
Operating Systems Security – Assignment 2

Version 1.2 – 2015/2016

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands.

1 Play around with suid bit

Login to your (Kali) Linux system as a non-root user and download the program showdate from
https://cryptojedi.org/peter/teaching/ossec2015/showdate (for 64-bit OS) and
https://cryptojedi.org/peter/teaching/ossec2015/showdate32 (for 32-bit OS).
Then, change the owner
$ sudo chown root:root showdate
set the suid bit and make it executable
$ sudo chmod u+s,a+x showdate
Execute the program and verify it prints the date correctly
$./showdate
Wed Nov 18 xx:xx:xx EST 2015

Install the tool strace
$ sudo apt-get install strace
and run it to see system calls used by showdate
$ strace -f ./showdate

Objectives

a) Find out what the program does internally. What system calls does it use?
b) Assume the role of a non-privileged attacker. Use the program showdate to obtain a root shell.

You can verify if you succeeded by looking at the output of id, it should be something like:
$ /usr/bin/id
uid=0(root) gid=0(root) groups=0(root),27(sudo),1001(test1)
Hand in the exact console commands you used to get this working.

c) Explain what a developer could do to overcome this issue. What explicit actions should a
developer take when writing software that is intended to be used with setuid-root to avoid
these types of problems?

2 Compile and load your own Linux kernel module

Login to your (Kali) Linux system as a root user and compile the program cr4.c:

#include <stdio.h>

void main() {
unsigned long long result;
/*unsigned long result; (for 32-bit OS)*/
__asm__("movq %%cr4, %%rax\n" : "=a"(result));
/*__asm__("mov %%cr4, %%eax\n" : "=a"(result)); (for 32-bit OS)*/
printf("Value of CR4 = %llx\n", result);

}

with the command line:
gcc -o cr4 cr4.c

https://cryptojedi.org/peter/teaching/ossec2015/showdate
https://cryptojedi.org/peter/teaching/ossec2015/showdate32

Notice that executing will result in an exception:
./cr4
Segmentation fault

Using a debugger, we can quickly pinpoint what the problem is. Start debugger in assembly mode
gdb -ex "layout asm" ./cr4
and execute it using the following GDB instruction
run

Objectives

a) Figure out where the register CR4 is used for and report back why you think it should not be
accessible in user mode1.

b) Figure out which exact assembly instruction of cr4.c triggers the segmentation fault and briefly
write down what it tries to do.

c) Follow the “How to Write Your Own Linux Kernel Module with a Simple Example” guide
hosted at this website2 and try to reproduce their results. You should be able to see your kernel
module output with the following command:
$ dmesg | tail -10

d) If your kernel module is working correctly, try to adjust the kernel module to read out the exact
same CR4 register. Hand in the source-code of your kernel module together with a Makefile to
build it and report back which value the CR4 in your (Kali) Linux system has.

3 Write your own PAM module

In Assignment 1, you learned about Pluggable Authentication Modules (PAM). In this section, you
are required to write a basic custom PAM module which asks a user 1 out of 5 questions randomly
and the user is required to provide the correct answer. You are free to be as creative as you like
with these 5 questions.
We advise you to execute sudo apt-get install libpam0g-dev and test your module using su
(and not login or ssh) .
You need to hand the source code of the module together with a Makefile to build it and a config
file /etc/pam.d/su that uses the module for authentication.
Note: For additional background knowledge about PAM, please refer to the following websites 345

Additional Exercise: Buffer-overflow attack

This is not a mandatory exercise for the ‘Operating Systems Security’ course and is only meant
to serve as a refresher for those who have not done the ‘Software and Web Security’ course. You
are strongly recommended to complete this task as it serves as a prerequisite to better understand
the lecture on Memory (Lecture 3).
The exercise can be found here:
http://www.cs.ru.nl/˜erikpoll/sws1/exercises/assignment5b.pdf

1 http://en.wikipedia.org/wiki/Control_register
2 http://www.thegeekstuff.com/2013/07/write-linux-kernel-module/
3 http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
4 http://www.rkeene.org/projects/info/wiki/222
5 http://www.wpollock.com/AUnix2/PAM-Help.htm

http://www.cs.ru.nl/~erikpoll/sws1/exercises/assignment5b.pdf
http://en.wikipedia.org/wiki/Control_register
http://www.thegeekstuff.com/2013/07/write-linux-kernel-module/
http://www.linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://www.rkeene.org/projects/info/wiki/222
http://www.wpollock.com/AUnix2/PAM-Help.htm

