
OS Security
Authentication

Radboud University Nijmegen, The Netherlands

Winter 2014/2015

What does an OS do?

Definition
An operating system (OS) is a computer program that manages access of
processes (programs) to shared ressources.

Examples of shared resources
I Memory
I Input and Output (I/O) including

I Files on the harddrive
I Network

I Computation cycles on the processor(s)
I Peripheral hardware (keyboard, screen, . . .)

OS Security – Authentication 2

What does that mean for security?

I Operating system needs to decide whether processes are allowed to
perform certain operations

I Obvious security disasters:
I One process reading the memory of another process
I A process reading a “secret” file
I A process preventing other processes from operating
I One process reading (keyboard) input meant for another process

OS Security – Authentication 3

Wait, what about users?

I Is the process with ID 4321 allowed to read the file
/home/peter/os-security/exam-2014.pdf?

I Is user peter allowed to read the file
/home/peter/os-security/exam-2014.pdf?

I Need to map between a user (human) and a certain operation

Definition
Authentication is the means by which it is determined that a particular
entity (typically a human) intends to perform a given operation.

I Typically perform user authentication as a login procedure
I Start a shell mapped to the logged-in user
I A shell is (basically) an interface to run other programs
I All programs run from this shell are mapped to the logged-in user

OS Security – Authentication 4

Problems of authentication

I Authentication is not necessarily perfect. Have to balance
I Fraud rate: authentication that passed, but should have failed
I Insult rate: authentication that failed, but should have passed

I User authentication does not catch everything:
I Programs may perform operations that are not requested (or

intended) by the user
I Programs may not perform operations that are requested (or

intended) by the user
I Can perform operation authentication:

I Ensure that a given operation is performed on request of a given user
I Only feasible for very important operations

I Worst-case of authentication going wrong: impersonation
I Authenticating as somebody else lets you perform all operations that

this user is allowed to do
I Authenticating as anybody else lets you perform arbitrary operations

OS Security – Authentication 5

User authentication

I Can authenticate through
I something you know (typically a password)
I something you have (typically a card or token)
I something you are (biometrics)

I Multi-factor authentication combines two (or more) means of
authentication

OS Security – Authentication 6

The user root

I UNIX and Linux have a special superuser called root
I The user ID of root is always 0
I root may access all files
I root may change permissions on all files
I root may bind programs to network sockets with port number

smaller than 1024

I root may “impersonate” any other user
I A process belonging to root may change its user ID to that of

another user
I Once a process has changed from user ID 0 to another user ID,

there is no way back
I There are still certain actions that a program run by root cannot do

(more next lecture)
I Security nightmare: an attacker who gets root access

OS Security – Authentication 7

The Linux login procedure

I First process started after OS bootup is called init
I Main job of init is to start other processes
I init starts a program called getty
I getty stands for “get terminal” or “get teletypewriter”
I getty starts login
I init, getty and login all run as root
I login prompts for username and password

I Bad password: login exits, init starts new getty
I Good password: login changes to new user and executes a shell

OS Security – Authentication 8

Attacks against passwords and countermeasures

I Guessing attack: Avoid short passwords and passwords from a
dictionary

I Over-the-shoulder attack: password aging (replace passwords
after a certain time), user training

I Automated on-line guessing: Limit the number and/or rate of
retries, report suspicious number of retries

I Read the password file: Use a (salted) one-way hash, prevent
users from reading the file

I Automated offline attacks: Use a slow one-way hash, good
passwords

I Spoofing attacks (present a fake login window): Trusted path for
login

I Eavesdropping attacks (key logging, acoustic attacks): physical
security

OS Security – Authentication 9

/etc/passwd

I Linux uses the file /etc/passwd to store user login information
I Each line has 7 fields, separated by ’:’, e.g.:

peter:x:1000:1000:Peter Schwabe,,,:/home/peter:/bin/bash

I 1. field: Username
I 2. field: Password information, ‘x’ means that the password hash is

separately stored in /etc/shadow
I 3. field: User ID (assigned to every process started by the user)
I 4. field: Group ID (more later)
I 5. field: Comment describing the user
I 6. field: Home directory
I 7. field: Login program (set to /bin/false or

/usr/sbin/nologin for users that are not allowed to log in)

OS Security – Authentication 10

/etc/shadow

I Traditionally /etc/passwd stored users’ password hashes
I Disadvantage: every user can read all hashes
I Easy to run offline (dictionary) attacks for every user
I Better approach: store password hashes in /etc/shadow
I /etc/shadow is readable only for root
I Most important information per entry (line)

I Username
I Password hash + salt (+algorithm)
I Password expiration information

I Use ’*’ or ’!’ in the password field to lock the password
I Locking a password is different from using /bin/false as login

program
I There may be other means to authenticate than the password

OS Security – Authentication 11

Password hashing algorithms

I Traditionally Linux used crypt for password hashing
I Truncate the password to 8 characters, 7 bits each
I Encrypt the all-zero string with modified DES with this 56-bit key
I Iterate encryption for 25 times (later: up to 224 − 1)
I Incorporate a 12-bit (later: 24-bit) salt
I Use modified DES to prevent attacks with DES hardware
I Originally computing the hash cost ≈ 1 second
I Too weak nowadays to offer strong protection
I Sucessors: MD5, bcrypt (based on Blowfish), SHA-2
I Password hash string indicates which algorithm to use:

I 1: MD5;
I $2a$, $2b$, $2x$, $2y$: variants of bcrypt
I 5: SHA-256; 6: SHA-512

I Maybe better algorithm in the future, see
https://password-hashing.net/

OS Security – Authentication 12

https://password-hashing.net/

How about Windows?

I Traditionally, Windows uses the LM hash (for “LanMan hash” or
“LAN manager hash”)

I Algorithm for LM hash:
1. Restrict password to 14 characters
2. Convert password to all-uppercase
3. Pad to 14 bytes
4. Split into two 7-byte halves
5. Use each of the halves as a DES key
6. Encrypt the fixed ASCII string KGS!@#$%
7. Concatenate the two ciphertexts to obtain the LM hash

OS Security – Authentication 13

LM Hash weaknesses

I 14 printable ASCII characters give ≈ 292 passwords
I Can crack the halves independently: 246 for each half
I All characters converted to upper case: 243 for each half
I No salt, rainbow tables are feasible
I Passwords shorter than 8 characters produce hash ending in

0xAAD3B435B51404EE
I Cracking LM hashes is fairly easy, there are even online services, e.g.,

http://rainbowtables.it64.com/

OS Security – Authentication 14

http://rainbowtables.it64.com/

NT hashes
I LM hash weaknesses were addressed by NT hash (or NTLM)
I NTLMv1 uses MD4 to hash passwords
I NTLMv2 uses MD5 to hash passwords
I Passwords are still unsalted
I Until Windows XP, LM hashes were still enabled by default for

backwards compatiblity
I Today, Windows uses multiple different approaches for passwords

http://www.hotforsecurity.com/blog/
windows-8-stores-logon-passwords-in-plain-text-3914.html

OS Security – Authentication 15

http://www.hotforsecurity.com/blog/windows-8-stores-logon-passwords-in-plain-text-3914.html
http://www.hotforsecurity.com/blog/windows-8-stores-logon-passwords-in-plain-text-3914.html

Authentication by “what you have”

I Very common in the “physical world”, e.g., keys
I Digital world: Smart cards, USB tokens
I Private keys (e.g., for SSH)
I Can easily combine with password, e.g. on SSH private keys

Attacks and countermeasures
I Stealing (or finding): Protect possession
I Copying: Tamper-proof hardware, holograms, anti-counterfeiting

techniques
I Replay attack: device-dependent, use challenge-response

OS Security – Authentication 16

Authentication by “what you are”

I Fingerprint (fake fingerprint, cut off finger)
http://www.heise.de/video/artikel/
iPhone-5s-Touch-ID-hack-in-detail-1966044.html

I Retina scans
I Voice match (distorted by cold, defeated by recordings)
I Handwriting (low accuracy, easy to fake)
I Keystroking, timing of keystrokes

OS Security – Authentication 17

http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html
http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html

Pluggable authentication modules

I Local login is not the only program that needs user authentication:
I SSH (remote login)
I Graphical login (GDM, LightDM)
I Screen locks (screensaver)
I su and sudo (more next lecture)

I Idea: Centralize authentication, make functionality available through
library

I This is handled by Pluggable Authentication Modules (PAM)
I Add a new module (e.g., for fingerprint authentication), directly

available to all PAM enabled programs

OS Security – Authentication 18

PAM design

Image from http://www.tuxradar.com/content/how-pam-works
OS Security – Authentication 19

http://www.tuxradar.com/content/how-pam-works

PAM activities

PAM knows 4 different authentication-related activities:
I auth: The activity of user authentication; typically by password, but

can also use tokens, fingerprints etc.
I account: After a user is identified, decide whether he is allowed to

log in. For example, can restrict login times.
I session: Allocates resources, for example mount home directory, set

resource usage limits, print greeting message with information.
I password: Update the user’s credentials (typically the password)

OS Security – Authentication 20

PAM configuration syntax
Configuration for program progname is in /etc/pam.d/progname

PAM control flags
I requisite: if module fails, immediately return failure and stop
I required: if module fails, return failure but continue
I sufficient: if module passes, return pass and stop
I optional: pass/fail result is ignored

Image source: http://www.tuxradar.com/content/how-pam-works
OS Security – Authentication 21

http://www.tuxradar.com/content/how-pam-works

Examples of PAM modules

Name Activities Description
pam_unix auth, session,

password
Standard UNIX authentication through
/etc/shadow passwords

pam_permit auth, account,
session, pass-
word

Always returns true

pam_deny auth, account,
session, pass-
word

Always returns false

pam_rootok auth Returns true iff you’re root
pam_warn auth, account,

session, pass-
word

Write a log message to the system log

pam_cracklib password Perform checks of the password strength

OS Security – Authentication 22

Some PAM config examples

I Prevent all users from using su (/etc/pam.d/su)
auth requisite pam_deny.so

I Prevent non-root users to halt (/etc/pam.d/halt)
auth sufficient pam_rootok.so
auth required pam_deny.so

I Enforce passwords with at least 10 characters and at least 2 special
characters, use SHA-512 for password hash (/etc/pam.d/passwd):
password required pam_cracklib.so minlen=10 ocredit=-2
password required pam_unix.so sha512

OS Security – Authentication 23

Authentication over the network

I Large corporate networks want to keep user information central
I User is added to one central directory, can log into any machine
I Various “simple” ways to set up the protocol:

I Client sends password, server hashes and compares
I Client sends hash, server compares
I Server sends hash, client compares

I Also more complex ways, e.g., challenge-response
I Possible disadvantage of central login server: single point of failure

OS Security – Authentication 24

NTLM and “pass the hash”

I Microsoft’s LM and NTLM network authentication can send hash
from the client, server compares hashes

I Attacker only needs to obtain the password hash
I The whole point of storing password hashes is gone
I Essentially, the hash becomes the password
I This attack is known as “pass the hash” attack
I Conveniently automated in metasploit
I Almost any larger Windows network still has NTLM somewhere

OS Security – Authentication 25

NIS

I Network Information Service (NIS) invented by Sun
I Centrally administer users and hosts
I Server sends hash to the client, client compares
I Essentially, the advantage of /etc/shadow is lost
I NIS is still in use today, but not very common anymore

OS Security – Authentication 26

LDAP

I The Lightweight Directory Access Protocol (LDAP) is a network
directory information protocol

I Developed by the IETF
I Includes means for user authentication
I Different modes involve sending the password to the server
I Use these modes only over a TLS connection
I Even better: integrate LDAP with Kerberos

OS Security – Authentication 27

Kerberos

I State-of-the-art network authentication protocol
I Originally developed at MIT
I Two main versions: v4 (with some security problems) and v5
I Uses challenge-response, symmetric (and asymmetric) crypto
I Included in most UNIX/Linux variants
I Together with LDAP forms the basis of Microsoft’s Active Directory
I More in the lecture “Cryptography” next semester

OS Security – Authentication 28

