
OS Security
Virtualization

Radboud University Nijmegen, The Netherlands

Winter 2015/2016

Announcement

I No lecture on January 5, 2016
I Werkcollege will take place as usual (Wednesday, January 6)

I Next lecture will be on January 12

I Enjoy the holidays!

I Post-Snowden Crypto workshop1, Dec 9-10, Brussels
I 32C32, Dec 27-30, Hamburg

1https://hyperelliptic.org/PSC/
2https://events.ccc.de/congress/2015/wiki/Main_Page

OS Security – Virtualization 2

https://hyperelliptic.org/PSC/
https://events.ccc.de/congress/2015/wiki/Main_Page

Announcement

I No lecture on January 5, 2016
I Werkcollege will take place as usual (Wednesday, January 6)

I Next lecture will be on January 12
I Enjoy the holidays!

I Post-Snowden Crypto workshop1, Dec 9-10, Brussels
I 32C32, Dec 27-30, Hamburg

1https://hyperelliptic.org/PSC/
2https://events.ccc.de/congress/2015/wiki/Main_Page

OS Security – Virtualization 2

https://hyperelliptic.org/PSC/
https://events.ccc.de/congress/2015/wiki/Main_Page

Announcement

I No lecture on January 5, 2016
I Werkcollege will take place as usual (Wednesday, January 6)

I Next lecture will be on January 12
I Enjoy the holidays!

I Post-Snowden Crypto workshop1, Dec 9-10, Brussels
I 32C32, Dec 27-30, Hamburg

1https://hyperelliptic.org/PSC/
2https://events.ccc.de/congress/2015/wiki/Main_Page

OS Security – Virtualization 2

https://hyperelliptic.org/PSC/
https://events.ccc.de/congress/2015/wiki/Main_Page

A short recap

I Last 2 lectures: Malware
I Malware evolution from PC to smartphone
I Early days: malware targeting Symbian OS users (Cabir,

Pbstealer)

I Popular smartphone platforms affected

I Android: first proof-of-concept malware released in 2008
I iOS: WireLurker
I Windows Phone: FinSpy Mobile
I Blackberry: Trojans using the ‘Backstab’ technique

I Intrusion detection system

I NIDS, HIDS
I NIDS: (i) string, (ii) port and (iii) header condition signatures
I HIDS: signature- and behaviour-based

I Intrusion prevention system

I NIPS, HIPS
I (i) signature-based detection, (ii) anomaly-based detection and (iii)

protocol state analysis detection

OS Security – Virtualization 3

A short recap

I Last 2 lectures: Malware
I Malware evolution from PC to smartphone
I Early days: malware targeting Symbian OS users (Cabir,

Pbstealer)
I Popular smartphone platforms affected

I Android: first proof-of-concept malware released in 2008
I iOS: WireLurker
I Windows Phone: FinSpy Mobile
I Blackberry: Trojans using the ‘Backstab’ technique

I Intrusion detection system

I NIDS, HIDS
I NIDS: (i) string, (ii) port and (iii) header condition signatures
I HIDS: signature- and behaviour-based

I Intrusion prevention system

I NIPS, HIPS
I (i) signature-based detection, (ii) anomaly-based detection and (iii)

protocol state analysis detection

OS Security – Virtualization 3

A short recap

I Last 2 lectures: Malware
I Malware evolution from PC to smartphone
I Early days: malware targeting Symbian OS users (Cabir,

Pbstealer)
I Popular smartphone platforms affected

I Android: first proof-of-concept malware released in 2008
I iOS: WireLurker
I Windows Phone: FinSpy Mobile
I Blackberry: Trojans using the ‘Backstab’ technique

I Intrusion detection system

I NIDS, HIDS
I NIDS: (i) string, (ii) port and (iii) header condition signatures
I HIDS: signature- and behaviour-based

I Intrusion prevention system

I NIPS, HIPS
I (i) signature-based detection, (ii) anomaly-based detection and (iii)

protocol state analysis detection

OS Security – Virtualization 3

A short recap

I Last 2 lectures: Malware
I Malware evolution from PC to smartphone
I Early days: malware targeting Symbian OS users (Cabir,

Pbstealer)
I Popular smartphone platforms affected

I Android: first proof-of-concept malware released in 2008
I iOS: WireLurker
I Windows Phone: FinSpy Mobile
I Blackberry: Trojans using the ‘Backstab’ technique

I Intrusion detection system

I NIDS, HIDS
I NIDS: (i) string, (ii) port and (iii) header condition signatures
I HIDS: signature- and behaviour-based

I Intrusion prevention system

I NIPS, HIPS
I (i) signature-based detection, (ii) anomaly-based detection and (iii)

protocol state analysis detection

OS Security – Virtualization 3

A short recap

I Last 2 lectures: Malware
I Malware evolution from PC to smartphone
I Early days: malware targeting Symbian OS users (Cabir,

Pbstealer)
I Popular smartphone platforms affected

I Android: first proof-of-concept malware released in 2008
I iOS: WireLurker
I Windows Phone: FinSpy Mobile
I Blackberry: Trojans using the ‘Backstab’ technique

I Intrusion detection system
I NIDS, HIDS
I NIDS: (i) string, (ii) port and (iii) header condition signatures
I HIDS: signature- and behaviour-based

I Intrusion prevention system

I NIPS, HIPS
I (i) signature-based detection, (ii) anomaly-based detection and (iii)

protocol state analysis detection

OS Security – Virtualization 3

A short recap

I Last 2 lectures: Malware
I Malware evolution from PC to smartphone
I Early days: malware targeting Symbian OS users (Cabir,

Pbstealer)
I Popular smartphone platforms affected

I Android: first proof-of-concept malware released in 2008
I iOS: WireLurker
I Windows Phone: FinSpy Mobile
I Blackberry: Trojans using the ‘Backstab’ technique

I Intrusion detection system
I NIDS, HIDS
I NIDS: (i) string, (ii) port and (iii) header condition signatures
I HIDS: signature- and behaviour-based

I Intrusion prevention system

I NIPS, HIPS
I (i) signature-based detection, (ii) anomaly-based detection and (iii)

protocol state analysis detection

OS Security – Virtualization 3

A short recap

I Last 2 lectures: Malware
I Malware evolution from PC to smartphone
I Early days: malware targeting Symbian OS users (Cabir,

Pbstealer)
I Popular smartphone platforms affected

I Android: first proof-of-concept malware released in 2008
I iOS: WireLurker
I Windows Phone: FinSpy Mobile
I Blackberry: Trojans using the ‘Backstab’ technique

I Intrusion detection system
I NIDS, HIDS
I NIDS: (i) string, (ii) port and (iii) header condition signatures
I HIDS: signature- and behaviour-based

I Intrusion prevention system
I NIPS, HIPS
I (i) signature-based detection, (ii) anomaly-based detection and (iii)

protocol state analysis detection

OS Security – Virtualization 3

Role of the OS

I A major job of the OS is to enforce protection

I Prevent malicious (or buggy) programs from:

I Allocating too many resources (denial of service)
I Corrupting or overwriting shared resources (files, shared memory,...)

I Prevent different users, groups, etc. from:

I Accessing or modifying private state (files, shared memory,...)
I Killing each other’s processes

I Prevent viruses, worms, etc. from exploiting security holes in the OS

I Overrunning a memory buffer in the kernel can give a non-root
process root privileges

I How does the OS enforce protection boundaries?

I 2-level protection: kernel and user mode
I Multilevel protection: Ring 0-3

OS Security – Virtualization 4

Role of the OS

I A major job of the OS is to enforce protection
I Prevent malicious (or buggy) programs from:

I Allocating too many resources (denial of service)
I Corrupting or overwriting shared resources (files, shared memory,...)

I Prevent different users, groups, etc. from:

I Accessing or modifying private state (files, shared memory,...)
I Killing each other’s processes

I Prevent viruses, worms, etc. from exploiting security holes in the OS

I Overrunning a memory buffer in the kernel can give a non-root
process root privileges

I How does the OS enforce protection boundaries?

I 2-level protection: kernel and user mode
I Multilevel protection: Ring 0-3

OS Security – Virtualization 4

Role of the OS

I A major job of the OS is to enforce protection
I Prevent malicious (or buggy) programs from:

I Allocating too many resources (denial of service)
I Corrupting or overwriting shared resources (files, shared memory,...)

I Prevent different users, groups, etc. from:

I Accessing or modifying private state (files, shared memory,...)
I Killing each other’s processes

I Prevent viruses, worms, etc. from exploiting security holes in the OS

I Overrunning a memory buffer in the kernel can give a non-root
process root privileges

I How does the OS enforce protection boundaries?

I 2-level protection: kernel and user mode
I Multilevel protection: Ring 0-3

OS Security – Virtualization 4

Role of the OS

I A major job of the OS is to enforce protection
I Prevent malicious (or buggy) programs from:

I Allocating too many resources (denial of service)
I Corrupting or overwriting shared resources (files, shared memory,...)

I Prevent different users, groups, etc. from:
I Accessing or modifying private state (files, shared memory,...)
I Killing each other’s processes

I Prevent viruses, worms, etc. from exploiting security holes in the OS

I Overrunning a memory buffer in the kernel can give a non-root
process root privileges

I How does the OS enforce protection boundaries?

I 2-level protection: kernel and user mode
I Multilevel protection: Ring 0-3

OS Security – Virtualization 4

Role of the OS

I A major job of the OS is to enforce protection
I Prevent malicious (or buggy) programs from:

I Allocating too many resources (denial of service)
I Corrupting or overwriting shared resources (files, shared memory,...)

I Prevent different users, groups, etc. from:
I Accessing or modifying private state (files, shared memory,...)
I Killing each other’s processes

I Prevent viruses, worms, etc. from exploiting security holes in the OS
I Overrunning a memory buffer in the kernel can give a non-root

process root privileges

I How does the OS enforce protection boundaries?

I 2-level protection: kernel and user mode
I Multilevel protection: Ring 0-3

OS Security – Virtualization 4

Role of the OS

I A major job of the OS is to enforce protection
I Prevent malicious (or buggy) programs from:

I Allocating too many resources (denial of service)
I Corrupting or overwriting shared resources (files, shared memory,...)

I Prevent different users, groups, etc. from:
I Accessing or modifying private state (files, shared memory,...)
I Killing each other’s processes

I Prevent viruses, worms, etc. from exploiting security holes in the OS
I Overrunning a memory buffer in the kernel can give a non-root

process root privileges
I How does the OS enforce protection boundaries?

I 2-level protection: kernel and user mode
I Multilevel protection: Ring 0-3

OS Security – Virtualization 4

Role of the OS

I A major job of the OS is to enforce protection
I Prevent malicious (or buggy) programs from:

I Allocating too many resources (denial of service)
I Corrupting or overwriting shared resources (files, shared memory,...)

I Prevent different users, groups, etc. from:
I Accessing or modifying private state (files, shared memory,...)
I Killing each other’s processes

I Prevent viruses, worms, etc. from exploiting security holes in the OS
I Overrunning a memory buffer in the kernel can give a non-root

process root privileges
I How does the OS enforce protection boundaries?

I 2-level protection: kernel and user mode
I Multilevel protection: Ring 0-3

OS Security – Virtualization 4

Kernel and User mode

I What makes the kernel different from user mode?

I Kernel can execute special privileged instructions
I Examples of privileged instructions are:

I Access to I/O devices
I Manipulate memory management: set up page tables, load/flush the

CPU cache, etc
I Call halt instruction: put CPU into low-power or idle state until next

interrupt

OS Security – Virtualization 5

Kernel and User mode

I What makes the kernel different from user mode?
I Kernel can execute special privileged instructions

I Examples of privileged instructions are:

I Access to I/O devices
I Manipulate memory management: set up page tables, load/flush the

CPU cache, etc
I Call halt instruction: put CPU into low-power or idle state until next

interrupt

OS Security – Virtualization 5

Kernel and User mode

I What makes the kernel different from user mode?
I Kernel can execute special privileged instructions

I Examples of privileged instructions are:
I Access to I/O devices

I Manipulate memory management: set up page tables, load/flush the
CPU cache, etc

I Call halt instruction: put CPU into low-power or idle state until next
interrupt

OS Security – Virtualization 5

Kernel and User mode

I What makes the kernel different from user mode?
I Kernel can execute special privileged instructions

I Examples of privileged instructions are:
I Access to I/O devices
I Manipulate memory management: set up page tables, load/flush the

CPU cache, etc

I Call halt instruction: put CPU into low-power or idle state until next
interrupt

OS Security – Virtualization 5

Kernel and User mode

I What makes the kernel different from user mode?
I Kernel can execute special privileged instructions

I Examples of privileged instructions are:
I Access to I/O devices
I Manipulate memory management: set up page tables, load/flush the

CPU cache, etc
I Call halt instruction: put CPU into low-power or idle state until next

interrupt

OS Security – Virtualization 5

Multilevel Protection: Ring 0-3

I Ring 0: kernel
I Rings 1-2: third-party drivers (less privileged OS code)
I Ring 3: application code

OS Security – Virtualization 6

More on Protection Rings - I

- Each memory segment has an associated privilege
level (0 through 3)
- The CPU has a Current Protection Level (CPL)

-> Usually the privilege level of the segment
where the program’s instructions are being read
from

OS Security – Virtualization 7

More on Protection Rings - I

- Each memory segment has an associated privilege
level (0 through 3)
- The CPU has a Current Protection Level (CPL)

-> Usually the privilege level of the segment
where the program’s instructions are being read
from
- Program can read/write data in segments of
lower privilege than CPL

-> e.g. Kernel can read/write user memory

OS Security – Virtualization 8

More on Protection Rings - I

- Each memory segment has an associated privilege
level (0 through 3)
- The CPU has a Current Protection Level (CPL)

-> Usually the privilege level of the segment
where the program’s instructions are being read
from
- Program can read/write data in segments of
lower privilege than CPL

-> e.g. Kernel can read/write user memory
-> But user cannot read/write kernel memory....

Why?

OS Security – Virtualization 9

More on Protection Rings - II

- Each memory segment has an associated privilege
level (0 through 3)
- The CPU has a Current Protection Level (CPL)

-> Usually the privilege level of the segment
where the program’s instructions are being read
from
- Program cannot (directly) call code in higher
privilege segments

-> Why?

OS Security – Virtualization 10

More on Protection Rings - II

- Each memory segment has an associated privilege
level (0 through 3)
- The CPU has a Current Protection Level (CPL)

-> Usually the privilege level of the segment
where the program’s instructions are being read
from
- Program cannot (directly) call code in higher
privilege segments

-> Why?
- Program cannot (directly) call code in lower
privilege segments

-> Why?

OS Security – Virtualization 11

Types of Virtualization

I OS-level virtualization
I Application level virtualization
I Full/native virtualization
I Paravirtualization
I Emulation

OS Security – Virtualization 12

OS-level virtualization

I OS allows multiple secure virtual servers to be run
I Makes the subsystem thinks it is running in its own operating system
I Abstracts the services and kernel from an application
I Guest OS is the same as the host OS, but appears isolated; apps see

an isolated OS
I For example: Solaris Containers, FreeBSD Jails, Linux Vserver

OS Security – Virtualization 13

Application level virtualization

I Application behaves at runtime in a similar way when directly
interfacing with the original OS

I Application is gives its own copy of components that are not shared
I For instance: own registry files, global objects
I Application virtualization layer replaces part of the runtime

environment normally provided by the OS
I Example: Java Virtual Machine (JVM)

OS Security – Virtualization 14

Application level virtualization

OS Security – Virtualization 15

Full/native virtualization

I VM simulates “enough" hardware to allow an unmodified guest OS
to be run in isolation

I Any software capable of execution on the hardware can be run in the
virtual machine

I Example: VMWare Workstation/Server, Mac-on-Linux etc.

I Challenge: Interception and simulation of privileged operations (I/O
operations)

I Every operation performed within a given virtual machine must be
kept within that virtual machine; virtual operations cannot be
allowed to alter the state of any other virtual machine, control
program or hardware.

OS Security – Virtualization 16

Full/native virtualization

I VM simulates “enough" hardware to allow an unmodified guest OS
to be run in isolation

I Any software capable of execution on the hardware can be run in the
virtual machine

I Example: VMWare Workstation/Server, Mac-on-Linux etc.
I Challenge: Interception and simulation of privileged operations (I/O

operations)
I Every operation performed within a given virtual machine must be

kept within that virtual machine; virtual operations cannot be
allowed to alter the state of any other virtual machine, control
program or hardware.

OS Security – Virtualization 16

Paravirtualization

I VM does not simulate hardware
I Is a technique that presents a software interface to VMs that is

similar but not identical to that of the underlying hardware

I Use special API (para-API) that a modified guest OS must use
I Hypercalls trapped by the Hypervisor and serviced
I Provides specially defined ‘hooks’ to allow the guest(s) and host to

request and acknowledge operations, which would otherwise be
executed in the virtual domain

I Hence, reduces the portion of the guest’s execution time spent
performing operations which are substantially more difficult to run in
a virtual environment compared to a non-virtualized environment

I For example: Xen, VMWare ESX Server

OS Security – Virtualization 17

Paravirtualization

I VM does not simulate hardware
I Is a technique that presents a software interface to VMs that is

similar but not identical to that of the underlying hardware
I Use special API (para-API) that a modified guest OS must use
I Hypercalls trapped by the Hypervisor and serviced

I Provides specially defined ‘hooks’ to allow the guest(s) and host to
request and acknowledge operations, which would otherwise be
executed in the virtual domain

I Hence, reduces the portion of the guest’s execution time spent
performing operations which are substantially more difficult to run in
a virtual environment compared to a non-virtualized environment

I For example: Xen, VMWare ESX Server

OS Security – Virtualization 17

Paravirtualization

I VM does not simulate hardware
I Is a technique that presents a software interface to VMs that is

similar but not identical to that of the underlying hardware
I Use special API (para-API) that a modified guest OS must use
I Hypercalls trapped by the Hypervisor and serviced
I Provides specially defined ‘hooks’ to allow the guest(s) and host to

request and acknowledge operations, which would otherwise be
executed in the virtual domain

I Hence, reduces the portion of the guest’s execution time spent
performing operations which are substantially more difficult to run in
a virtual environment compared to a non-virtualized environment

I For example: Xen, VMWare ESX Server

OS Security – Virtualization 17

Emulation

I VM emulates complete hardware and software
I Emulator is a hardware/software enabling a system (i.e. host) to

behave like another system (i.e. guest)
I Unmodified guest OS for a different system can be run
I Useful for reverse engineering, malware analysis, forensics (taint

tracking)
I For example: QEMU, VirtualPC for Mac, Android

OS Security – Virtualization 18

Qubes OS

I Based on a secure bare-metal hypervisor (Xen)
I Networking code sandboxed in an unprivileged VM (using

IOMMU/VT-d)
I USB stacks and drivers sandboxed in an unprivileged VM
I No networking code in the privileged domain (dom0)

OS Security – Virtualization 19

Qubes OS

I All user applications run in “AppVMs,” lightweight VMs based on
Linux

I Centralized updates of all AppVMs based on the same template
I Qubes GUI virtualization presents applications as if they were

running locally
I Qubes GUI provides isolation between apps sharing the same desktop
I Secure system boot

OS Security – Virtualization 20

Compartmentalization in Qubes OS

OS Security – Virtualization 21

Qubes OS Live

OS Security – Virtualization 22

TUDOS - TU Dresden OS

I Demo
I Can be downloaded from:

http://demo.tudos.org/eng_download.html

OS Security – Virtualization 23

http://demo.tudos.org/eng_download.html

VM Vulnerabilities

I Hardware oriented attacks
I Management interface exploits
I Break out of jail attacks (VM escape)
I Virtual-machine based rootkits (Blue Pill)
I Application privilege escalation
I JIT spraying
I Untrusted native code execution

OS Security – Virtualization 24

