OS Security

Mandatory Access Control

Radboud University Nijmegen, The Netherlands

£ %
g 2
== ()
1, &
MiNe

Winter 2015/2016



Exam date

» The exam is on Monday, January 18, 12:30-15:30 in Lin 4/5!
> Last exercise class (Q&A): Tomorrow 10:30 in HG00.062.

OS Security — Mandatory Access Control 2



A short recap

» Important concept to reduce covert channels and possible damage
by an attack: compartmentalization

» Very strong implementation: virtualization

OS Security — Mandatory Access Control



A short recap

» Important concept to reduce covert channels and possible damage
by an attack: compartmentalization

» Very strong implementation: virtualization
» Multiple virtual machines running on the same physical hardware
» Different ways to implement this

OS Security — Mandatory Access Control



A short recap

» Important concept to reduce covert channels and possible damage
by an attack: compartmentalization

» Very strong implementation: virtualization
» Multiple virtual machines running on the same physical hardware
» Different ways to implement this

> Full virtualization (guest OS in ring 1)

OS Security — Mandatory Access Control



A short recap

» Important concept to reduce covert channels and possible damage
by an attack: compartmentalization

» Very strong implementation: virtualization
» Multiple virtual machines running on the same physical hardware
» Different ways to implement this

> Full virtualization (guest OS in ring 1)
» HW-assisted virtualization (guest OS in ring 0, hypervisor in ring -1)

OS Security — Mandatory Access Control



A short recap

» Important concept to reduce covert channels and possible damage
by an attack: compartmentalization

» Very strong implementation: virtualization

» Multiple virtual machines running on the same physical hardware

» Different ways to implement this

> Full virtualization (guest OS in ring 1)

» HW-assisted virtualization (guest OS in ring 0, hypervisor in ring -1)

> Paravirtualization: modified guest OS in ring 3, host OS in ring 1,
hypervisor in ring 0

OS Security — Mandatory Access Control



A short recap

» Important concept to reduce covert channels and possible damage
by an attack: compartmentalization

» Very strong implementation: virtualization
» Multiple virtual machines running on the same physical hardware
» Different ways to implement this

> Full virtualization (guest OS in ring 1)

» HW-assisted virtualization (guest OS in ring 0, hypervisor in ring -1)

> Paravirtualization: modified guest OS in ring 3, host OS in ring 1,
hypervisor in ring 0

> Host-based virtualization: hypervisor in ring 3, unmodified guest OS
in ring 3

OS Security — Mandatory Access Control



A short recap

» Important concept to reduce covert channels and possible damage
by an attack: compartmentalization

» Very strong implementation: virtualization
» Multiple virtual machines running on the same physical hardware

» Different ways to implement this
> Full virtualization (guest OS in ring 1)
» HW-assisted virtualization (guest OS in ring 0, hypervisor in ring -1)
> Paravirtualization: modified guest OS in ring 3, host OS in ring 1,
hypervisor in ring 0
> Host-based virtualization: hypervisor in ring 3, unmodified guest OS
in ring 3
» Desktop-oriented OS for high security: Qubes

> |dea: User defines security domains, those are separated by
virtualization

OS Security — Mandatory Access Control



A short recap

>

Important concept to reduce covert channels and possible damage
by an attack: compartmentalization

Very strong implementation: virtualization

» Multiple virtual machines running on the same physical hardware

» Different ways to implement this

>

>

>

Full virtualization (guest OS in ring 1)

HW-assisted virtualization (guest OS in ring 0, hypervisor in ring -1)
Paravirtualization: modified guest OS in ring 3, host OS in ring 1,
hypervisor in ring 0

Host-based virtualization: hypervisor in ring 3, unmodified guest OS
in ring 3

Desktop-oriented OS for high security: Qubes

> |dea: User defines security domains, those are separated by
virtualization

» Weaker way to compartmentalize: sandboxing

Sandboxing limits access to resources

» Attacks typically aim at breaking out of the jail

OS Security — Mandatory Access Control



X “security”

OS Security — Mandatory Access Control


http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html
http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html

X “security”

» X window system is designed with no security in mind

» Processes running on the same X server have no isolation

OS Security — Mandatory Access Control


http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html
http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html

X “security”

» X window system is designed with no security in mind
» Processes running on the same X server have no isolation

> Simple exeriment (See
http://theinvisiblethings.blogspot.nl/2011/04/
linux-security-circus-on-gui-isolation.html)

> Run xinput list, remember id of AT keyboard

Run xinput test id

In a different window, enter some text

xinput will read all keystrokes
. even keystrokes of processes by other users

This is not a bug or exploit or anything, this is X design!

vy vy VY VY

OS Security — Mandatory Access Control


http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html
http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html

X “security”

» X window system is designed with no security in mind
» Processes running on the same X server have no isolation

> Simple exeriment (See
http://theinvisiblethings.blogspot.nl/2011/04/
linux-security-circus-on-gui-isolation.html)

> Run xinput list, remember id of AT keyboard

Run xinput test id

In a different window, enter some text

xinput will read all keystrokes
. even keystrokes of processes by other users

This is not a bug or exploit or anything, this is X design!

vy vy VY VY

» No UNIX permissions stop this!
» No SELinux/AppArmor (this lecture) stops this!

» Qubes OS prevents this kind of information flow between different
security domains (VMs)

OS Security — Mandatory Access Control


http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html
http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html

A somewhat longer recap

v

Traditional UNIX security uses discretionary access control

v

Each user decides about access permissions of his/her files

v

Modern attack scenarios:

> User runs malware, malware sends private data through Internet
(confidentiality)
> User runs malware, malware modifies user’s files (integrity)

DAC cannot prevent this kind of attack

v

v

Compartmentalization can only limit scope of such an attack

v

Protecting system-level information flow needs MAC

OS Security — Mandatory Access Control



MAC and LSM

» Linux security traditionally follows the UNIX security model

» Around 2000, various projects worked on MAC (and generally
stronger security) for Linux

» Linus Torvalds about inclusion of SELinux: “make it a module”

OS Security — Mandatory Access Control



MAC and LSM

v

Linux security traditionally follows the UNIX security model

v

Around 2000, various projects worked on MAC (and generally
stronger security) for Linux

Linus Torvalds about inclusion of SELinux: “make it a module”
Since Kernel 2.6: API for Linux Security Modules (LSMs)

Hooks to module functions when accessing security-critical resources

v

v

v

OS Security — Mandatory Access Control



MAC and LSM

» Linux security traditionally follows the UNIX security model

v

vV v v v

Around 2000, various projects worked on MAC (and generally
stronger security) for Linux

Linus Torvalds about inclusion of SELinux: “make it a module”
Since Kernel 2.6: API for Linux Security Modules (LSMs)
Hooks to module functions when accessing security-critical resources

An LSM sets function pointers in a data structure called
security_operations

Global table of this type called security_ops defined in
include/linux/security.h

OS Security — Mandatory Access Control



Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

» Small overhead even if no LSM is loaded

OS Security — Mandatory Access Control


https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

» Small overhead even if no LSM is loaded

» LSM is designed for access control, but can be abused, for example,
for bypassing GPL license

OS Security — Mandatory Access Control


https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

» Small overhead even if no LSM is loaded

» LSM is designed for access control, but can be abused, for example,
for bypassing GPL license

> “Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

OS Security — Mandatory Access Control


https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

>

>

Small overhead even if no LSM is loaded

LSM is designed for access control, but can be abused, for example,
for bypassing GPL license

“Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

LSM provides hooks only for access control

Systems like grsecurity and RSBAC need more than just access
control

OS Security — Mandatory Access Control


https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

» Small overhead even if no LSM is loaded

» LSM is designed for access control, but can be abused, for example,
for bypassing GPL license

> “Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

» LSM provides hooks only for access control

» Systems like grsecurity and RSBAC need more than just access
control

» “Stacking” multiple security modules is problematic

OS Security — Mandatory Access Control


https://grsecurity.net/lsm.php

Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

>

>

v

Small overhead even if no LSM is loaded

LSM is designed for access control, but can be abused, for example,
for bypassing GPL license

“Because LSM is compiled and enabled in the kernel, its symbols are
exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

LSM provides hooks only for access control

Systems like grsecurity and RSBAC need more than just access
control

“Stacking” multiple security modules is problematic

LSM hooks expose kernel internal data structures as parameters

OS Security — Mandatory Access Control


https://grsecurity.net/lsm.php

Implementations of LSM

AppArmor

Linux Intrusion Detection System (LIDS)

POSIX capabilitites

Simplified Mandatory Access Control Kernel (Smack)
TOMOYO

Security-Enhanced Linux (SELinux)

vV v v v v Y

OS Security — Mandatory Access Control 8



SELinux overview

» Originally developed by the NSA
» Used today by, for example, Red Hat Linux, Fedora, CentOS

OS Security — Mandatory Access Control



SELinux overview

» Originally developed by the NSA
» Used today by, for example, Red Hat Linux, Fedora, CentOS

» Provides three kinds of MAC mechanisms:

1. Type enforcement (TE)
2. Role-based access control
3. Multi-level security (MLS)

OS Security — Mandatory Access Control



SELinux overview

v

Originally developed by the NSA
Used today by, for example, Red Hat Linux, Fedora, CentOS

Provides three kinds of MAC mechanisms:

1. Type enforcement (TE)

2. Role-based access control

3. Multi-level security (MLS)
All approaches are additional to UNIX DAC: first check file
permissions, if those allow access additionally check MAC rules.

v

v

v

OS Security — Mandatory Access Control



Type Enforcement

» All subjects and objects have a security context in the format
user:role:type

» Mainly important for the moment: the type

OS Security — Mandatory Access Control

10



Type Enforcement

» All subjects and objects have a security context in the format
user:role:type
» Mainly important for the moment: the type

» Obtain security context using classical Linux commands with -Z,
e.g.,
> ps -Z shows processes with security context
» id -Z shows security context of current user
> 1s -Z shows security context of files
> netstat -Z shows secuirty context of network sockets

OS Security — Mandatory Access Control

10



Type Enforcement

» All subjects and objects have a security context in the format
user:role:type
» Mainly important for the moment: the type
» Obtain security context using classical Linux commands with -Z,
e.g.,
> ps -Z shows processes with security context
» id -Z shows security context of current user
> 1s -Z shows security context of files
> netstat -Z shows secuirty context of network sockets
» All access has to be explicitely granted, using allow rules
» Format:
allow source_type target_type : object_class permissions;

OS Security — Mandatory Access Control 10



Type Enforcement

>

All subjects and objects have a security context in the format
user:role:type

Mainly important for the moment: the type

» Obtain security context using classical Linux commands with -Z,

€.g.,
> ps -Z shows processes with security context
» id -Z shows security context of current user
> 1s -Z shows security context of files
> netstat -Z shows secuirty context of network sockets

» All access has to be explicitely granted, using allow rules

» Format:

allow source_type target_type : object_class permissions;

Example:
allow user_t bin_t : file {read execute getattr};

“A process with domain type (source type) user_t can read,
execute, or get attributes for a file object with (target type) of
bin_t."

OS Security — Mandatory Access Control 10



Type Enforcement ctd.

» Default assignment of security context:

> processes get the context of the parent process
> files get the context of the parent directory

OS Security — Mandatory Access Control

11



Type Enforcement ctd.

» Default assignment of security context:

> processes get the context of the parent process
> files get the context of the parent directory

» Various ways to change this behavior

» Most important, transition rules:
type_transition source_type target_type : class new_type;

OS Security — Mandatory Access Control

11



Type Enforcement ctd.

» Default assignment of security context:
> processes get the context of the parent process
> files get the context of the parent directory

» Various ways to change this behavior

» Most important, transition rules:
type_transition source_type target_type : class new_type;

» Example:
type_transition httpd_t httpd_sys_script_exec_t : \
process httpd_sys_script_t;

“When the httpd daemon running in the domain httpd_t executes a
program of the type httpd_sys_script_exec_t, such as a CGlI
script, the new process is given the domain of
httpd_sys_script_t"

OS Security — Mandatory Access Control 11



Type Enforcement vs. DAC

» SELinux TE can be used to separate security domains

» This is separation on a different layer than virtualization

OS Security — Mandatory Access Control

12



Type Enforcement vs. DAC

» SELinux TE can be used to separate security domains

» This is separation on a different layer than virtualization

“Can't we just create a user http and give this user file access (using
UNIX permissions) to only what the webserver needs?”

OS Security — Mandatory Access Control

12



Type Enforcement vs. DAC

» SELinux TE can be used to separate security domains

» This is separation on a different layer than virtualization

“Can't we just create a user http and give this user file access (using
UNIX permissions) to only what the webserver needs?”

» There is no way in DAC to prevent another user bdu to make all his

files readable for the webserver!
» There is no way to prevent root from any file access using DAC

OS Security — Mandatory Access Control

12



MLS: Bell-LaPadula

» Central idea: control information flow
» Security model introduced in 1973
» Implemented in the Multics OS

OS Security — Mandatory Access Control

13



MLS: Bell-LaPadula

» Central idea: control information flow
» Security model introduced in 1973
» Implemented in the Multics OS
» Assign to all objects security levels, typically:
» Top secret
> Secret
» Confidential
> Unclassified

OS Security — Mandatory Access Control



MLS: Bell-LaPadula

vV vy VY

v

Central idea: control information flow
Security model introduced in 1973
Implemented in the Multics OS

Assign to all objects security levels, typically:

» Top secret
Secret
Confidential
Unclassified

vvYy

Assign to users clearance levels

OS Security — Mandatory Access Control

13



MLS: Bell-LaPadula

vV vy VY

v

v

Central idea: control information flow
Security model introduced in 1973
Implemented in the Multics OS

Assign to all objects security levels, typically:

» Top secret
Secret
Confidential
Unclassified

vvYy

Assign to users clearance levels

Assign to processes security levels

OS Security — Mandatory Access Control

13



Bell La-Padula rules

Simple Security

A subject (user, process) must not be able to read an object above his
clearance level. (e.g, a user with clearance “confidential” must not be
able to read a file with security level “"secret”).

No read-up

The % Property

A subject (process) must not write to an object below its security level.
(e.g., a process with level “secret” must not write to a file with level
“unclassified").

No write-down

OS Security — Mandatory Access Control

14



Tranquility

How is the security level of a process defined?

Strong tranquility
Security level of a process never changes. Set it once at startup, typically
to the user’s clearance level.

Weak tranquility

Security level of a process never changes the security level in a way that
it violates the security policy. Typically start with low level, and increase
as the process reads higher-level information.

Typically desirable: weak tranquility

OS Security — Mandatory Access Control

15



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”

OS Security — Mandatory Access Control

16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

OS Security — Mandatory Access Control

16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret”

OS Security — Mandatory Access Control

16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential

OS Security — Mandatory Access Control

16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”

» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential

> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential

OS Security — Mandatory Access Control

16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”

» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential

> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential

OS Security — Mandatory Access Control

16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”

OS Security — Mandatory Access Control

16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential

OS Security — Mandatory Access Control

16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential

> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential

> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential

» myprog tries to read file topsecretfile with level “top secret”

OS Security — Mandatory Access Control



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential
» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret

OS Security — Mandatory Access Control



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential
» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret
» myprog tries to read file secretfile with level “secret”

OS Security — Mandatory Access Control



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential

> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential
» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret
» myprog tries to read file secretfile with level “secret”

> Allowed, because secret < secret
> Level of myprog increases to secret

OS Security — Mandatory Access Control 16



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential
» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret
» myprog tries to read file secretfile with level “secret”

> Allowed, because secret < secret
> Level of myprog increases to secret

» myprog tries to write to file conffile with level “confidential”

OS Security — Mandatory Access Control



Bell La-Padula example

» User peter with clearance “secret” starts process myprog with level
“unclassified”
» myprog tries to read file myfile with level “confidential”
» Allowed, because confidential < secret
> Level of myprog increases to confidential
> myprog tries to write to file topsecretfile with level “top secret”
> Allowed, because top secret > confidential
> myprog tries to write to file conffile with level “confidential”
» Allowed, because confidential > confidential
> myprog tries to write to file otherfile with level “unclassified”
» Forbidden, because unclassified < confidential
» myprog tries to read file topsecretfile with level “top secret”
» Forbidden, because top secret > secret
» myprog tries to read file secretfile with level “secret”

> Allowed, because secret < secret
> Level of myprog increases to secret

» myprog tries to write to file conffile with level “confidential”
» Forbidden, because secret > confidential

OS Security — Mandatory Access Control



Extensions to Bell La-Padula

» Sometimes Bell-LaPadula is combined with categories to capture
“need to know"

» Example: “nuclear”, “intelligence”, “submarine”, “airforce”

» Compartments are subsets of the set of clearances

» Subjects and objects are assigned compartments, e.g.,

> User peter: {“intelligence”, “airforce”}
> File filel: {"intelligence"}
> File file2: {“airforce, submarine"}

> Subject with clearance compartment S is allowed to read an object
with compartment O, if O C S
» Example:

» peter is allowed to read filel
> peter is not allowed to read file2

OS Security — Mandatory Access Control

17



Bell La-Padula comments

> Actual write level is not defined by BL (only minimal level)
» No automated way to declassify information (i.e., reduce the level)

» In principle, users can write above their clearance

OS Security — Mandatory Access Control

18



SELinux vs. Qubes

v

Type enforcement can provide some sort of compartmentalization

v

Very different level than virtualization from Qubes
» SELinux cannot prevent the X-window “attack”
> SELinux relies on kernel security
> Multiuser approach (SELinux) vs. single user (Qubes)

v

MLS mainly relevant for military applications

v

Kernel is use trusted TCB, Xen is much smaller

v

Different assumptions about what a compromise can do

OS Security — Mandatory Access Control

19



