
OS Security
Ethos

Radboud University Nijmegen, The Netherlands

Winter 2015/2016



Ethos OS

I All previous security features of an OS were “add-on”
I System calls, shells interface, utilities etc. implement the POSIX

standards for UNIX OSs
I UNIX goes back to the 70s, not designed for security
I Ethos is a new operating-system design
I Project started in 2007 by Jon Solworth at UIC
I Ethos does not implement the POSIX standard, it’s radically

“clean-slate”
I Ethos is designed for security

OS Security – Ethos 2



Motivation
I “A secure OS by itself is meaningless”
I Main goal and motivation of Ethos: make it easy to write robust

applications:

A program is robust if it continues to operate as intended even in
the face of an intelligent adversary.

I Typical security-critical application-level failures:
I Fail to provide adequate security services, e.g., encryption,

authentication, authorization
I Programming flaws like buffer overflows, race conditions, missing or

incorrectly used security services
I Failures at the intersection of mechanisms

I Problem: Too much responsibility for application programmers
I Example: Hundreds of LoC to use OpenSSL in typical server

applications
I Solution in Ethos: provide higher-level API (system calls) that takes

care of security issues
I Ethos is designed for network (Internet) applications

OS Security – Ethos 3



Design on top of Xen

I Ethos is not running on bare hardware
I Ethos is running inside the Xen Virtual Machine Monitor (VMM)
I Xen Dom0 OS is typically Linux
I Virtualization allows to run Ethos alongside Linux
I Ethos started with Mini-OS (provided by Xen)
I Additions of Ethos to Mini-OS:

I Processes and system calls
I Networking and Inter-process communication (IPC)
I Filesystem
I Cryptography
I Authentication
I Types
I User-space Debugger

I Also cleaned up lots of code

OS Security – Ethos 4



“Laziness”

Building on top of Xen makes development of a new OS feasible:
I Use a Linux program called shadowdæmon that provides services to

Ethos running in another Xen domain
I Use RPC over Xen’s virtual network interfaces
I Eventually replace shadowdæmon by native Ethos implementations
I Filesystem: Use existing filesystem in Dom0 and shadowdæmon

calls to read/write. ext4 has >25000 LoC; Ethos file-system
component has 1754 + 814 in shadowdæmon

I Networking: Use ARP implementation in Dom0 with static ARP
tables

I Drivers: >5 Mio. LoC for drivers in Linux. Ethos’ network driver is
462 LoC, console driver is 296 LoC

I Debugging: Use gdbsx debugger of Xen
I Testing: “Fast” to get a prototype working, can automate testing

from Dom0

OS Security – Ethos 5



Pitfalls of using a VMM

I VMM itself can have bugs (Ethos helped fix one such problem)
I Dom0 in Xen has direct access to

1. hardware I/O devices
2. the virtual memory of other virtual machines

I Address problem 1 by encrypting all data sent to communication
devices and file systems

I Problem 2 could be addressed in Xen by encrypting memory pages
before Dom0 access

I Long-term plans (ideas) for Ethos:
I Microkernel implementation
I Develop minimalist VMM
I Verify VMM

OS Security – Ethos 6



What Ethos ensures

Protection mechanisms are compulsory, most important ones:
I P1: Processes cannot change owners; instead, processes spawn

special children that run as a different owner from inception
I P2: Applications do not have access to secret keys; instead, Ethos

isolates keys and provides access to cryptographic operations
through system calls

I P3: All network connections are authenticated
I P4: Authentication uses strong techniques
I P5: Confidentiality of authentication databases is not essential to

security because Ethos uses public-key cryptography
I P6: All communication made (client-side/local user) or received

(server-side/remote user) are subject to authorization based on the
requesting host and user

I P7: All data written to disk or network devices is protected using
strong cryptography

OS Security – Ethos 7



Etypes

I Typical input to programs in UNIX are byte arrays (from the
network, from files, from stdin)

I Parsing to typed inputs is left to applications
I Improper handling of ill-formed (e.g., malicious) inputs is common

source of security issues
I Ethos offers distributed types in the Etypes subsystem:

I A notation, ETN, for specifying types
I a machine-readable type description (“type graph”)
I A single wire format (ETE)
I Tools (userspace and kernelspace) to transform ETN into code that

will encode, decode, and recognize types
I Extensions to read and write system calls to check input and output

I Programs specify what input types they allow
I Validity of input (and outputs) enforced by OS

OS Security – Ethos 8



Available types

I Primitive types (byte, int32)
I Vectors (tuples, strings, arrays)
I Composites (structs, dictionaries, unions)
I Pointers
I RPC interfaces
I Any

OS Security – Ethos 9



Directories and types

I Directories “know” what types they may contain
I Typing is enforced for all non-directory contents of a directory
I Network connections, IPC, are using the filesystem
I Example: All file objects in a directory for IPv4 addresses must have

type int32
I “Any” type allows traditional directories

OS Security – Ethos 10



System calls

UNIX Ethos
mkdir Create directory,

given path and
mode

createDirectory Create directory,
given parent FD,
name, label, and
type hash

open Open file for succes-
sive read/write

read/writeVar Read/Write object
in its entirety

seek Seek within a file n/a Seek at object level
by using directory as
streaming descriptor

read Read a number of
bytes

read Read from a stream-
ing descriptor

write Write a number of
bytes

write Write to a streaming
descriptor

OS Security – Ethos 11



Networking in Ethos
Server

fdListen = advertise("ping"); // bind
fd , user = import(fdListen); // accept
write (fd, "Hello");

Client

// connect
fd = ipc("ping", "example.com");
v = read(fd);

I Syntax similar to POSIX, but with some cleanups (names instead of
numbers, remove excess calls)

I Core difference: semantics! (e.g., user for import is the remote
user)

OS Security – Ethos 12



Properties of Ethos networking

I All network communication encrypted and authenticated
I Uses Networking and Cryptography library (NaCl) for crypto
I MinimaLT network protocol (faster than unencrypted TCP/IP)
I Authentication is public-key based

I user IDs are public keys
I users can mint as many identities as they like

I Services are named by paths in the file system (readability)
I Directory authorizes both

I hosts (incoming and outgoing)
I users (incoming)

I All data passed through Ethos is directory-specified type
I avoid input vulnerabilities
I encoder/decoder automatically achieves host-independence

I Ethos uses a distributed efficient public-key infrastructure called sayI

OS Security – Ethos 13



Implications

I Attackers cannot read/modify network communication
I Supports anonymous or pseudonymed users
I Unwanted communication eliminated before application code
I Zero LoC in applications for crypto and type conversions
I Applications cannot bypass security services
I Semantics eliminate many security holes
I Simplicity from deep integration of authentication, authorization,

and networking

OS Security – Ethos 14



Present and future work in Ethos

Present
I Nearly complete prototype
I Ported Go programming language to Ethos
I Beginning of user-space foundation (EI shell language, graphics)
I Some small applications
I Close to releasing MinimaLT and sayI

Future
I From prototype to production kernel
I Develop EI, tools, graphics
I Build secure Ethos applications

OS Security – Ethos 15



Advertisement

Interested in working on Ethos?

Jon is looking for students who are interested in working on Ethos in
their

I Bachelor’s thesis
I Master’s thesis
I Ph.D. thesis

More details on Ethos are on

http://ethos-os.org

OS Security – Ethos 16

http://ethos-os.org

