Pairings I

Michael Naehrig

Eindhoven Institute for the Protection of Systems and Information
Technische Universiteit Eindhoven
michael@cryptojedi.org

ECC Summer School 2008, Eindhoven
18 September 2008
What is a pairing?

A pairing is a non-degenerate, bilinear map

\[e : G_1 \times G_2 \rightarrow G_3, \]

where \(G_1, G_2 \) are abelian groups written additively and \(G_3 \) is a multiplicative abelian group.

- **Non-degenerate:**
 for all \(0 \neq P \in G_1 \) there is a \(Q \in G_2 \) s.t. \(e(P, Q) \neq 1 \),
 for all \(0 \neq Q \in G_2 \) there is a \(P \in G_1 \) s.t. \(e(P, Q) \neq 1 \).

- **Bilinear:** for \(P_1, P_2 \in G_1; Q_1, Q_2 \in G_2 \) we have

\[
\begin{align*}
e(P_1 + P_2, Q_1) &= e(P_1, Q_1)e(P_2, Q_1), \\
e(P_1, Q_1 + Q_2) &= e(P_1, Q_1)e(P_1, Q_2).
\end{align*}
\]

It follows: \(e([a]P, [b]Q) = e(P, Q)^{ab} = e([b]P, [a]Q) \).
What can be done with pairings?

Pairings on elliptic curves can be used,

- as a means to attack DL-based cryptography on groups of points on elliptic curves,
- or to construct crypto systems with certain special properties:
 - One-round tripartite key agreement,
 - Identity-based key agreement,
 - Identity-based encryption (IBE),
 - Hierarchical IBE (HIDE),
 - Short signatures (BLS).
 - much more ...
Elliptic curves

Let $p > 3$ be a prime, \mathbb{F}_p the finite field with p elements and

$$E : Y^2 = X^3 + AX + B$$

an elliptic curve over \mathbb{F}_p.

- For a field extension $\overline{\mathbb{F}_p} \supseteq L \supseteq \mathbb{F}_p$ let

$$E(L) = \{(x, y) \in L^2 : y^2 = x^3 + Ax + B\} \cup \{P_\infty\}$$

the group of L-rational points on E.

- Let $n = \#E(\mathbb{F}_p)$ be the number of \mathbb{F}_p-rational points. We have

$$n = p + 1 - t, \quad |t| \leq 2\sqrt{p},$$

where t is the trace of Frobenius.
Torsion points

Let m be a non-negative integer. The set of m-torsion points

$$E[m] = \{ P \in E = E(\overline{\mathbb{F}_p}) \mid [m]P = P_{\infty} \}$$

is a subgroup of E.

- We denote by

$$E[m](L) = \{ P \in E(L) \mid [m]P = P_{\infty} \}$$

the group of L-rational m-torsion points.

- If $p \nmid m$ we have

$$E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}.$$
The embedding degree

Let \(r \neq p \) be a large prime dividing \(n = \#E(\mathbb{F}_p) \).
The embedding degree of \(E \) with respect to \(r \) is the smallest integer \(k \) s.t.

\[r \mid p^k - 1. \]

\[X^k - 1 = \prod_{d \mid k} \Phi_d(X) = \Phi_k(X) \cdot \prod_{d \mid k, d \neq k} \Phi_d(X). \]

This is equivalent to \(r \mid \Phi_k(p) \), where \(\Phi_k \) is the \(k \)-th cyclotomic polynomial. This follows from
The embedding degree

- The embedding degree \(k \) is the order of \(p \) modulo \(r \). Therefore
 \[
 k \mid r - 1.
 \]

- For \(k > 1 \) the field \(\mathbb{F}_{p^k} \) is the smallest extension of \(\mathbb{F}_p \) which contains the group \(\mu_r \) of \(r \)-th roots of unity,
 and for which \(E(\mathbb{F}_{p^k}) \) contains all \(r \)-torsion points, i.e.
 \[
 E[r] \subseteq E(\mathbb{F}_{p^k}).
 \]

For crypto-sized curve \(E \) and prime divisor \(r \) the embedding degree is usually very large.
The Weil pairing

The Weil pairing is a map

\[e_r : E[r] \times E[r] \to \mu_r \subseteq \mathbb{F}_p^*, \]

\[(P, Q) \mapsto f_{r,P}(D_Q)/f_{r,Q}(D_P), \]

- where \(D_P \sim (P) - (P_\infty) \) and \(D_Q \sim (Q) - (P_\infty) \) are divisors with disjoint support,
- \(f_{r,P} \) and \(f_{r,Q} \) are functions on the curve with divisors

\[
(f_{r,P}) = rD_P = r(P) - r(P_\infty),
\]

\[
(f_{r,Q}) = rD_Q = r(Q) - r(P_\infty).
\]
The Weil pairing

The Weil pairing is a map

\[e_r : E[r] \times E[r] \rightarrow \mu_r \subseteq \mathbb{F}_{p^k}, \]
\[(P, Q) \mapsto f_{r, P}(D_Q)/f_{r, Q}(D_P), \]

For a divisor \(D = \sum_{P \in E} n_P(P) \) and a function \(f \in \overline{\mathbb{F}_p}(E) \), we can evaluate \(f \) at \(D \) by

\[f(D) = \prod_{P \in E} f(P)^{n_P}. \]

The Weil pairing is bilinear, non-degenerate and alternating (i.e. \(e_r(P, P) = 1 \)).
The MOV-FR attack

Theorem: Let $P \in E[r](\mathbb{F}_p)$. Then there exists a point $Q \in E[r]$ s.t. $e_r(P, Q)$ is a primitive r-th root of unity, i.e. a generator of μ_r.

- Let P, Q be the points from the theorem. Then the map

 $$f : \langle P \rangle \to \mu_r, \ R \mapsto e_r(R, Q)$$

 is a group isomorphism.

- The map f ’reduces’ the DLP on $E(\mathbb{F}_p)[r]$ to the DLP in $\mu_r \subseteq \mathbb{F}_p^*$: If $R = [m]P$ then

 $$e_r(R, Q) = e_r([m]P, Q) = e_r(P, Q)^m.$$
The MOV-FR attack

\[R = \left[m \right] P \]

\[\uparrow \]

\[e_r(R, Q) = e_r\left(\left[m \right] P, Q\right) = e_r(P, Q)^m. \]

- One can find \(m \) by solving the DLP in \(\mathbb{F}_{p^k}^* \).
- This attack is only useful, if we can compute the Weil pairing efficiently,
- and if the DLP in \(\mathbb{F}_{p^k}^* \) is easier than the DLP in \(E(\mathbb{F}_p) \).
The Tate pairing

The Tate pairing is a map

$$\langle \cdot, \cdot \rangle_r : E[r](\mathbb{F}_{p^k}) \times E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k}) \rightarrow \mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r,$$

$$(P, Q) \mapsto f_{r,P}(D_Q).$$

- The divisor D_Q is equivalent to the divisor $(Q) - (P_\infty)$ and its support is disjoint from the support of $(f_{r,P}) = r(P) - r(P_\infty)$.
- The result must be interpreted as representing a class in $\mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r$.
- Q is a representative of a class in $E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k})$.
The reduced Tate pairing

The reduced Tate pairing is a map

\[t_r : E[r](\mathbb{F}_p) \times E[r](\mathbb{F}_{p^k}) \rightarrow \mu_r \subset \mathbb{F}_{p^k}^*, \]

\[(P, Q) \mapsto f_{r,P}(Q) \frac{p^k - 1}{r}. \]

- For the first group we restrict to \(E[r](\mathbb{F}_p) \).
- If \(r^2 \nmid n \) we may represent \(E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k}) \) by \(E[r](\mathbb{F}_{p^k}) \).
- For \(k > 1 \) we may replace \(D_Q \) by \(Q \) itself.
- Note that for \(k > 1 \) and \(P \in E[r](\mathbb{F}_p) \) we have \(t_r(P, P) = 1 \).
The reduced Tate pairing

The reduced Tate pairing is a map

\[t_r : E[r](\mathbb{F}_p) \times E[r](\mathbb{F}_{p^k}) \to \mu_r \subset \mathbb{F}_{p^k}^*, \]

\[(P, Q) \mapsto f_{r, P}(Q)^{\frac{p^k - 1}{r}}. \]

- We obtain a unique pairing value in \(\mu_r \) by raising \(f_{r, P}(Q) \) to the power of \(\frac{p^k - 1}{r} \).
- This so called final exponentiation is an isomorphism

\[\mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r \to \mu_r. \]
Miller functions

To compute pairings we need to know the functions $f_{r,P}$ with divisor $r(P) - r(P_{\infty})$.

- Let $f_{i,P}$, $i \in \mathbb{Z}$ be a function on E which has a divisor

$$ (f_{i,P}) = i(P) - ([i]P) - (i - 1)(P_{\infty}). $$

$f_{i,P}$ is called a Miller function.

- The special case $i = r$ leads to

$$ (f_{r,P}) = r(P) - ([r]P) - (r - 1)(P_{\infty}) = r(P) - r(P_{\infty}), $$

since $[r]P = P_{\infty}$.
Miller’s formula

Can we compute $f_{i+j,P}$ from $f_{i,P}$ and $f_{j,P}$?

- Compute the divisor of the product

\[
(f_{i,P}f_{j,P}) = i(P) - ([i]P) - (i - 1)(P_{\infty}) + j(P) - ([j]P) - (j - 1)(P_{\infty})
= (i + j)(P) - ([i]P) - ([j]P) - (i + j - 2)(P_{\infty})
= (i + j)(P) - ([i + j]P) - (i + j - 1)(P_{\infty}) + ([i + j]P) - ([i]P) - ([j]P) + (P_{\infty})
= (f_{i+j,P}) + ([i + j]P) - ([i]P) - ([j]P) + (P_{\infty})
\]

- The sum of the divisors is ’almost’ the divisor of $f_{i+j,P}$.
Miller’s formula

Now have a look at the lines occuring in the addition

\[[i]P + [j]P = [i + j]P. \]

- The first line \(l \) goes through \([i]P\), \([j]P\) and \(-[i + j]P\), it has the divisor

\[
(l) = ([i]P) + ([j]P) + (-[i + j]P) - 3(P_\infty).
\]

- The second line \(v \) is a vertical line through \([i + j]P\) and \(-[i + j]P\) with

\[
(v) = ([i + j]P) + (-[i + j]P) - 2(P_\infty).
\]

- Compute

\[
(l) - (v) = ([i]P) + ([j]P) - ([i + j]P) - (P_\infty).
\]
Miller’s formula

▶ Remember

\[(f_i, P f_j, P) = (f_{i+j}, P) + ([i + j] P) - ([i] P) - ([j] P) + (P_\infty)\]

▶ and

\[(l) - (v) = ([i] P) + ([j] P) - ([i + j] P) - (P_\infty).\]

We get an equation of divisors

\[(f_{i+j}, P) = (f_i, P f_j, P) + (l) - (v).\]

▶ For the functions we get **Miller’s formula**

\[f_{i+j}, P = f_i, P f_j, P \cdot l/v.\]

We can choose normalized functions, i.e. \(f_{1, P} = 1.\)
Computing pairings (Miller’s algorithm)

We can use the special cases \(i = j \) and \(j = 1 \) to compute the function \(f_{r,P} \) in a square-\&-multiply-like manner.

- **Square step:**

 \[
 f_{2i,P} = f_{i,P}^2 \cdot l_{[i]P,[i]P} \cdot v_{[2i]P}.
 \]

- **Multiply step:**

 \[
 f_{i+1,P} = f_{i,P} f_{1,P} \cdot l_{[i]P,P} \cdot v_{[i+1]P}.
 \]

- \(l_{R,S} \): line through \(R \) and \(S \), tangent if \(R = S \),

- \(v_R \): vertical line through \(R \).
Computing pairings (Miller’s algorithm)

Input: \(P \in E[r](\mathbb{F}_p), Q \in E[r](\mathbb{F}_{p^k}), r = (r_m, \ldots, r_0) \)

Output: \(f_{r,P}(Q) \)

\[
R \leftarrow P, \quad f \leftarrow 1
\]

for \((i \leftarrow m - 1; \ i \geq 0; \ i \leftarrow \)
\[
\begin{align*}
f & \leftarrow f^2 \frac{l_{R,R}(Q)}{v_{[2]} R(Q)} \\
R & \leftarrow [2] R \\
\text{if } (r_i = 1) \text{ then} \\
\quad f & \leftarrow f \frac{l_{R,P}(Q)}{v_{R+P}(Q)} \\
\quad R & \leftarrow R + P
\end{align*}
\]
end if
end for

return \(f \)
Computing pairings (Miller’s algorithm)

For Miller’s algorithm we need arithmetic in $E(\mathbb{F}_p)$ and \mathbb{F}_{p^k}.

- If k is too large, we can’t compute pairings this way.
- We need special curves with small k to be able to compute in \mathbb{F}_{p^k}.
- See tomorrow’s talk for methods how to find such curves.
Tripartite key agreement

Tanja, Dan and Nigel would like to share a common secret key.

- They each choose a secret \(a, b, c \in \mathbb{Z}_r \) resp.
- They compute \(aP, bP, cP \) resp. and send it to the other two.
Using a pairing e the three can compute a common secret key using their secrets:

$$e(aP, bP)^c = e(bP, cP)^a = e(aP, cP)^b = e(P, P)^{abc}.$$

Only one round of communication is needed.
Symmetric Pairings

If $k > 1$ we can use the reduced Tate pairing on supersingular curves to construct a symmetric pairing

$$e : E[r](\mathbb{F}_p) \times E[r](\mathbb{F}_p) \rightarrow \mu_r \subseteq \mathbb{F}_{p^k}^*,$$

s.t. $e(P, P) \neq 1$.

- Supersingular elliptic curves have $k \leq 6$.
- Supersingular elliptic curves have distortion maps.
- A distortion map is an endomorphism ϕ of E for which $\phi(P) \not\in E(\mathbb{F}_p)$. If $E(\mathbb{F}_{p^k})$ has no points of order r^2 then

$$e(P, P) := t_r(P, \phi(P)) \neq 1.$$
BLS signatures

Using pairings it is possible to define a signature scheme with very short signatures.

- System parameters are the pairing

\[e : \langle P \rangle \times \langle Q \rangle \rightarrow \mu_r \subseteq \mathbb{F}_{p^k}^* , \]

points \(P \in E[r](\mathbb{F}_p) \), \(Q \in E[r](\mathbb{F}_{p^k}) \) s.t. \(e(P, Q) \neq 1 \) and a hash function

\[H : \{0, 1\}^* \rightarrow E[r](\mathbb{F}_p). \]
BLS signatures

- To sign messages, Tanja chooses a private key $x_T \in \mathbb{Z}_r$ and publishes her public key $Q_T = [x_T]Q$.
- She signs the message $M \in \{0, 1\}^*$ by computing $H(M) \in E[r](\mathbb{F}_p)$ and the signature

$$\sigma = [x_T]H(M).$$

- To verify, anyone may take Q_T and check if

$$e(\sigma, Q) = e(H(M), Q_T).$$

$$e(\sigma, Q) = e([x_T]H(M), Q) = e(H(M), [x_T]Q) = e(H(M), Q_T).$$
The signature σ is just one point in $E[r](\mathbb{F}_p)$, so can be represented by 2 \mathbb{F}_p-elements.

Compare this to the signatures from Tanja's 1st talk. There the signature was (R, S), where

$$R = [k]P, \quad S = s_\text{sym} + kH([k]P) \mod r.$$

This is 1 element of size r larger.

If we represent points in $E(\mathbb{F}_p)$ by their x-coordinate only, this might be about half the size of the whole signature.
The Tate pairing is a bit slow...
Reducing the loop length - variants of the Tate pairing

It is possible to reduce the loop length in Miller’s algorithm significantly and still get a pairing.

- **Ate pairing:**

\[
\text{ate} : E[r](\mathbb{F}_{p^k}) \times E[r](\mathbb{F}_p) \rightarrow \mu_r \subset \mathbb{F}_{p^k}^*,
\]

\[
(Q, P) \mapsto f_{T,Q}(P) \frac{p^{k-1}}{r}.
\]

Here \(T = t - 1 \) where \(t \) is the trace of Frobenius, i.e. the number of bits in \(T \) is about half that of \(r \).
Reducing the loop length - variants of the Tate pairing

- Twisted ate pairing: If E has a twist E' of degree d, we get a pairing

$$\eta: E[r](\mathbb{F}_p) \times E'[r](\mathbb{F}_{p^{k/d}}) \rightarrow \mu_r \subset \mathbb{F}_{p^k}^*,$$

$$(P, Q') \mapsto f_{T^e, P}(\phi(Q'))^{p^k - 1 \over r}.$$

We have $T = t - 1$ and $T^e \equiv \zeta_m \mod r$, $e = k/m$, $m = \gcd(k, d)$. $\phi: E'[r](\mathbb{F}_{p^{k/d}}) \rightarrow E[r](\mathbb{F}_{p^k})$.
Reducing the loop length - variants of the Tate pairing

- There are other choices for the loop variable which even give shorter loops depending on the type of curves one is using.
- Shortest loops right now are of length $1/\varphi(k)$ times the length of r. Corresponding pairings are called optimal pairings.
For more information we refer to