
Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands
! rverdult@cs.ru.nl / " www.cs.ru.nl/~rverdult

Operating System Security Lecture 5

Virtualiza)on,	
 Sandboxing,	
 	

and	
 Emula)on	

Roel	
 Verdult	

Introduction to VM’s

•  Virtualization (ring 0)
–  Hardware oriented

•  Native (VSphere, XEN, Hyper-V)
•  Host based (VMware, Virtualbox, Parallels)

–  Operating-System level (chroot, jails, Vserver)
•  Virtual private servers (VPS)

•  Sandboxing (ring 3)
–  Application based (APP-V, App Sandbox, AppArmor)
–  Compiler based (Java, .NET, javascript)

•  Emulation (ring 3)
–  Game consoles (Snes9x, Nestopia, Fusion)
–  Qemu (x86-64, ARM, MIPS)
–  Minemu (Dynamic taint analysis)

Roel Verdult

Virtualization (ring 0)

•  Hardware oriented
– Operating-system thinks it is running on and

interacting with its own hardware
– Abstracts the hardware peripherals from the

operating-system

•  Operating-System level
– Makes the subsystem thinks it is running in

its own operating-system
– Abstracts the services and kernel from an

application

Roel Verdult

Native Hardware Virtualization

•  Native (bare-metal) hypervisors
– Run directly on the host's hardware to

control the hardware and to manage guest
operating systems

– No reliance on an underlying OS
– A guest operating system runs as a process

on the host
–  IBM mainframes used native hypervisors in

the 1960s (CP-40 IBM S360/S370)
– Nowadays, many more alternatives

•  VSphere, XEN, Hyper-V

Roel Verdult

x86-64 Privileged Architecture

Roel Verdult

Full Virtualization

Roel Verdult

HW-assisted Virtualization

Roel Verdult

Intel VT-x Full Virtualization

Roel Verdult

Para Virtualization (e.g. XEN)

Roel Verdult

Host based virtualization

•  Relies on an underlying operating-system
•  Hardware abstraction implicates that
– The OS handles the peripherals and is

responsible for the hardware drivers
– The security environment is less controlled

because of the reliance on the underlying OS
– There is no direct access to hardware, which

increases resource overhead of the guest OS
•  Popular examples
– WMware, Parallels, VirtualBox, Windows

Virtual PC

Roel Verdult

Host based virtualization

Roel Verdult

OS level Virtualization

•  Chroot
–  System call that virtualizes the file system. It

basically changes the “root” folder for a process
•  FreeBSD jails / Linux Vserver
–  System calls / kernel patch
–  Virtualizing file system
–  Resource limits (CPU, Memory)
–  Networking subsystem
–  No guest OS, one kernel for virtualized instances
–  Used by many webhosting companies that offer

“cloud resources”, Virtual Private Servers (VPS)
and web-based application services.

Roel Verdult

Sandboxing (ring 3)

•  Apple App Sandbox
–  Removes most capabilities for interacting with

the operating system
•  Linux AppArmor
–  Applies security profiles per application which

define what system resources individual
applications can access, and with what privileges

–  By default installed and loaded on serveral
mainstream Linux distributions (Ubuntu,
openSUSE).

•  Microsoft APP-V
–  Synchronizes a locally installed application and

environment with a remote virtualized instance

Roel Verdult

Apple App Sandbox

Roel Verdult

•  Removes most capabilities for interacting
with user data and system resources.

•  Avalable in iOS and OS X

Linux AppArmor Example

•  /etc/apparmor.d/bin.ping

Roel Verdult

#include	
 <tunables/global>	

/bin/ping	
 flags=(complain)	
 {	

	
 	
 #include	
 <abstrac=ons/base>	

	
 	
 #include	
 <abstrac=ons/consoles>	

	
 	
 #include	
 <abstrac=ons/nameservice>	

	

	
 	
 capability	
 net_raw,	

	
 	
 capability	
 setuid,	

	
 	
 network	
 inet	
 raw,	

	
 	
 	

	
 	
 /bin/ping	
 mixr,	

	
 	
 /etc/modules.conf	
 r,	

}	

Microsoft APP-V

•  Hybrid
– Not remote

– Not local

•  Deployed &
sync’ed to
a remote
instance

Roel Verdult

Compiler sandboxing (ring 3)

•  Java / .NET
– Just-in-time compilation (JIT)

•  Javascript
– Browser integration

– Eval() statements

Roel Verdult

Emulation (ring 3)

•  Malware analysis

•  Reverse Engineering

•  Driver debugging

•  Forensics
– Record / replay execution

– Taint tracking

– Symbolic execution

Roel Verdult

VM vulnerabilities

•  Virtualization
– Hardware oriented attacks

– Management interface exploits

– Break out of jail attacks (VM Escape)

•  Sandboxing
– Application privilege escalation

– JIT Spraying

– Untrusted native code execution

Roel Verdult

Cache based timing attacks

Roel Verdult

A Cache Timing Attack on AES in Virtualization Environments 317

��������	
���

��
�

	������������������
�������

�

�����	
���

��
�

��
�
�
��
������

��
�
�
��
������

�����������
��

�����
�
��������

�����
�
��������

������
�������

������
�������

������
�������

������
�������

�������� ���

�!������������ ���

�!����

"���#���"���#���

�		����
��

����������
��
����������
��

$����%��������

����������
��

��������%��������

����������
������������
��

&����'��

Fig. 1. High level security architecture of an embedded device based on virtualization

Even though these attacks could be demonstrated in a virtualization-based
system, it would require strong adaptations of the system which may result in
an unrealistic attacker model. In contrast, the approach by Bernstein is more
flexible and provides a more realistic attacker model for a trusted execution
environment.

3 System Architecture

We present in this section the system architecture of a generic virtualization-
based system. This system architecture is representative for other systems based
on virtualization and is later used to demonstrate our cache timing attack. The
system architecture consists of a high level virtualization-based security archi-
tecture including the operating system and an authentication protocol used to
authenticate a security sensitive application executed in the trusted domain.

3.1 Virtualization-Based Security Architecture

Virtualization techniques can be used to provide strong isolation of execution
environments and thus enables the construction of compartments. One com-
partment can then be used to execute sensitive transactions while the other
compartment is used for transactions with a lower trust level. This design pro-
cess is already partly employed by smartphone architectures. The Dalvik VM on
Android provides some sort of process virtualization [21, p. 83], however, with-
out providing the same level of isolation achieved by system virtualization [21,
p. 369]. Due to the insecurity of current smartphones’ and other embedded sys-
tems’ architectures, it is expected that virtualization solutions will be used in
the near future to increase security and reliability. This assumption is supported
by current developments in the embedded hardware architectures (ARM TZ [3],

Virtual-machine based rootkits (VMBR)

•  SubVirt / Blue Pill
– Trap a running OS in a thin hypervisor.

Roel Verdult

virtual-machine monitor (VMM)

host hardware

host operating system

malicious
service target operating systemmalicious

service

target
application

target
application

host hardware

target operating system

target
application

target
application

Before infection

After infection

Figure 2. This figure shows how an existing target system can be moved to run inside a virtual
machine provided by a virtual-machine monitor. The grey portions of the figure show the components
of the VMBR.

tional user-mode malware that runs within the target
OS tends to be easy to implement because malware au-
thors can use any programming language to write these
malicious services. Also, user-mode malware has access
to all libraries and OS-level resources which makes it
easy to provide a rich set of functionality. However,
user-mode malware can be detected by security soft-
ware running within the target OS because all mali-
cious states and events are visible to the target oper-
ating system.

VMBRs use a separate attack OS to deploy malware
that is invisible from the perspective of the target OS
but is still easy to implement. None of the states or
events of the attack OS are visible from within the tar-
get OS, so any code running within an attack OS is
effectively invisible. The ability to run invisible mali-
cious services in an attack OS gives intruders the free-
dom to use user-mode code with less fear of detection.

We classify malicious services into three categories:
those that need not interact with the target system
at all, those that observe information about the target
system, and those that intentionally perturb the exe-
cution of the target system. In the remainder of this
section, we discuss how VMBRs support each class of
service.

The first class of malicious service does not com-
municate with the target system. Examples of such
services are spam relays, distributed denial-of-service

zombies, and phishing web servers. A VMBR supports
these services by allowing them to run in the attack
OS. This provides the convenience of user-mode exe-
cution without exposing the malicious service to the
target OS.

The second class of malicious service observes data
or events from the target system. VMBRs en-
able stealthy logging of hardware-level data (e.g.,
keystrokes, network packets) by modifying the VMM’s
device emulation software. This modification does not
affect the virtual devices presented to the target OS.
For example, a VMBR can log all network packets by
modifying the VMM’s emulated network card. These
modifications are invisible to the target OS because the
interface to the network card does not change, but the
VMBR can still record all network packets.

VMBRs can use virtual-machine introspection to
help observe and understand the software-level ab-
stractions in the target OS and applications. Virtual-
machine introspection enables malicious services to
trap the execution of the target OS or applications at
arbitrary instructions. When these traps occur, a mali-
cious service can use use virtual machine introspection
to reconstruct data and abstractions from the target
system. For example, if a target application uses an
encrypted socket, attackers can use virtual-machine in-
trospection to trap all SSL socket write calls and log
the clear-text data before it is encrypted. This logging

Stealth Hard-Drive Backdoor

Roel Verdult

��������

����
������	�
�	��

	
�����
��

�
�
���
�
���

�
������

����
�����
��
���������������
�
�
��������
�������

��
����	����	��

����������
�������
������
��
�� ��!
����!���������
�� "��#�
����!�����

�����������������!
�����
�
�

���$��%���������
���
�����
�����&�����

���������������

�������
��#�
�������
��
��'()*+()*+()*+,,,'�������
-�
���!����������.���%.���
���
������

���������������
 ������
�
�

���!!��
����!����������������������/!�
���
�.����
������!�����
�� �$

0��#�
���/!���/!��
�����
�
�

1��#�
�����!�����
�������������������
�
�

2���3����
���
���������������
�
�

4�3��!
��

5���
�.����
�����������������
�
�
���������
�������

Figure 3: Call sequence of a write operation on the hard drive.

set to compare the results when the filesystem cache is not
present. Most applications make use of the filesystem bu↵er
cache to optimize access to the hard drive. However, with
the cache enabled, our experiments showed it was impossible
to distinguish the performance of the modified firmware from
the original one. Hence, we emulate, as best as we can, a
suspicious user attempting to detect hard-drive anomalies
by testing the direct throughput.

Table 1: Filesystem-level write-throughput

Write test

Mean (MB/s) 95% CI

With backdoor 37.57 [37.56; 37.59]
Without backdoor 37.91 [37.89; 37.94]

We perform 30 iterations of the experiment, with a 30
second pause between successive iterations. For each set
of values measured, we compute 95%-confidence intervals
using the t-distribution. Table 1 shows the comparison of
the write throughputs of the hard drive with the unmodified
and the backdoored firmware. In both cases, we executed
the IOZone write/rewrite test to create a 100 MB file with
a record length of 512 KB.

Comparing the results, we can conclude that the backdoor
adds an almost unnoticeable overhead to write operations.
For instance, to put those results into context, we measured
larger disk throughput fluctuations by changing the cable
that connects the hard drive to the computer than in the
case of our backdoor.

3. DATA EXFILTRATION BACKDOOR
In this section, we present the design overview of a back-

door that allows to send and receive commands and data

Figure 4: A server-side storage backdoor.

between the attacker and a malicious storage device, i.e., a
Data Exfiltration Backdoor (DEB).
Basically, a DEB has two components: (i) a modified

firmware in the target storage device and (ii) a protocol
to leverage the modified firmware and to establish a bi-
directional communication channel between the attacker and
the firmware.
First we describe a concrete scenario in which the data ex-

filtration attack is performed, and then proceed to describe
the challenges and our solution in detail.

3.1 Data Exfiltration Overview
We start with a real-world example of a server-side DEB,

where the compromised drive runs behind a typical two-tier
web server and database architecture, see Figure 4. This
scenario is of particular interest, because the various proto-
cols and applications between the attacker and the storage
device can render the establishment of a (covert) communi-
cation channel extremely di�cult. We assume that the web
server provides a web service where users can write and then
read back content. This is the case for many web services.
The specific example we select here is that of a web forum
or blog service where users can post and browse comments.
To perform data exfiltration from a server, the attacker

proceeds in the following way:
First, the attacker performs an HTTP GET or POST re-

Intel manageability engine

•  Out-of-band (OOB) communication
– “Platforms equipped with Intel AMT can

be managed remotely, regardless of
whether they are powered up and
regardless of whether or not they have a
functioning operating system.”

Reference:
”Intel Active Management Technology (Intel AMT) Start Here Guide" (PDF).

Reverse-engineering:
http://www.slideshare.net/codeblue_jp/igor-skochinsky-enpub

Roel Verdult

JIT Spraying
Example: http://en.wikipedia.org/wiki/JIT_spraying!
!
var a = (0x11223344^0x44332211^0x44332211^ ...);!
!
JIT then will transform bytecode to native x86 code like:!
0: !b8 44 33 22 11 !mov eax,0x11223344!
5: !35 11 22 33 44 !xor eax,0x44332211!
A: !35 11 22 33 44 !xor eax,0x44332211!
!
Jumping to the second byte of the "mov" instruction:
1: !44 inc esp!
2: !33 22 xor esp,DWORD PTR [edx]!
4: !11 35 11 22 33 44 adc DWORD PTR ds:0x44332211,esi!
A: !35 11 22 33 44 xor eax,0x44332211!

Roel Verdult

VM Security management

•  Re-initialization of “cloned” host
– Hardware identification (MAC addresses)

– SSH Private keys

– Webserver certificates

Roel Verdult

Security oriented VM (Qubes OS)

Roel Verdult

Security oriented VM (Qubes OS)

Roel Verdult

