
OS Security
Mandatory Access Control

Radboud University Nijmegen, The Netherlands

Winter 2015/2016



Exam date

I The exam is on Monday, January 18, 12:30–15:30 in Lin 4/5!
I Last exercise class (Q&A): Tomorrow 10:30 in HG00.062.

OS Security – Mandatory Access Control 2



A short recap
I Important concept to reduce covert channels and possible damage

by an attack: compartmentalization
I Very strong implementation: virtualization
I Multiple virtual machines running on the same physical hardware
I Different ways to implement this

I Full virtualization (guest OS in ring 1)
I HW-assisted virtualization (guest OS in ring 0, hypervisor in ring -1)
I Paravirtualization: modified guest OS in ring 3, host OS in ring 1,

hypervisor in ring 0
I Host-based virtualization: hypervisor in ring 3, unmodified guest OS

in ring 3
I Desktop-oriented OS for high security: Qubes
I Idea: User defines security domains, those are separated by

virtualization
I Weaker way to compartmentalize: sandboxing
I Sandboxing limits access to resources
I Attacks typically aim at breaking out of the jail

OS Security – Mandatory Access Control 3



X “security”

I X window system is designed with no security in mind
I Processes running on the same X server have no isolation
I Simple exeriment (See

http://theinvisiblethings.blogspot.nl/2011/04/
linux-security-circus-on-gui-isolation.html)

I Run xinput list, remember id of AT keyboard
I Run xinput test id
I In a different window, enter some text
I xinput will read all keystrokes
I . . . even keystrokes of processes by other users
I This is not a bug or exploit or anything, this is X design!

I No UNIX permissions stop this!
I No SELinux/AppArmor (this lecture) stops this!
I Qubes OS prevents this kind of information flow between different

security domains (VMs)

OS Security – Mandatory Access Control 4

http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html
http://theinvisiblethings.blogspot.nl/2011/04/linux-security-circus-on-gui-isolation.html


A somewhat longer recap

I Traditional UNIX security uses discretionary access control
I Each user decides about access permissions of his/her files
I Modern attack scenarios:

I User runs malware, malware sends private data through Internet
(confidentiality)

I User runs malware, malware modifies user’s files (integrity)
I DAC cannot prevent this kind of attack
I Compartmentalization can only limit scope of such an attack
I Protecting system-level information flow needs MAC

OS Security – Mandatory Access Control 5



MAC and LSM

I Linux security traditionally follows the UNIX security model
I Around 2000, various projects worked on MAC (and generally

stronger security) for Linux
I Linus Torvalds about inclusion of SELinux: “make it a module”
I Since Kernel 2.6: API for Linux Security Modules (LSMs)
I Hooks to module functions when accessing security-critical resources
I An LSM sets function pointers in a data structure called

security_operations
I Global table of this type called security_ops defined in

include/linux/security.h

OS Security – Mandatory Access Control 6



Criticism of LSM

LSM is in the mainline kernel and various LSM implemetations exist,
however, there is some criticism of the API:

I Small overhead even if no LSM is loaded
I LSM is designed for access control, but can be abused, for example,

for bypassing GPL license
I “Because LSM is compiled and enabled in the kernel, its symbols are

exported. Thus, every rootkit and backdoor writer will have every
hook he ever wanted in the kernel.”
(https://grsecurity.net/lsm.php)

I LSM provides hooks only for access control
I Systems like grsecurity and RSBAC need more than just access

control
I “Stacking” multiple security modules is problematic
I LSM hooks expose kernel internal data structures as parameters

OS Security – Mandatory Access Control 7

https://grsecurity.net/lsm.php


Implementations of LSM

I AppArmor
I Linux Intrusion Detection System (LIDS)
I POSIX capabilitites
I Simplified Mandatory Access Control Kernel (Smack)
I TOMOYO
I Security-Enhanced Linux (SELinux)

OS Security – Mandatory Access Control 8



SELinux overview

I Originally developed by the NSA
I Used today by, for example, Red Hat Linux, Fedora, CentOS
I Provides three kinds of MAC mechanisms:

1. Type enforcement (TE)
2. Role-based access control
3. Multi-level security (MLS)

I All approaches are additional to UNIX DAC: first check file
permissions, if those allow access additionally check MAC rules.

OS Security – Mandatory Access Control 9



Type Enforcement
I All subjects and objects have a security context in the format

user:role:type
I Mainly important for the moment: the type
I Obtain security context using classical Linux commands with -Z,

e.g.,
I ps -Z shows processes with security context
I id -Z shows security context of current user
I ls -Z shows security context of files
I netstat -Z shows secuirty context of network sockets

I All access has to be explicitely granted, using allow rules
I Format:

allow source_type target_type : object_class permissions;
I Example:

allow user_t bin_t : file {read execute getattr};

“A process with domain type (source type) user_t can read,
execute, or get attributes for a file object with (target type) of
bin_t.”

OS Security – Mandatory Access Control 10



Type Enforcement ctd.

I Default assignment of security context:
I processes get the context of the parent process
I files get the context of the parent directory

I Various ways to change this behavior
I Most important, transition rules:

type_transition source_type target_type : class new_type;
I Example:

type_transition httpd_t httpd_sys_script_exec_t : \
process httpd_sys_script_t;

“When the httpd daemon running in the domain httpd_t executes a
program of the type httpd_sys_script_exec_t, such as a CGI
script, the new process is given the domain of
httpd_sys_script_t”

OS Security – Mandatory Access Control 11



Type Enforcement vs. DAC

I SELinux TE can be used to separate security domains
I This is separation on a different layer than virtualization

“Can’t we just create a user http and give this user file access (using
UNIX permissions) to only what the webserver needs?”

I There is no way in DAC to prevent another user bdu to make all his
files readable for the webserver!

I There is no way to prevent root from any file access using DAC

OS Security – Mandatory Access Control 12



MLS: Bell-LaPadula

I Central idea: control information flow
I Security model introduced in 1973
I Implemented in the Multics OS
I Assign to all objects security levels, typically:

I Top secret
I Secret
I Confidential
I Unclassified

I Assign to users clearance levels
I Assign to processes security levels

OS Security – Mandatory Access Control 13



Bell La-Padula rules

Simple Security
A subject (user, process) must not be able to read an object above his
clearance level. (e.g, a user with clearance “confidential” must not be
able to read a file with security level “secret”).
No read-up

The ? Property
A subject (process) must not write to an object below its security level.
(e.g., a process with level “secret” must not write to a file with level
“unclassified”).
No write-down

OS Security – Mandatory Access Control 14



Tranquility

How is the security level of a process defined?

Strong tranquility
Security level of a process never changes. Set it once at startup, typically
to the user’s clearance level.

Weak tranquility
Security level of a process never changes the security level in a way that
it violates the security policy. Typically start with low level, and increase
as the process reads higher-level information.
Typically desirable: weak tranquility

OS Security – Mandatory Access Control 15



Bell La-Padula example
I User peter with clearance “secret” starts process myprog with level

“unclassified”
I myprog tries to read file myfile with level “confidential”

I Allowed, because confidential ≤ secret
I Level of myprog increases to confidential

I myprog tries to write to file topsecretfile with level “top secret”
I Allowed, because top secret ≥ confidential

I myprog tries to write to file conffile with level “confidential”
I Allowed, because confidential ≥ confidential

I myprog tries to write to file otherfile with level “unclassified”
I Forbidden, because unclassified < confidential

I myprog tries to read file topsecretfile with level “top secret”
I Forbidden, because top secret > secret

I myprog tries to read file secretfile with level “secret”
I Allowed, because secret ≤ secret
I Level of myprog increases to secret

I myprog tries to write to file conffile with level “confidential”
I Forbidden, because secret > confidential

OS Security – Mandatory Access Control 16



Extensions to Bell La-Padula

I Sometimes Bell-LaPadula is combined with categories to capture
“need to know”

I Example: “nuclear”, “intelligence”, “submarine”, “airforce”
I Compartments are subsets of the set of clearances
I Subjects and objects are assigned compartments, e.g.,

I User peter: {“intelligence”, “airforce”}
I File file1: {“intelligence”}
I File file2: {“airforce, submarine”}

I Subject with clearance compartment S is allowed to read an object
with compartment O, if O ⊆ S

I Example:
I peter is allowed to read file1
I peter is not allowed to read file2

OS Security – Mandatory Access Control 17



Bell La-Padula comments

I Actual write level is not defined by BL (only minimal level)
I No automated way to declassify information (i.e., reduce the level)
I In principle, users can write above their clearance

OS Security – Mandatory Access Control 18



SELinux vs. Qubes

I Type enforcement can provide some sort of compartmentalization
I Very different level than virtualization from Qubes

I SELinux cannot prevent the X-window “attack”
I SELinux relies on kernel security
I Multiuser approach (SELinux) vs. single user (Qubes)

I MLS mainly relevant for military applications
I Kernel is use trusted TCB, Xen is much smaller
I Different assumptions about what a compromise can do

OS Security – Mandatory Access Control 19


