Operating System Security Lecture 5

Virtualization, Sandboxing, and Emulation

Roel Verdult

Introduction to VM's

- Virtualization (ring 0)
 - Hardware oriented
 - Native (VSphere, XEN, Hyper-V)
 - Host based (VMware, Virtualbox, Parallels)
 - Operating-System level (chroot, jails, Vserver)
 - Virtual private servers (VPS)
- Sandboxing (ring 3)
 - Application based (APP-V, App Sandbox, AppArmor)
 - Compiler based (Java, .NET, javascript)
- Emulation (ring 3)
 - Game consoles (Snes9x, Nestopia, Fusion)
 - Qemu (x86-64, ARM, MIPS)
 - Minemu (Dynamic taint analysis)

Virtualization (ring 0)

- Hardware oriented
 - Operating-system thinks it is running on and interacting with its own hardware
 - Abstracts the hardware peripherals from the operating-system
- Operating-System level
 - Makes the subsystem thinks it is running in its own operating-system
 - Abstracts the services and kernel from an application

Native Hardware Virtualization

- Native (bare-metal) hypervisors
 - Run directly on the host's hardware to control the hardware and to manage guest operating systems
 - No reliance on an underlying OS
 - A guest operating system runs as a process on the host
 - IBM mainframes used native hypervisors in the 1960s (CP-40 IBM S360/S370)
 - Nowadays, many more alternatives
 - VSphere, XEN, Hyper-V

x86-64 Privileged Architecture

Full Virtualization

HW-assisted Virtualization

Intel VT-x Full Virtualization

Para Virtualization (e.g. XEN)

Host based virtualization

- Relies on an underlying operating-system
- Hardware abstraction implicates that
 - The OS handles the peripherals and is responsible for the hardware drivers
 - The security environment is less controlled because of the reliance on the underlying OS
 - There is no direct access to hardware, which increases resource overhead of the guest OS
- Popular examples
 - WMware, Parallels, VirtualBox, Windows Virtual PC

Host based virtualization

OS level Virtualization

- Chroot
 - System call that virtualizes the file system. It basically changes the "root" folder for a process
- FreeBSD jails / Linux Vserver
 - System calls / kernel patch
 - Virtualizing file system
 - Resource limits (CPU, Memory)
 - Networking subsystem
 - No guest OS, one kernel for virtualized instances
 - Used by many webhosting companies that offer "cloud resources", Virtual Private Servers (VPS) and web-based application services.

Sandboxing (ring 3)

- Apple App Sandbox
 - Removes most capabilities for interacting with the operating system
- Linux AppArmor
 - Applies security profiles per application which define what system resources individual applications can access, and with what privileges
 - By default installed and loaded on serveral mainstream Linux distributions (Ubuntu, openSUSE).
- Microsoft APP-V
 - Synchronizes a locally installed application and environment with a remote virtualized instance

Apple App Sandbox

- Removes most capabilities for interacting with user data and system resources.
- Avalable in iOS and OS X

Linux AppArmor Example

/etc/apparmor.d/bin.ping

```
#include <tunables/global>
/bin/ping flags=(complain) {
 #include <abstractions/base>
 #include <abstractions/consoles>
 #include <abstractions/nameservice>
 capability net raw,
 capability setuid,
 network inet raw,
 /bin/ping mixr,
 /etc/modules.conf r,
```

Microsoft APP-V

- Hybrid
 - Not remote
 - Not local
- Deployed & sync'ed to a remote instance

Compiler sandboxing (ring 3)

- Java / .NET
 - Just-in-time compilation (JIT)

- Browser integration
- Eval() statements

Emulation (ring 3)

- Malware analysis
- Reverse Engineering
- Driver debugging
- Forensics
 - Record / replay execution
 - Taint tracking
 - Symbolic execution

VM vulnerabilities

- Virtualization
 - Hardware oriented attacks
 - Management interface exploits
 - Break out of jail attacks (VM Escape)
- Sandboxing
 - Application privilege escalation
 - JIT Spraying
 - Untrusted native code execution

Cache based timing attacks

Virtual-machine based rootkits (VMBR)

- SubVirt / Blue Pill
 - Trap a running OS in a thin hypervisor.

Stealth Hard-Drive Backdoor

Intel manageability engine

- Out-of-band (OOB) communication
 - "Platforms equipped with Intel AMT can be managed remotely, regardless of whether they are powered up and regardless of whether or not they have a functioning operating system."

Reference:

"Intel Active Management Technology (Intel AMT) Start Here Guide" (PDF).

Reverse-engineering:

http://www.slideshare.net/codeblue_jp/igor-skochinsky-enpub

JIT Spraying

Jumping to the second byte of the "mov" instruction:

```
1: 44 inc esp

2: 33 22 xor esp,DWORD PTR [edx]

4: 11 35 11 22 33 44 adc DWORD PTR ds:0x44332211,esi

A: 35 11 22 33 44 xor eax,0x44332211
```

VM Security management

- Re-initialization of "cloned" host
 - Hardware identification (MAC addresses)
 - SSH Private keys
 - Webserver certificates

Security oriented VM (Qubes OS)

Security oriented VM (Qubes OS)

