: Run the preprocessor (gcc -E)
◮ Include code from #include directives
◮ Expand macros from #define directives
◮ Expand compile-time (static) conditionals #if
◮ The C preprocessor is almost Turing complete
◮ See https://github.com/orangeduck/CPP_COMPLETE for a

Brainfuck interpreter written in the C preprocessor

◮ Second step: Run compilation proper (gcc -S)
◮ Go from C to assembly level
◮ This is where you get syntax errors

◮ Third step: Generate machine code (gcc -c)
◮ Generates so-called object files

◮ Fourth step: Linking (simply run gcc, this is default)
◮ Put object files together to a binary
◮ Linker errors include missing functions or function duplicates
◮ Also include external libraries here (e.g., -lm)
◮ Caution: order of arguments can matter!

10

https://github.com/orangeduck/CPP_COMPLETE

Memory abstraction 1: where data is stored

◮ Programmers typically don’t know where data is stored

◮ For example, a variable can sit in
◮ a register of the CPU
◮ in any of the caches of the CPU
◮ in RAM
◮ on the hard drive (in so-called swap space)

11

Memory abstraction 1: where data is stored

◮ Programmers typically don’t know where data is stored

◮ For example, a variable can sit in
◮ a register of the CPU
◮ in any of the caches of the CPU
◮ in RAM
◮ on the hard drive (in so-called swap space)

◮ Compiler makes decisions about register allocation

◮ Compiler has some bit of influence on caching

◮ Other decisions are made by the OS (and the CPU)

11

Memory abstraction 1: where data is stored

◮ Programmers typically don’t know where data is stored

◮ For example, a variable can sit in
◮ a register of the CPU
◮ in any of the caches of the CPU
◮ in RAM
◮ on the hard drive (in so-called swap space)

◮ Compiler makes decisions about register allocation

◮ Compiler has some bit of influence on caching

◮ Other decisions are made by the OS (and the CPU)

◮ Sometimes important: always read the variable from memory

◮ C has keyword volatile to enforce this

◮ Disables certain optimization

11

Where is data allocated?

◮ C has the & operator that returns the address of a variable

◮ Example:
◮ Let’s say we have a variable int x = 12
◮ Now &x is the address where x is stored, aka a pointer to x

12

Where is data allocated?

◮ C has the & operator that returns the address of a variable

◮ Example:
◮ Let’s say we have a variable int x = 12
◮ Now &x is the address where x is stored, aka a pointer to x

◮ Much more on pointers later, for the moment let’s print them:

char x; int i; short s; char y;

printf("The address of x is %p\n", &x);

printf("The address of i is %p\n", &i);

printf("The address of s is %p\n", &s);

printf("The address of y is %p\n", &y);

◮ Note the %p format specifier for pointers

12

Where is data allocated?

◮ C has the & operator that returns the address of a variable

◮ Example:
◮ Let’s say we have a variable int x = 12
◮ Now &x is the address where x is stored, aka a pointer to x

◮ Much more on pointers later, for the moment let’s print them:

char x; int i; short s; char y;

printf("The address of x is %p\n", &x);

printf("The address of i is %p\n", &i);

printf("The address of s is %p\n", &s);

printf("The address of y is %p\n", &y);

◮ Note the %p format specifier for pointers

◮ The “inverse” of & is *, i.e., *(&x) gives the value of x

12

register

◮ Important task for the compiler: register allocation

◮ Map live variables (whose values are still needed) to registers

◮ Typical goal: minimize amount of “register spills”

13

register

◮ Important task for the compiler: register allocation

◮ Map live variables (whose values are still needed) to registers

◮ Typical goal: minimize amount of “register spills”

◮ C lets programmers “help” the compiler with keyword register

13

register

◮ Important task for the compiler: register allocation

◮ Map live variables (whose values are still needed) to registers

◮ Typical goal: minimize amount of “register spills”

◮ C lets programmers “help” the compiler with keyword register

◮ Quote from Erik’s slides:

“you should never ever use this! Compilers are much better than you
are at figuring out which data is best stored in CPU registers.”

13

register

◮ Important task for the compiler: register allocation

◮ Map live variables (whose values are still needed) to registers

◮ Typical goal: minimize amount of “register spills”

◮ C lets programmers “help” the compiler with keyword register

◮ Quote from Erik’s slides:

“you should never ever use this! Compilers are much better than you
are at figuring out which data is best stored in CPU registers.”

◮ I agree that I never (?) use register

13

register

◮ Important task for the compiler: register allocation

◮ Map live variables (whose values are still needed) to registers

◮ Typical goal: minimize amount of “register spills”

◮ C lets programmers “help” the compiler with keyword register

◮ Quote from Erik’s slides:

“you should never ever use this! Compilers are much better than you
are at figuring out which data is best stored in CPU registers.”

◮ I agree that I never (?) use register

◮ Reason: I am (often) better than the compiler at figuring out which
data is best stored in CPU registers. . .

13

register

◮ Important task for the compiler: register allocation

◮ Map live variables (whose values are still needed) to registers

◮ Typical goal: minimize amount of “register spills”

◮ C lets programmers “help” the compiler with keyword register

◮ Quote from Erik’s slides:

“you should never ever use this! Compilers are much better than you
are at figuring out which data is best stored in CPU registers.”

◮ I agree that I never (?) use register

◮ Reason: I am (often) better than the compiler at figuring out which
data is best stored in CPU registers. . .

◮ . . . and then I write in assembly and avoid the compiler alltogether

13

register

◮ Important task for the compiler: register allocation

◮ Map live variables (whose values are still needed) to registers

◮ Typical goal: minimize amount of “register spills”

◮ C lets programmers “help” the compiler with keyword register

◮ Quote from Erik’s slides:

“you should never ever use this! Compilers are much better than you
are at figuring out which data is best stored in CPU registers.”

◮ I agree that I never (?) use register

◮ Reason: I am (often) better than the compiler at figuring out which
data is best stored in CPU registers. . .

◮ . . . and then I write in assembly and avoid the compiler alltogether

◮ Problem with register: no guarantee that the value isn’t spilled

◮ Requesting the address of a register variable is invalid!

13

Memory abstraction 2: how data is stored

◮ You can think of memory as an array of bytes

◮ For this course: a byte consists of 8 bits

14

Memory abstraction 2: how data is stored

◮ You can think of memory as an array of bytes

◮ For this course: a byte consists of 8 bits

◮ Computer programs work with different data types

◮ Important step of compilation: map other types to bytes

14

Memory abstraction 2: how data is stored

◮ You can think of memory as an array of bytes

◮ For this course: a byte consists of 8 bits

◮ Computer programs work with different data types

◮ Important step of compilation: map other types to bytes

◮ Idea of C: you can program without needing to understand this
mapping

◮ Idea of this course: you can have more fun with C if you do!

14

Memory abstraction 2: how data is stored

◮ You can think of memory as an array of bytes

◮ For this course: a byte consists of 8 bits

◮ Computer programs work with different data types

◮ Important step of compilation: map other types to bytes

◮ Idea of C: you can program without needing to understand this
mapping

◮ Idea of this course: you can have more fun with C if you do!

◮ The CPU likes to see the memory as an array of words

◮ Words typically consist of several bytes (e.g., 4 or 8 bytes)

◮ (Most) registers have the size of machine words

◮ Often loads and stores are more efficient when aligned to a word
boundary

14

Memory abstraction 2: how data is stored

◮ You can think of memory as an array of bytes

◮ For this course: a byte consists of 8 bits

◮ Computer programs work with different data types

◮ Important step of compilation: map other types to bytes

◮ Idea of C: you can program without needing to understand this
mapping

◮ Idea of this course: you can have more fun with C if you do!

◮ The CPU likes to see the memory as an array of words

◮ Words typically consist of several bytes (e.g., 4 or 8 bytes)

◮ (Most) registers have the size of machine words

◮ Often loads and stores are more efficient when aligned to a word
boundary

◮ von Neumann architecture: also programs are just bytes in memory

◮ Only difference between data and program: what you do with it

14

char

◮ Most basic data type: char

◮ From the C11 standard:

“An object declared as type char is large enough to store any
member of the basic execution character set.”

◮ More useful definition: a char is a byte, i.e., the smallest
addressable unit of memory

◮ In all relevant scenarios: a char is an 8-bit integer

15

char

◮ Most basic data type: char

◮ From the C11 standard:

“An object declared as type char is large enough to store any
member of the basic execution character set.”

◮ More useful definition: a char is a byte, i.e., the smallest
addressable unit of memory

◮ In all relevant scenarios: a char is an 8-bit integer

◮ Traditionally a char is used to represent ASCII characters, yields
two common ways to initialize a char:

char a = '2';

char b = 2;

char c = 50;

◮ Which of those values are equal?

15

char

◮ Most basic data type: char

◮ From the C11 standard:

“An object declared as type char is large enough to store any
member of the basic execution character set.”

◮ More useful definition: a char is a byte, i.e., the smallest
addressable unit of memory

◮ In all relevant scenarios: a char is an 8-bit integer

◮ Traditionally a char is used to represent ASCII characters, yields
two common ways to initialize a char:

char a = '2';

char b = 2;

char c = 50;

◮ Which of those values are equal?

15

char

◮ Most basic data type: char

◮ From the C11 standard:

“An object declared as type char is large enough to store any
member of the basic execution character set.”

◮ More useful definition: a char is a byte, i.e., the smallest
addressable unit of memory

◮ In all relevant scenarios: a char is an 8-bit integer

◮ Traditionally a char is used to represent ASCII characters, yields
two common ways to initialize a char:

char a = '2';

char b = 2;

char c = 50;

◮ Which of those values are equal?

◮ It’s a and c, because '2' has ASCII value 50.

15

Another quick question. . .

◮ What does the following code do?:

char i;

for(i=42;i>=0;i--)

{

printf("Crypto stands for cryptography\n");

}

16

Another quick question. . .

◮ What does the following code do?:

char i;

for(i=42;i>=0;i--)

{

printf("Crypto stands for cryptography\n");

}

16

Another quick question. . .

◮ What does the following code do?:

char i;

for(i=42;i>=0;i--)

{

printf("Crypto stands for cryptography\n");

}

◮ Answer: it depends (and it really does!)

◮ C standard does not define whether char is signed or unsigned

◮ Make explicit by using signed char or unsigned char

16

Other integral types

◮ C11 provides 4 more integral types (each signed and unsigned):
◮ short: at least 2 bytes
◮ int: typically 4 (but sometimes 2) bytes
◮ long: typically 4 or 8 bytes
◮ long long: at least 8 bytes (in practice: exactly 8 bytes)

17

Other integral types

◮ C11 provides 4 more integral types (each signed and unsigned):
◮ short: at least 2 bytes
◮ int: typically 4 (but sometimes 2) bytes
◮ long: typically 4 or 8 bytes
◮ long long: at least 8 bytes (in practice: exactly 8 bytes)

◮ GNU extension: __int128 for architectures that support it

17

Other integral types

◮ C11 provides 4 more integral types (each signed and unsigned):
◮ short: at least 2 bytes
◮ int: typically 4 (but sometimes 2) bytes
◮ long: typically 4 or 8 bytes
◮ long long: at least 8 bytes (in practice: exactly 8 bytes)

◮ GNU extension: __int128 for architectures that support it

◮ Common misconception: long is as long as a machine word

◮ Think about how this would work on an 8-bit microcontroller. . .

17

Other integral types

◮ C11 provides 4 more integral types (each signed and unsigned):
◮ short: at least 2 bytes
◮ int: typically 4 (but sometimes 2) bytes
◮ long: typically 4 or 8 bytes
◮ long long: at least 8 bytes (in practice: exactly 8 bytes)

◮ GNU extension: __int128 for architectures that support it

◮ Common misconception: long is as long as a machine word

◮ Think about how this would work on an 8-bit microcontroller. . .

◮ Find size of any type in bytes using sizeof, e.g.:

int a;

printf("%zd", sizeof(a));

printf("%zd", sizeof(long));

17

Other integral types

◮ C11 provides 4 more integral types (each signed and unsigned):
◮ short: at least 2 bytes
◮ int: typically 4 (but sometimes 2) bytes
◮ long: typically 4 or 8 bytes
◮ long long: at least 8 bytes (in practice: exactly 8 bytes)

◮ GNU extension: __int128 for architectures that support it

◮ Common misconception: long is as long as a machine word

◮ Think about how this would work on an 8-bit microcontroller. . .

◮ Find size of any type in bytes using sizeof, e.g.:

int a;

printf("%zd", sizeof(a));

printf("%zd", sizeof(long));

◮ Integral constants can be written in
◮ Decimal, e.g., 255
◮ Hexadecimal, using 0x, e.g., 0xff
◮ Octal, using 0, e.g., 0377

17

Floating-point and complex values

◮ C also defines 3 “real” types:
◮ float: usually 32-bit IEEE 754 “single-precision” floats
◮ double: usually 64-bit IEEE 754 “double-precision” floats
◮ long double:: usually 80-bit “extended precision” floats

18

Floating-point and complex values

◮ C also defines 3 “real” types:
◮ float: usually 32-bit IEEE 754 “single-precision” floats
◮ double: usually 64-bit IEEE 754 “double-precision” floats
◮ long double:: usually 80-bit “extended precision” floats

◮ Corresponding “complex” types (need to include complex.h)

18

Floating-point and complex values

◮ C also defines 3 “real” types:
◮ float: usually 32-bit IEEE 754 “single-precision” floats
◮ double: usually 64-bit IEEE 754 “double-precision” floats
◮ long double:: usually 80-bit “extended precision” floats

◮ Corresponding “complex” types (need to include complex.h)

◮ This lecture: not much float hacking

◮ However, this is fun, see “What every computer scientist should
know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

18

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Floating-point and complex values

◮ C also defines 3 “real” types:
◮ float: usually 32-bit IEEE 754 “single-precision” floats
◮ double: usually 64-bit IEEE 754 “double-precision” floats
◮ long double:: usually 80-bit “extended precision” floats

◮ Corresponding “complex” types (need to include complex.h)

◮ This lecture: not much float hacking

◮ However, this is fun, see “What every computer scientist should
know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

◮ Small example:

double a; /* assume IEEE 754 standard */

...

a += 6755399441055744;

a -= 6755399441055744;

◮ What does this code do to a?

18

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Floating-point and complex values

◮ C also defines 3 “real” types:
◮ float: usually 32-bit IEEE 754 “single-precision” floats
◮ double: usually 64-bit IEEE 754 “double-precision” floats
◮ long double:: usually 80-bit “extended precision” floats

◮ Corresponding “complex” types (need to include complex.h)

◮ This lecture: not much float hacking

◮ However, this is fun, see “What every computer scientist should
know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

◮ Small example:

double a; /* assume IEEE 754 standard */

...

a += 6755399441055744;

a -= 6755399441055744;

◮ What does this code do to a?

18

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Floating-point and complex values

◮ C also defines 3 “real” types:
◮ float: usually 32-bit IEEE 754 “single-precision” floats
◮ double: usually 64-bit IEEE 754 “double-precision” floats
◮ long double:: usually 80-bit “extended precision” floats

◮ Corresponding “complex” types (need to include complex.h)

◮ This lecture: not much float hacking

◮ However, this is fun, see “What every computer scientist should
know about floating point arithmetic”
www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

◮ Small example:

double a; /* assume IEEE 754 standard */

...

a += 6755399441055744;

a -= 6755399441055744;

◮ What does this code do to a?

◮ Answer: it rounds a according to the currently set rounding mode

18

www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Printing values

Have already seen various examples of format strings, let’s summarize:

printf("%d", a); /* prints signed integers in decimal */

printf("%u", b); /* prints unsigned integers in decimal */

printf("%x", c); /* prints integers in hexadecimal */

printf("%o", c); /* prints integers in octal */

printf("%lu", d); /* prints long unsigned integer in decimal */

printf("%llu", d); /* prints long long unsigned integer in decimal */

printf("%p", &d); /* prints pointers (in hexadecimal) */

printf("%f", e); /* prints single-precision floats */

printf("%lf", e); /* prints double-precision floats */

printf("%llf", e); /* prints extended-precision floats */

There’s quite a few more, but these get you fairly far.

19

stdint.h

◮ Often we need to know how large an integer is

◮ Example: crypto primitives are optimized to work on, e.g., 32-bit
words

◮ Solution: Fixed-size integer types defined in stdint.h

◮ uint8_t is an 8-bit unsigned integer
◮ int8_t is an 8-bit signed integer
◮ uint16_t is a 16-bit unsigned integer
◮

. . .

◮ int64_t is a 64-bit signed integer

20

stdint.h

◮ Often we need to know how large an integer is

◮ Example: crypto primitives are optimized to work on, e.g., 32-bit
words

◮ Solution: Fixed-size integer types defined in stdint.h

◮ uint8_t is an 8-bit unsigned integer
◮ int8_t is an 8-bit signed integer
◮ uint16_t is a 16-bit unsigned integer
◮

. . .

◮ int64_t is a 64-bit signed integer

◮ Problem: how do we print them in a portable way?

◮ printf("%llu\n", a); for uint64_t a may produce warnings

20

stdint.h

◮ Often we need to know how large an integer is

◮ Example: crypto primitives are optimized to work on, e.g., 32-bit
words

◮ Solution: Fixed-size integer types defined in stdint.h

◮ uint8_t is an 8-bit unsigned integer
◮ int8_t is an 8-bit signed integer
◮ uint16_t is a 16-bit unsigned integer
◮

. . .

◮ int64_t is a 64-bit signed integer

◮ Problem: how do we print them in a portable way?

◮ printf("%llu\n", a); for uint64_t a may produce warnings

◮ Solution: printf("%" PRIu64 "\n", a)

◮ For signed values, e.g., PRId64

◮ Printing in hexadecimal: PRIx64

20

Implicit type conversion

◮ Sometimes we want to evaluate expressions involving different types

◮ Example:

float pi, r, circ;

pi = 3.14159265;

circ = 2*pi*r;

21

Implicit type conversion

◮ Sometimes we want to evaluate expressions involving different types

◮ Example:

float pi, r, circ;

pi = 3.14159265;

circ = 2*pi*r;

◮ C uses complex rules to implicitly convert types

◮ Often these rules are perfectly intuitive:
◮ Convert “less precise” type to more precise type, preserve values
◮ Compute modulo 2

16, when casting from uint32_t to uint16_t

21

Implicit type conversion

◮ Sometimes we want to evaluate expressions involving different types

◮ Example:

float pi, r, circ;

pi = 3.14159265;

circ = 2*pi*r;

◮ C uses complex rules to implicitly convert types

◮ Often these rules are perfectly intuitive:
◮ Convert “less precise” type to more precise type, preserve values
◮ Compute modulo 2

16, when casting from uint32_t to uint16_t

◮ However, these rules can be rather counterintuitive:

unsigned int a = 1;

int b = -1;

if(b < a) printf("all good\n");

else printf("WTF?\n");

21

Explicit casts

◮ Sometimes we need to convert explicitly

◮ Example: multiply two (32-bit) integers:

unsigned int a,b;

...

unsigned long long r = a*b;

22

Explicit casts

◮ Sometimes we need to convert explicitly

◮ Example: multiply two (32-bit) integers:

unsigned int a,b;

...

unsigned long long r = a*b;

◮ By “default”, result of a*b has 32-bits; upper 32 bits are “lost”

◮ Fix by casting one (or both) factors:

unsigned long long r = (unsigned long long)a*b;

22

Explicit casts

◮ Sometimes we need to convert explicitly

◮ Example: multiply two (32-bit) integers:

unsigned int a,b;

...

unsigned long long r = a*b;

◮ By “default”, result of a*b has 32-bits; upper 32 bits are “lost”

◮ Fix by casting one (or both) factors:

unsigned long long r = (unsigned long long)a*b;

◮ Can also use this to, e.g., truncate floats:

float a = 3.14159265;

float c = (int) a;

printf("%f\n", trunc(a));

printf("%f\n", c);

22

Explicit casts

◮ Sometimes we need to convert explicitly

◮ Example: multiply two (32-bit) integers:

unsigned int a,b;

...

unsigned long long r = a*b;

◮ By “default”, result of a*b has 32-bits; upper 32 bits are “lost”

◮ Fix by casting one (or both) factors:

unsigned long long r = (unsigned long long)a*b;

◮ Can also use this to, e.g., truncate floats:

float a = 3.14159265;

float c = (int) a;

printf("%f\n", trunc(a));

printf("%f\n", c);

◮ Careful, this does not generally work (undefined behavior ahead)!

22

A small quiz

What do you think this program will print?

unsigned char x = 128;

signed char y = x;

printf("The value of y is %d\n", y);

23

A small quiz

What do you think this program will print?

unsigned char x = 128;

signed char y = x;

printf("The value of y is %d\n", y);

(Obviously, the answer is “unspecified behavior” – it’s C after all)

23

Two’s complement

◮ Can represent a signed integer as “sign + absolute value”

◮ Disadvantage: zero has two representations (0 and -0)

24

Two’s complement

◮ Can represent a signed integer as “sign + absolute value”

◮ Disadvantage: zero has two representations (0 and -0)

◮ Other idea: flip all bits in a to obtain -a

◮ This is known as “ones complement”

◮ Still: zero has two representations

24

Two’s complement

◮ Can represent a signed integer as “sign + absolute value”

◮ Disadvantage: zero has two representations (0 and -0)

◮ Other idea: flip all bits in a to obtain -a

◮ This is known as “ones complement”

◮ Still: zero has two representations

◮ Much more common: two’s complement

◮ flip all bits in a
◮ add 1

24

Two’s complement

◮ Can represent a signed integer as “sign + absolute value”

◮ Disadvantage: zero has two representations (0 and -0)

◮ Other idea: flip all bits in a to obtain -a

◮ This is known as “ones complement”

◮ Still: zero has two representations

◮ Much more common: two’s complement

◮ flip all bits in a
◮ add 1

◮ Sanity test: a = -(-a)

24

Two’s complement

◮ Can represent a signed integer as “sign + absolute value”

◮ Disadvantage: zero has two representations (0 and -0)

◮ Other idea: flip all bits in a to obtain -a

◮ This is known as “ones complement”

◮ Still: zero has two representations

◮ Much more common: two’s complement

◮ flip all bits in a
◮ add 1

◮ Sanity test: a = -(-a)

◮ Range of k-bit signed integer: {−2
k−1, . . . , 2

k−1 − 1}

◮ Example: signed (8-bit) byte: {−128, . . . , 127}

24

Two’s complement

◮ Can represent a signed integer as “sign + absolute value”

◮ Disadvantage: zero has two representations (0 and -0)

◮ Other idea: flip all bits in a to obtain -a

◮ This is known as “ones complement”

◮ Still: zero has two representations

◮ Much more common: two’s complement

◮ flip all bits in a
◮ add 1

◮ Sanity test: a = -(-a)

◮ Range of k-bit signed integer: {−2
k−1, . . . , 2

k−1 − 1}

◮ Example: signed (8-bit) byte: {−128, . . . , 127}

◮ Can use the same hardware for signed and unsigned addition

24

Endianess

◮ Let’s consider the 32-bit integer 287454020 =0x11223344

◮ How would you put it into memory. . . ,like this?:

| 11 | 22 | 33 | 44 |

0x0...0 0x0...1 0x0...2 0x0...3

25

Endianess

◮ Let’s consider the 32-bit integer 287454020 =0x11223344

◮ How would you put it into memory. . . ,like this?:

| 11 | 22 | 33 | 44 |

0x0...0 0x0...1 0x0...2 0x0...3

◮ How about like this?

| 44 | 33 | 22 | 11 |

0x0...0 0x0...1 0x0...2 0x0...3

25

Endianess

◮ Let’s consider the 32-bit integer 287454020 =0x11223344

◮ How would you put it into memory. . . ,like this?:

| 11 | 22 | 33 | 44 |

0x0...0 0x0...1 0x0...2 0x0...3

◮ How about like this?

| 44 | 33 | 22 | 11 |

0x0...0 0x0...1 0x0...2 0x0...3

◮ A quick poll: What do you find more intuitive?

25

Endianess, let’s try again

◮ Take 4-byte integer a =
∑

3

i=0
ai2

8i

◮ The ai are the bytes of a

26

Endianess, let’s try again

◮ Take 4-byte integer a =
∑

3

i=0
ai2

8i

◮ The ai are the bytes of a

◮ How would you put it into memory. . . ,like this?:

| a0 | a1 | a2 | a3 |

0x0...0 0x0...1 0x0...2 0x0...3

26

Endianess, let’s try again

◮ Take 4-byte integer a =
∑

3

i=0
ai2

8i

◮ The ai are the bytes of a

◮ How would you put it into memory. . . ,like this?:

| a0 | a1 | a2 | a3 |

0x0...0 0x0...1 0x0...2 0x0...3

◮ Or would you rather have this?

| a3 | a2 | a1 | a0 |

0x0...0 0x0...1 0x0...2 0x0...3

◮ Again a quick poll: What do you find more intuitive?

26

Endianess, the conclusion

◮ Least significant bytes at low addresses: little endian

◮ Most significant bytes at low addresses: big endian

27

Endianess, the conclusion

◮ Least significant bytes at low addresses: little endian

◮ Most significant bytes at low addresses: big endian

◮ This is short for “little/big endian byte first”

27

Endianess, the conclusion

◮ Least significant bytes at low addresses: little endian

◮ Most significant bytes at low addresses: big endian

◮ This is short for “little/big endian byte first”

◮ Most CPUs today use little endian

27

Endianess, the conclusion

◮ Least significant bytes at low addresses: little endian

◮ Most significant bytes at low addresses: big endian

◮ This is short for “little/big endian byte first”

◮ Most CPUs today use little endian

◮ Examples for big-endian CPUs:
◮ PowerPC
◮ UltraSPARC

◮ ARM can switch endianess (is “bi-endian”)

27

Endianess, the conclusion

◮ Least significant bytes at low addresses: little endian

◮ Most significant bytes at low addresses: big endian

◮ This is short for “little/big endian byte first”

◮ Most CPUs today use little endian

◮ Examples for big-endian CPUs:
◮ PowerPC
◮ UltraSPARC

◮ ARM can switch endianess (is “bi-endian”)

◮ The problem with little-endian intuition is just that we write
left-to-right (but use Arabic numbers)

27

