Pairings on Edwards Curves

Michael Naehrig

Eindhoven Institute for the Protection of Systems and Information
Technische Universiteit Eindhoven
michael@cryptojedi.org

Pairings in Arithmetic Geometry and Cryptography
Essen, 05.05.2009

joint work with Christophe Arène (IML), Tanja Lange (TU/e), and Christophe Ritzenthaler (IML)
Edwards curves

Let K be a field of characteristic $\neq 2$, $d \in K$, $d \notin \{0, 1\}$.

$$E_d : x^2 + y^2 = 1 + dx^2y^2$$

- Associative operation on most points defined by Edwards addition law

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3),$$

$$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2} \quad \text{and} \quad y_3 = \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}.$$

- Neutral element is $\mathcal{O} = (0, 1)$, $-(x_1, y_1) = (-x_1, y_1)$.

$\mathcal{O'} = (0, -1)$ has order 2; $(1, 0), (-1, 0)$ have order 4.
Edwards curves

(a) \(P_3 = P_1 + P_2, \)
\[
x_{P_1} = -0.6, \quad x_{P_2} = 0.1
\]

(b) \(P_3 = P_1 + P_2, \)
\[
x_{P_1} = -1.1, \quad x_{P_2} = 1.2
\]
Relationship to elliptic curves

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_4 = (u_4, v_4)$ have order 4, shift u s.t. $[2]P_4 = (0, 0)$. Then Weierstraß form:
 \[v^2 = u^3 + \left(\frac{v_4^2}{u_4^2} - 2u_4\right)u^2 + u_4^2u. \]
- Define $d = 1 - \left(4\frac{u_4^3}{v_4^2}\right)$. Then the coordinates
 \[x = \frac{v_4u}{u_4v}, \quad y = \frac{u - u_4}{u + u_4} \]
satisfy
 \[x^2 + y^2 = 1 + dx^2y^2. \]
- Inverse map
 \[u = u_4\frac{1 + y}{1 - y}, \quad v = v_4u/(u_4x). \]
- Finitely many exceptional points $(v(u + u_4) = 0)$.
- Addition on Edwards and Weierstraß corresponds.
Nice features of the addition law

- Neutral element is affine point, this avoids special routines (for O one of the inputs or the result).

\[
P + Q = \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2} \right),
\]

\[
[2] P = \left(\frac{x_1y_1 + y_1x_1}{1 + dx_1^2y_1^2}, \frac{y_1^2 - x_1^2}{1 - dx_1^2y_1^2} \right).
\]

- If d is not a square in K, the denominators $1 + dx_1x_2y_1y_2$ and $1 - dx_1x_2y_1y_2$ are never 0; addition law is complete.

- Having addition law work for doubling removes some checks from the code; addition law also works for adding $P + (-P)$ or the neutral element.
Fast addition law

- Very fast point addition (10M + 1S + 1D). Even faster with Inverted Edwards coordinates (9M+1S+1D) and Extended Edwards coordinates (8M+1S+1D).
- Dedicated doubling formulas need only 3M + 4S.
- Fastest scalar multiplication in the literature.
- For comparison: IEEE standard P1363 provides “the fastest arithmetic on elliptic curves” by using Jacobian coordinates on Weierstraß curves.
 - Point addition 12M + 4S.
 - Doubling 4M + 4S.
- For more curve shapes, better algorithms (even for Weierstraß curves) and many more operations (mixed addition, re-addition, tripling, scaling,...) see www.hyperelliptic.org/EFD.
Twisted Edwards curves

Let $a, d \in K^*$, $a \neq d$.

$$E_{a,d} : ax^2 + y^2 = 1 + dx^2y^2$$

- Isomorphic to plain Edwards curve $E_{1,d/a}$ for $a = \Box$.
- Set of twisted Edwards curves invariant under quadratic twists.
- Addition formulas very similar to Edwards curves
 $$x_3 = \frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2} \text{ and } y_3 = \frac{y_1y_2 - ax_1x_2}{1 - dx_1x_2y_1y_2}.$$
- Arithmetic complete only for $a = \Box, d \neq \Box$.
- Operation count same as Edwards (except for 1A)
Pairings on Edwards curves

Das, Sarkar [Pairing 2008]:

- Map points to a curve in Weierstraß form using birational map and compute pairing there.
- Express functions $g_{R,R}$ and $g_{R,P}$ in the Miller loop by transformation to Montgomery form.
- Explicit formulas for supersingular curves with $k = 2$.

Ionica, Joux [Indocrypt 2008]:

- Compute Miller functions on a curve

$$v^2 u = (1 + du)^2 - 4u.$$

- Actually compute 4th power of the Tate pairing.
- Explicit formulas for even k.

C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler
A geometric interpretation of the addition law

- Find a function \(g_{P_1,P_2} = h_1/h_2 \) s.t.

\[
\text{div}(g_{P_1,P_2}) = (P_1) + (P_2) - (P_3) - (O),
\]

for some point \(P_3 \) and \(O = (0, 1) \).

- Then

\[
(P_1) - (O) + (P_2) - (O) \sim (P_3) - (O),
\]

i.e. \(P_1 + P_2 = P_3 \).

- Can use line functions for elliptic curves in Weierstrass form.
Line through P_1 and P_2 divided by vertical line through third intersection point:

$$
\left((P_1) + (P_2) + (-P_3) - 3(O)\right) - \left((P_3) + (-P_3) - 2(O)\right) = (P_1) + (P_2) - (P_3) - (O).
$$

Addition and doubling on $E : y^2 = x^3 - x$ over \mathbb{R}.
Edwards equation has degree 4, so expect $4 \cdot \deg(h)$ intersection points by intersection with a function h.

Functions h_1, h_2 cannot be linear (would have 4 intersection points; need to eliminate 2 out of each).

Quadratic functions h_1, h_2 could offer enough freedom of cancellation (8 intersection points).

General quadratic polynomial:

$$c_{X^2}X^2 + c_{Y^2}Y^2 + c_{Z^2}Z^2 + c_{XY}XY + c_{XZ}XZ + c_{YZ}YZ$$

Problem: a conic is determined by 5 points; not enough control over intersection points.
Conic sections

- Solution: observe that points at infinity
 \[\Omega_1 = (1 : 0 : 0) \text{ and } \Omega_2 = (0 : 1 : 0) \]
 are singular and have multiplicity 2.

- Conic \(C \) determined by passing through the 5 points
 \(P_1, P_2, \Omega', \Omega_1, \text{ and } \Omega_2 \)
 has only one more intersection point, say \(-P_3\).

- Let \(h_1 \) be the function corresponding to \(C' \):
 \[\text{div}(h_1) = (P_1) + (P_2) + (\Omega') + (-P_3) - 2(\Omega_1) - 2(\Omega_2) \]
Conic sections

- Use h_2 to “replace” O' by O and $-P_3$ by P_3.
- Can be done with product $h_2 = l_1 l_2$ of two lines, a horizontal line l_1 through P_3 and a vertical line l_2 through O.

$$
\text{div}(l_1) = (P_3) + (-P_3) - 2(\Omega_2), \\
\text{div}(l_2) = (O) + (O') - 2(\Omega_1)
$$

$$
\text{div}(h_1/(l_1 l_2)) = (P_1) + (P_2) + (O') + (-P_3) \\
-2(\Omega_1) - 2(\Omega_2) \\
-(P_3) - (-P_3) + 2(\Omega_2) \\
-(O) - (O') + 2(\Omega_1) \\
= (P_1) + (P_2) - (P_3) - (O)
$$
Addition and doubling over \mathbb{R} for $d < 0$.
Addition and doubling over \mathbb{R} for $d > 1$.
Addition and doubling over \mathbb{R} for $0 < d < 1$.
Explicit functions

- Need to compute $g_{P_1, P_2} = h_1/(l_1 l_2)$ from coefficients of the points P_1, P_2.

- Let $P_3 = (X_3 : Y_3 : Z_3)$. Then the horizontal line through P_3 is given by

 $$l_1 = Z_3 Y - Y_3 Z.$$

- The vertical line through O is given by

 $$l_2 = X.$$

- Conic through O', Ω_1, and Ω_2 has shape

 $$C : c_{Z^2}(Z^2 + Y Z) + c_{XY}XY + c_{XZ}XZ = 0,$$

 where $(c_{Z^2} : c_{XY} : c_{XZ}) \in \mathbb{P}^2(K)$.
Theorem

\[P_1 = (X_1 : Y_1 : Z_1), P_2 = (X_2 : Y_2 : Z_2) \in E_{a,d}, Z_1, Z_2 \neq 0 \]

(a) If \(P_1 \neq P_2, P_1, P_2 \neq O' \), then

\[
\begin{align*}
 c_{Z^2} &= X_1X_2(Y_1Z_2 - Y_2Z_1), \\
 c_{XY} &= Z_1Z_2(X_1Z_2 - X_2Z_1 + X_1Y_2 - X_2Y_1), \\
 c_{XZ} &= X_2Y_2Z_1^2 - X_1Y_1Z_2^2 + Y_1Y_2(X_2Z_1 - X_1Z_2). \\
\end{align*}
\]

(b) If \(P_1 \neq P_2 = O' \), then \(c_{Z^2} = -X_1, c_{XY} = Z_1, c_{XZ} = Z_1 \).

(c) If \(P_1 = P_2 \), then

\[
\begin{align*}
 c_{Z^2} &= X_1Z_1(Z_1 - Y_1), \\
 c_{XY} &= dX_1^2Y_1 - Z_1^3, \\
 c_{XZ} &= Z_1(Z_1Y_1 - aX_1^2). \\
\end{align*}
\]
Proof

(a) \(P_1 \neq P_2 \) and \(P_1, P_2 \neq O' \)

- From \(P_1, P_2 \in C \), we get

\[
\begin{align*}
 c_{Z^2}Z_1(Z_1 + Y_1) + c_{XY}X_1Y_1 + c_{XZ}X_1Z_1 &= 0, \\
 c_{Z^2}Z_2(Z_2 + Y_2) + c_{XY}X_2Y_2 + c_{XZ}X_2Z_2 &= 0.
\end{align*}
\]

- The formulas follow from the (projective) solutions

\[
\begin{align*}
 c_{Z^2} &= \begin{vmatrix} X_1Y_1 & X_1Z_1 \\ X_2Y_2 & X_2Z_2 \end{vmatrix}, \quad c_{XY} = \begin{vmatrix} X_1Z_1 & Z_1^2 + Y_1Z_1 \\ X_2Z_2 & Z_2^2 + Y_2Z_2 \end{vmatrix}, \\
 c_{XZ} &= \begin{vmatrix} Z_1^2 + Y_1Z_1 & X_1Y_1 \\ Z_2^2 + Y_2Z_2 & X_2Y_2 \end{vmatrix}.
\end{align*}
\]
Proof

(c) First $P_1 = P_2 \not\in \{O, O'\}$:
Consider $P_1 = (x_1, y_1) = (X_1/Z_1, Y_1/Z_1)$.

- Since $P_1 \in C$: $c_{XZ} = -c_{XY}y_1 - c_{Z^2}(y_1 + 1)/x_1$.
- Intersection multiplicity of $E_{a,d}$ and C in P_1 needs to be larger than 1: tangents in P_1 equal.
- The tangents are

\[(c_{XY}y_1 + c_{XZ})(x - x_1) + (c_{XY}x_1 + c_{Z^2})(y - y_1) = 0,\]
\[2x_1(a - dy_1^2)(x - x_1) + 2y_1(1 - dx_1^2)(y - y_1) = 0\]

- They are equal if
\[(c_{XY}x_1 + c_{Z^2})2x_1(a - dy_1^2) = (c_{XY}y_1 + c_{XZ})2y_1(1 - dx_1^2).\]
Proof

- Combine the two equations, multiply by x_1, apply curve equation:

$$
(1 + y_1)(1 - dx_1^2y_1)c_{Z^2} = -x_1(1 - y_1^2)c_{XY}.
$$

- $P_1 \neq O'$ ($y_1 \neq -1$):

$$
(1 - dx_1^2y_1)c_{Z^2} = -x_1(1 - y_1)c_{XY}
$$

- Choose $c_{Z^2} = -x_1(1 - y_1)$ and $c_{XY} = 1 - dx_1^2y_1$.

- Then

$$
c_{XZ} = ax_1^2 - y_1.
$$

The formulas follow from homogenization.

- Verify that special cases are obtained by same formulas.
Miller’s algorithm

Let \(k > 1 \) be the embedding degree of \(E_{a,d} \) w.r.t. \(r \),
\(P \in E_{a,d}(\mathbb{F}_p)[r] \), \(Q \in E_{a,d}(\mathbb{F}_{p^k}) \),
\(r = (r_{l-1}, \ldots, r_1, r_0)_2 \).

Compute the Tate pairing as:

1. \(R \leftarrow P, f \leftarrow 1 \)
2. for \(i = l - 2 \) to 0 do
 2.1 \(f \leftarrow f^2 \cdot g_{R,R}(Q), R \leftarrow 2R \) //doubling step
 2.2 if \(r_i = 1 \) then
 \(f \leftarrow f \cdot g_{R,P}(Q), R \leftarrow R + P \) //addition step
3. \(f \leftarrow f^{(p^k-1)/n} \)
Miller functions on twisted Edwards curves

Assume an even embedding degree k.

- Represent $\mathbb{F}_{p^k} = \mathbb{F}_{p^{k/2}}(\alpha)$ where $\alpha^2 = \delta \in \mathbb{F}_{p^{k/2}}$.
- Use quadratic twist $E_{\delta a, \delta d}(\mathbb{F}_{p^{k/2}})$ to represent second pairing argument $Q = \psi(Q')$:

$$
\psi : E_{\delta a, \delta d}(\mathbb{F}_{p^{k/2}}) \rightarrow E_{a,d}(\mathbb{F}_{p^k}),
Q' = (x_0, y_0) \mapsto (x_0 \alpha, y_0).
$$

- Here $y_0 \in \mathbb{F}_{p^{k/2}}$ lies in a proper subfield of \mathbb{F}_{p^k}.
- In Miller’s algorithm compute

$$
f^2 \cdot g_{R,R}(\psi(Q')) \text{ (doubling step) and } f \cdot g_{R,P}(\psi(Q')) \text{ (addition step).}
$$
Miller functions on twisted Edwards curves

- Compute

\[
\frac{h_1}{l_1 l_2}(x_0 \alpha, y_0) = \frac{c_{Z^2}(1 + y_0) + c_{XY} x_0 \alpha y_0 + c_{XZ} x_0 \alpha}{(Z_3 y_0 - Y_3) x_0 \alpha} \]

\[
= \frac{c_{Z^2} \frac{1+y_0}{x_0 \delta} \alpha + c_{XY} y_0 + c_{XZ}}{Z_3 y_0 - Y_3},
\]

where \((X_3 : Y_3 : Z_3)\) are the coord. of \([2]R\) or \(R + P\),

- in \(2(k/2)m\) over \(\mathbb{F}_p\) given the coefficients \(c_{Z^2}, c_{XY}, c_{XZ}\) and precomputed \(\eta = \frac{1+y_0}{x_0 \delta}\).

- Note that \(Z_3 y_Q - Y_3 \in \mathbb{F}_{p^{k/2}}\). Discard it since final exponentiation maps it to 1 anyway.
Pairing-friendly Edwards curves

How to get Edwards curves with small embedding degree?

- Construct pairing-friendly curves in Weierstraß form and then transform to Edwards or twisted Edwards form.
- Only requirement is that the group order is a multiple of 4.
- If have a point of order 4, get plain Edwards curve.
- If not, get twisted Edwards curve. Can be transformed to plain Edwards form by using 2-isogenies.
Pairing-friendly Edwards curves

- Need curves with $4 \mid \#E(\mathbb{F}_p)$.
- Use generalized MNT construction for curves with cofactor 4 as done by Galbraith, McKee, Valença.
- Parametrizations for embedding degree $k = 6$ and cofactor 4.

<table>
<thead>
<tr>
<th>Case</th>
<th>$q(\ell)$</th>
<th>$t(\ell)$</th>
<th>$n(\ell)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$16\ell^2 + 10\ell + 5$</td>
<td>$2\ell + 2$</td>
<td>$4\ell^2 + 2\ell + 1$</td>
</tr>
<tr>
<td>2</td>
<td>$112\ell^2 + 54\ell + 7$</td>
<td>$14\ell + 4$</td>
<td>$28\ell^2 + 10\ell + 1$</td>
</tr>
<tr>
<td>3</td>
<td>$112\ell^2 + 86\ell + 17$</td>
<td>$14\ell + 6$</td>
<td>$28\ell^2 + 18\ell + 3$</td>
</tr>
<tr>
<td>4</td>
<td>$208\ell^2 + 30\ell + 1$</td>
<td>$-26\ell - 2$</td>
<td>$52\ell^2 + 14\ell + 1$</td>
</tr>
<tr>
<td>5</td>
<td>$208\ell^2 + 126\ell + 19$</td>
<td>$-26\ell - 8$</td>
<td>$52\ell^2 + 38\ell + 7$</td>
</tr>
</tbody>
</table>
Pairing-friendly Edwards curves

First solve the norm equation

\[t(\ell)^2 - 4q(\ell) = -Dv^2. \]

Case 1 in the table:

\[t(\ell) = 2\ell + 2, \quad q(\ell) = 16\ell^2 + 10\ell + 5 \]

Transform equation into corresponding Pell equation by completing the square:

\[t(\ell)^2 - 4q(\ell) = -Dy^2 \quad \iff \quad x^2 - 15Dy^2 = -44, \]

where \(x = 15\ell + 4 \).
Pairing-friendly Edwards curves

- Constructed curves over \mathbb{F}_p have order

$$\#E(\mathbb{F}_p) = 4hr$$

for a prime r and cofactor h.

- Since embedding degree is fixed to 6, balance the DLPs; eCrypt report on key sizes suggests the following bitsizes:

<table>
<thead>
<tr>
<th>r</th>
<th>p</th>
<th>p^6</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>208</td>
<td>1248</td>
<td>46</td>
</tr>
<tr>
<td>192</td>
<td>296</td>
<td>1776</td>
<td>102</td>
</tr>
<tr>
<td>224</td>
<td>405</td>
<td>2432</td>
<td>179</td>
</tr>
<tr>
<td>256</td>
<td>541</td>
<td>3248</td>
<td>283</td>
</tr>
<tr>
<td>512</td>
<td>2570</td>
<td>15424</td>
<td>2056</td>
</tr>
</tbody>
</table>
Examples

\[D = 1, \lceil \log(n) \rceil = 363, \lceil \log(h) \rceil = 7, \lceil \log(p) \rceil = 371 \]

\[p = 3242890372842743487196063845602840916228193958243257594530632153559402628010019946681624958973937239637420169141, \]
\[n = 11105788948091587284918026868502879850096554651518005460623832064312035897815509951488907964532000965993787241, \]
\[h = 73, \]
\[d = 1621445186421371743598031922801420458114096979121628797265316076779701314005009973340812479486968619818710084571. \]

\[D = 7230, \lceil \log(n) \rceil = 165, \lceil \log(h) \rceil = 34, \lceil \log(p) \rceil = 201 \]

\[p = 2051613663768129606093583432875887398415301962227490187508801, \]
\[n = 44812545413308579913957438201331385434743442366277, \]
\[h = 7 \cdot 733 \cdot 2230663, \]
\[d = 889556570662354157210639662153375862261205379822879716332449. \]
Explicit formulas

- Use explicit formulas with extended Edwards coordinates by Hisil, et. al. [Asiacrypt 2008] for point doubling and addition in Miller’s algorithm.
- Can reuse large parts of the computation for coefficients of the conic.
- Use even embedding degree and quadratic twist to represent second pairing argument \(Q \), i.e. multiplications with coordinates \(x_Q \) and \(y_Q \) cost \(\frac{k}{2} \) multiplications in \(\mathbb{F}_p \).
- Compute conic coefficients in doubling step with \(6m + 5s + 1ma \), in addition step with \(14m + 1ma \) (mixed addition \(12m + 1ma \)).
Comparison of operation counts

<table>
<thead>
<tr>
<th></th>
<th>DBL</th>
<th>mADD</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{I}</td>
<td>$1m + 11s + 1m_{a_4}$</td>
<td>$9m + 3s$</td>
<td>—</td>
</tr>
<tr>
<td>$\mathcal{I}, a_4 = -3$</td>
<td>$7m + 4s$</td>
<td>$9m + 3s$</td>
<td>—</td>
</tr>
<tr>
<td>$\mathcal{I}, a_4 = 0$</td>
<td>$6m + 5s$</td>
<td>$9m + 3s$</td>
<td>—</td>
</tr>
<tr>
<td>\mathcal{E}</td>
<td>$8m + 4s + 1m_d$</td>
<td>$14m + 4s + 1m_d$</td>
<td>—</td>
</tr>
<tr>
<td>\mathcal{E}, this paper</td>
<td>$6m + 5s + 1m_a$</td>
<td>$12m + 1m_a$</td>
<td>$14m + 1m_a$</td>
</tr>
</tbody>
</table>

All formulas need additional $km + 1M$ for (mixed) addition steps and $km + 1M + 1S$ for doubling steps.
Comparison of operation counts

<table>
<thead>
<tr>
<th></th>
<th>DBL</th>
<th>mADD</th>
<th>ADD</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{J}</td>
<td>$1m + 11s + 1ma_4$</td>
<td>$9m + 3s$</td>
<td>—</td>
</tr>
<tr>
<td>this paper</td>
<td>$1m + 11s + 1ma_4$</td>
<td>$6m + 6s$</td>
<td>$15m + 6s$</td>
</tr>
<tr>
<td>$\mathcal{J}, a_4 = -3$</td>
<td>$7m + 4s$</td>
<td>$9m + 3s$</td>
<td>—</td>
</tr>
<tr>
<td>this paper</td>
<td>$6m + 5s$</td>
<td>$6m + 6s$</td>
<td>$15m + 6s$</td>
</tr>
<tr>
<td>$\mathcal{J}, a_4 = 0$</td>
<td>$6m + 5s$</td>
<td>$9m + 3s$</td>
<td>—</td>
</tr>
<tr>
<td>this paper</td>
<td>$3m + 8s$</td>
<td>$6m + 6s$</td>
<td>$15m + 6s$</td>
</tr>
<tr>
<td>\mathcal{E}</td>
<td>$8m + 4s + 1md$</td>
<td>$14m + 4s + 1md$</td>
<td>—</td>
</tr>
<tr>
<td>\mathcal{E}, this paper</td>
<td>$6m + 5s + 1ma$</td>
<td>$12m + 1ma$</td>
<td>$14m + 1ma$</td>
</tr>
</tbody>
</table>

Explicit formulas and more curve examples in preprint