
OS Security
Authorization

Radboud University Nijmegen, The Netherlands

Winter 2015/2016

A short recap
I Authentication establishes a mapping between entities (users) and

intended operations
I Typical approach: user authentication:

I User logs into the system
I Processes started by the user are linked to him

I Alternative: operation authentication, only feasible for very few,
important operations

I Three approaches to authentication:
I By “what you know” (typically a password)
I By “what you have” (typically a key, token, or smart-card)
I By “what you are” (biometrics, e.g, fingerprint, iris scan)

I Classical UNIX/Linux authentication through user data in
/etc/passwd and /etc/shadow

I Flexible mechanism for managing authentication: PAM
I Authentication modules in /lib/security/
I Per-application configuration files in /etc/pam.d/
I Library libpam as easy mechanism for applications to use PAM

I Authentication even more tricky in networked environments
I State of the art: LDAP and Kerberos

OS Security – Authorization 2

Protection rings

I OS needs to control access to
resources

I Idea: Access to resources only
for highly-priveleged code

I Non-priveleged code needs to
ask the OS to perform
operations on resources

I Separate code in protection
rings

I Ring 0: OS kernel
I Outer rings: less privileged

software (drivers, userspace
programs)

Image source: http://en.wikipedia.
org/wiki/Protection_ring

OS Security – Authorization 3

http://en.wikipedia.org/wiki/Protection_ring
http://en.wikipedia.org/wiki/Protection_ring

Protection rings in Linux

I Protection rings are supported by hardware
I Certain instructions can only be executed by privileged (ring-0) code
I X86 and AMD64 support 4 different rings (ring 0–3)
I Trying to execute a ring-0 instruction from ring-3 results in SIGILL

(illegal instruction)
I Idea:

I OS kernel (memory and process management) run in ring 0
I Device drivers run in ring 1 and 2
I Userspace software runs in ring 3

I Linux (and Windows) use a simpler supervisor-mode model:
I Operating system runs with supervisor flag enabled (ring 0)
I Userspace programs run with supervisor flag disabled (ring 3)
I Call ring-0 code kernel space
I Call ring-3 code user space

OS Security – Authorization 4

System calls and strace

I Transition from user space to kernel space through well-defined
interface

I Interface is a set of system calls (syscalls)
I A system call is a request from user space to the OS to perform a

certain operation
I Access to system calls is typically implemented through the standard

library
I Examples:

I write function defined in unistd.h is wrapper around write syscall
I execve function defined in unistd.h is wrapper around execve

syscall
I Sometimes don’t use system calls that directly, e.g., printf also

calls write
I Can print (trace) all syscalls of a program: strace
I Very helpful for understanding what’s happening “behind the scenes”

OS Security – Authorization 5

Applications and the OS

OS Security – Authorization 6

Kernel modules

I Processes belonging to root can do anything in userspace
I root processes do not run in kernel space
I root processes need syscalls to access resources
I What if there is no syscall for a certain operation?
I Example: enable userspace access to hardware cycle counter on

ARM processors
I Answer: Modify OS kernel (add syscall), reboot
I Better answer: Modify OS kernel at runtime
I Linux kernel typically allows to load kernel modules
I Modules run in kernel space (ring 0)
I Load module into kernel with program insmod

OS Security – Authorization 7

A kernel module example
#include <linux/module.h>
#include <linux/kernel.h>
MODULE_LICENSE("Dual BSD/GPL");

#define DEVICE_NAME "enableccnt"

static int enableccnt_init(void)
{

printk(KERN_INFO DEVICE_NAME " starting\n");
asm volatile("mcr p15, 0, %0, c9, c14, 0" :: "r"(1));
return 0;

}

static void enableccnt_exit(void)
{

asm volatile("mcr p15, 0, %0, c9, c14, 0" :: "r"(0));
printk(KERN_INFO DEVICE_NAME " stopping\n");

}

module_init(enableccnt_init);
module_exit(enableccnt_exit); OS Security – Authorization 8

Files

I Persistent data on background storage is organized in files
I Files are logical units of information organized by a file system
I Files have names and additional associated information:

I Date and time of last access
I Date and time of last modification
I Access-permission-related information

I Files are logically organized in a tree hierarchy of directories
I The file system maps logical information to bits and bytes on the

storage device
I The file system runs in kernel space (typically through device drivers)
I Access to files goes through system calls

OS Security – Authorization 9

“Everything is a file”

I Design principle of UNIX (and Linux): every persistent resource is
accessed through a file handle

I A file handle is an integer, which is mapped to a resource
I Mapping is established per process in a kernel-managed

file-descriptor table
I Special file handles for (almost) every process:

Integer value Name/Meaning <stdio.h> file stream
0 Standard input stdin
1 Standard output stdout
2 Standard error stderr

I Consequence of “everything is a file”:
I User-space processes can operate on files only through syscalls
I OS can check for each syscall (kernel-space operation), whether the

operation is permitted
I (User-space programs also operate on memory, but that’s for next

lecture)

OS Security – Authorization 10

File-related syscalls

I open(): Open a file and return a file handle
I read(): Read a number of bytes from a file handle into a buffer
I write(): Write a number of bytes from a buffer to the file handle
I close(): Close the file handle
I lseek(): Change position in the file handle
I access(): Check access rights based on real user ID (more later)

OS Security – Authorization 11

Pseudo filesystems proc and sys

I Files in /proc and /sys are “pseudo-files”
I Those files provide reading or writing access to OS parameters
I Examples:

I cat /proc/cpuinfo: Shows all kind of information about the CPUs
of the system

I cat /proc/meminfo: Shows all kind of information about the
memory of the system

I echo 1 > /proc/sys/net/ipv4/ip_forward: Enable IP forwarding
I echo powersave > /sys/.../cpu0/cpufreq/scaling_governor:

Switch CPU0 to “powersave” mode
I Important for access control: reading/writing those parameters is

implemented through operations on (pseudo-)files

OS Security – Authorization 12

Device files

I Hardware devices are represented as files in /dev/
I Examples:

I /dev/sda: First hard drive
I /dev/sda1: First partition on first hard drive
I /dev/tty*: Serial devices and terminals
I /dev/input/*: Input devices
I /dev/zero: Pseudo-devices that prints zeros
I /dev/random: Pseudo-devices that prints random bytes

I Generally be very careful when writing to device files
I dd if=/dev/zero of=/dev/sda overwrites your whole hard drive

with zeros
I Again, important for access control: accessing (hardware) devices is

implemented through operations on (device-)files

OS Security – Authorization 13

Symbolic links and pipes

I A symbolic link is a special file that “links” to another file
I Accessing a symbolic link really accesses the file it points to
I Create a symbolic link to /home/peter/teaching/ with name

/home/peter/ru:
ln -s /home/peter/teaching /home/peter/ru

I Can also create a hard link:
ln /home/peter/teaching /home/peter/ru

I Soft links don’t get updated when the target is moved
I Hard links always point to the target
I Access is again handled through file handles, need to be careful with

permissions
I Pipes for inter-process communication are also implemented through

file handles

OS Security – Authorization 14

Environment variables

I One might think that data flow between processes can only happen
through files

I Process A writes a file, process B reads the file
I Other way of communicating: environment variables
I Process A can set an environment variable, process B can read it
I Set an environment variable through

export MYVAR=myvalue

I Show all currently defined environment variables: export
I Important system-wide variables:

I PATH: colon-separated list of directories to search for programs
I LD_LIBRARY_PATH: colon-separated list of directories to search for

libraries
I IFS: “Internal Field Separator”, character to be used to separate

fields in a list (more later)

OS Security – Authorization 15

MAC and DAC

Protection system
A protection system consists of a protection state, which describes what
operations subjects (processes) may perform on objects (files) together
with a set of protection state operations that enable modification of the
state.

Mandatory Access Control
A system implements mandatory access control (MAC) if the protection
state can only be modified by trusted administrators via trusted software.

Discretionary Access Control
A system implements discretionary access control (DAC) if the protection
state can be modified by untrusted users. The protection of a user’s files
is then “at the discretion of the user”.

OS Security – Authorization 16

Access Matrix

An access matrix is a set of subjects S, a set of objects O, a set of
operations X and a function op : S ×O → P(X). Given s ∈ S and
o ∈ O, the function op returns the set of operations that s is allowed to
perform on o.

File 1 File 2 File 3 File 4
Process 1 read read read,write
Process 2 read
Process 3 read,write read

I When a user creates a file, she adds a column to the table
I Adding a column means modifying the protection state
I The access-matrix model leads to a DAC system

OS Security – Authorization 17

UNIX/Linux protection model

I Trusted code base (TCB) of Linux is all code running in kernel space
and several processes running with root permissions, e.g.:

I init process
I login (user authentication)
I network services

I Goal: protect users’ processes from each other and the TCB from all
user processes

OS Security – Authorization 18

UNIX/Linux protection model: subjects

I Each process has associated three user IDs:
I Real user ID
I Effective user ID
I Saved user ID

I Each process also has associated a set of group IDs
I The groups of all users are defined in /etc/group
I Each user has a primary group defined in /etc/passwd
I When you are logged in, you can see your groups with the command

groups

OS Security – Authorization 19

UNIX/Linux protection model: objects

I Each object (file) has
I an owner (user) and owner permissions
I a group and group permissions
I other permissions

I Permissions on a file are read (r), write (w) and execute (x)
I Typically write permissions as 9 bits: rwx︸︷︷︸

owner

rwx︸︷︷︸
group

rwx︸︷︷︸
other

I Convenient way of writing this: 3 numbers from 0–7, e.g.:
I 750: owner may read, write, and execute; group may read and

execute, others may nothing
I 644: owner may read and write; group and others may read

I Command ls -l shows files with corresponding permissions, e.g.
peter@tyrion:/etc$ ls -l passwd shadow
-rw-r--r-- 1 root root 2217 Nov 16 18:13 passwd
-rw-r----- 1 root shadow 1454 Nov 16 18:13 shadow

OS Security – Authorization 20

UNIX/Linux protection model: matching

I When a process wants to access a file, check the following
1. Does the effective user ID of the process match the owner of the

file? If so, use the owner permissions.
2. Does one of the group IDs of the process match the group of the

file? If so, use the group permissions.
3. Otherwise, use the “other” permissions

I Note: if the owner matches, the group permissions don’t matter.

Directory permissions
I read: Can see content (files and subdirectories) of the directory
I write: Can rename and delete content of the directory and create

new content
I execute: Can traverse the directory (cd into or across the directory)

OS Security – Authorization 21

chown, chmod and umask
I chown changes owner and group of a file
I Example: chown veelasha:dialout test.txt changes

I the owner of test.txt to veelasha and
I the group of test.txt to dialout

I Only root can change ownership; owner can change group to any
group he’s member of

I chmod changes permissions of a file, e.g.:
I chmod g+w: grant write permissions to group
I chmod o-x: remove execute permissions from other
I chmod a+rw: grant read and write permissions to owner, group, and

other
I chmod 640: set permissions to rw-r-----

I Default permissions for files are 666 and for directories 777
I umask influences default permissions
I The umask is subtracted from permissions
I Example: a umask of 022 removes write permissions for group and

other by default
OS Security – Authorization 22

The setuid bit

I Sometimes users need to have access to privileged resources
I UNIX/Linux solution: additional setuid (suid) bit in file permissions
I Run program with permissions of owner instead of user starting it
I Set suid bit with chmod u+s or, e.g., chmod 4755
I User IDs of a suid program:

I Real user ID: ID of the user starting the program
I Effective user ID: ID of the owner
I Saved user ID: set to effective user ID at the beginning

I Most important application: setuid root
I Setuid root process can drop privileges (effective ID)
I Can regain root rights as long as saved ID is still 0!

OS Security – Authorization 23

The setgid and sticky bit
setgid bit

I When set on executable file: use effective group ID for process
I Different meaning for directories: files created within this directory

inherit the group ID
I Similar mechanism for suid on directories on a few systems (not on

Linux)
I Set setgid bit with chmod g+s or, e.g., chmod 2777

Sticky bit
I Another “special” permission bit is the sticky bit
I On directories: allow only owner of contained files to rename or

delete the file
I Important, for example, for /tmp/
I On executables: keep in swap space (faster loading)
I Not really used anymore today
I Set sticky bit with chmod +t OS Security – Authorization 24

setuid example: su

I Most prominent example of setuid-root program: su
I su can stand for “switch user” or “superuser”
I Without any argument, become root
I Can provide other username as argument
I Authentication uses PAM, typical (piece of) /etc/pam.d/su:

auth sufficient pam_rootok.so
session required pam_limits.so
auth required pam_unix.so

I Other prominent example: passwd (needs write access to
/etc/shadow)

I Again, authenticate against PAM before doing anything

OS Security – Authorization 25

sudo

I su requires users to authenticate as root
I sudo allows users to authenticate as themselves and run commands

with root privileges
I sudo also uses suid root and PAM
I Configuration of users and permitted commands in /etc/sudoers
I Some Linux Distributions (Ubuntu) disable the root password
I Instead use the following rule in etc/sudoers:

%sudo ALL=(ALL:ALL) ALL
I Allows members of the group sudo to run any program as root
I With this rule, run sudo su to obtain a root shell

OS Security – Authorization 26

Privilege escalation

I Attack that expands attacker’s privileges is called privilege escalation
I Two types of privilege escalation:

I horizontal: obtain privileges of another un-privileged user
I vertical: obtain privileges of root (or the kernel), “privilege elevation”

I Typicall enabled by bugs in privileged software:
I Bugs in the kernel
I Bugs in how root programs process user-provided input
I Bugs in suid-root programs (escape intended functionality)

I An exploit that lets an unprivileged (logged in, local) user gain root
rights is called local root exploit

OS Security – Authorization 27

Using system() with suid

I The system() function runs another program in the shell
I Uses the fork() and the execve() system calls
I Never use system() in a suid program!
I Example: suid program stupid contains system("/bin/date")
I Attacker proceeds as follows:

1. export PATH=.:$PATH
2. export IFS=/
3. Create executable file ./bin containing:

cp /bin/sh ./myrootshell
chown root:root ./myrootshell
chmod u+s ./myrootshell

4. Run the suid program stupid

I stupid launches a shell, which is handed /bin/date
I Shell looks at variable IFS to parse this string
I Shell calls program bin with argument date

OS Security – Authorization 28

IFS and LD_LIBRARY_PATH

I Attack against system("/bin/date") does not work anymore
I IFS environment variable is no longer inherited by shells
I LD_LIBRARY_PATH is not inherited for programs with setuid bit set
I PATH variable is still inherited
I Custom variables are still inherited
I Can try all this easily with a C program using getenv
I Cannot try this with a shell script
I Shell scripts won’t execute setuid (even if you set the bit)

OS Security – Authorization 29

Shellshock

I Environment variables can be dangerous because they allow
(potentially unintended) data flow

I Even worse if environment variables are badly parsed:
http://digg.com/video/
the-shellshock-bug-explained-in-about-four-minutes

OS Security – Authorization 30

http://digg.com/video/the-shellshock-bug-explained-in-about-four-minutes
http://digg.com/video/the-shellshock-bug-explained-in-about-four-minutes

More Shellshock background

I The bash is not just a command line but also a programming
language

I We can define functions: hello() { echo "Hello World"; }
I We can also export functions with export -f
I Environment variables do not support functions, just strings
I The newly launched bash looks for variables that “look like a

function”
I Parsing things that “look like a function” goes wrong

OS Security – Authorization 31

Shellshock test

env x=’() { :;}; echo vulnerable’ bash -c "echo this is a test"

OS Security – Authorization 32

Access control lists

I User/Group/All model is not always flexible enough
I Want to enable arbitrary access permissions
I Solution: Access Control Lists (ACLs)
I Grant permissions to arbitrary users and groups
I Needs support from the file system
I Mount with option acl, for example:

mount -o remount,acl /

I Set ACL entries with the program setfacl (set file access control
lists)

I Read ACL entries with getfacl (get file access control lists)
I Note: ls -l will not show ACLs, only a ’+’ to indicate that “there’s

more”

OS Security – Authorization 33

Linux ACL examples

I Grant user veelasha read,write execute rights on file test.txt:
setfacl -m user:veelasha:rwx test.txt

I Remove all rights for user veelasha on file test.txt:
setfacl -x user:veelasha test.txt

I Grant read and execute rights for members of the group dialout:
setfacl -m group:dialout:r-x test.txt

I Read and set permissions for test.txt from file test.perm:
setfacl -M test.perm test.txt

OS Security – Authorization 34

UNIX weaknesses: assuming benign processes

I UNIX and Linux are built on the assumption that user processes
behave benignly

I A malicious process can easily violate a user’s security goals
I Mainly two ways why processes may be malicious:

I user accidently runs malware (more later in the lecture)
I process operates on maliciously crafted input (in particular network

processes)
I Ideal situation: OS enforces security:

I Clearly defined security goals (confidentiality, integrity)
I All software outside the TBC can be arbitrarily malicious
I OS still enforces the security goals

I No current mainstream OS achieves this goal
I Requires mandatory access control

OS Security – Authorization 35

UNIX weaknesses: TOCTTOU
I Problem if there is a time gap between checking permissions and

executing operation
I This is called time of check to time of use (TOCTTOU or

TOCTOU)
I Example: use access() syscall in suid-root program to check rights

against real user ID:
if (access("file", W_OK) != 0) {

exit(1);
}

fd = open("file", O_WRONLY);
write(fd, buffer, sizeof(buffer));

I Attacker attempts to run symlink("/etc/shadow", "file");
between access() and open()

I This is an example for a race condition
I Generally, a race condition bug is a bug where software behaviour

depends on uncontrollable timing behavior in an unintended way
OS Security – Authorization 36

