Can homomorphic encryption be practical?

Michael Naehrig

TU/e
michael@cryptojedi.org

joint work with
Kristin Lauter and Vinod Vaikuntanathan

Cryptography Working Group
30 September 2011
An application scenario – private medical records

- Health care providers upload all your medical records in public key encrypted form to a cloud service.
- You control access to your data.
- You can do encrypted search on your data.
- Different monitoring devices stream encrypted data, e.g. your blood pressure, heart rate, blood sugar level.
- The cloud service can compute statistical functions on your data, determine risks, send alerts to you, your doctor.

- Parts of this can already be realized (Benaloh et al. 2009).
- Computing functions on your encrypted data could be done with homomorphic encryption.
Homomorphic encryption

- Many crypto systems have homomorphic properties: RSA, ElGamal, Benaloh, Paillier, but only provide additive or multiplicative homomorphism, not both.

- First system that could do both: Boneh-Goh-Nissim 2005 many additions and one multiplication (uses pairings).

- Fully homomorphic encryption allows to do arbitrary computations on encrypted data without knowing the secret key,

- in particular it allows doing an arbitrary number of additions and multiplications.
Gentry proposed the first fully homomorphic encryption scheme in 2009 based on ideal lattices.

- The basis is a somewhat homomorphic encryption scheme that can evaluate low-degree polynomials on encrypted data.
- Ciphertexts are “noisy” and the noise grows slightly during addition and strongly during multiplication.
- If the SWHE scheme can evaluate its own decryption circuit, then a bootstrapping step can refresh ciphertexts by homomorphically decrypting using an encrypted secret key.
- Only works by “squashing” the decryption circuit.
- So far quite inefficient.
Fully homomorphic encryption

- Recently, many improvements, but still inefficient. Implementation (Gentry, Halevi 2011),
 - toy setting: encrypt a bit in 0.2s, recrypt in 6s, public key: 17MB
 - large setting: encrypt in 3min, recrypt in 31min public key: 2.3GB
- New variants, mostly following Gentry’s blueprint.
- Recent variants based on the LWE problem or RLWE problem.
- Applications might not need fully homomorphic encryption, somewhat homomorphic could be sufficient.
- This talk: somewhat homomorphic encryption scheme by Brakerski and Vaikuntanathan (Crypto 2011) based on RLWE.
The Learning with Errors (LWE) Problem
(Regev 2005)

Let \(n \in \mathbb{N}, q \in \mathbb{Z}, \chi \) a probability distribution on \(\mathbb{Z} \).

Distinguish the following distributions of pairs \((a_i, b_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q:\)

Uniform distribution
- Sample \((a_i, b_i) \in \mathbb{Z}_q^{n+1}\) uniformly at random.

LWE distribution
- Draw \(s \in \mathbb{Z}_q^n\) uniformly at random.
- Sample \(a_i \in \mathbb{Z}_q^n\) uniformly at random,
- Sample \(e_i \leftarrow \chi, \overline{e}_i \in \mathbb{Z}_q\),
- Set \(b_i = \langle a_i, s \rangle + \overline{e}_i\).

The \(b_i\) are noisy inner products of random \(a_i\) with a secret \(s\).
The Learning with Errors (LWE) Problem

(Regev 2005)

► Regev gave a quantum reduction of certain approximate SVP to LWE, i.e. if one can solve LWE, then there’s a quantum algorithm to solve certain approximate SVP.
► Peikert (2009) gave a reduction using classical algorithms
► Assumption: q prime, χ is a discrete Gaussian error distribution
The Ring Learning with Errors (RLWE) Problem
(Lyubashevsky, Peikert, Regev 2010)

Here: special case.

- Let \(n = 2^k \),
 \[
 f(x) = x^n + 1
 \]
 (2\(n \)-th cyclotomic polynomial).

- Define ring
 \[
 R = \mathbb{Z}[x]/(f)
 \]
 (ring of integers in 2\(n \)-th cyclotomic number field).

- Let \(q \) be prime, define
 \[
 R_q = R/qR \cong \mathbb{Z}_q[x]/(\overline{f}).
 \]

- Let \(\chi \) be an error distribution on \(R \).
Distinguish the following distributions of pairs \((a_i, b_i) \in R^2_q:\)

Uniform distribution on \(R^2_q\)
- Sample \((a_i, b_i) \in R^2_q\) uniformly at random.

RLWE distribution
- Draw \(s \in R_q\) uniformly at random.
- Sample \(a_i \in R_q\) uniformly at random,
- Sample \(e_i \leftarrow \chi, e_i \in R_q,\)
- Set \(b_i = a_i \cdot s + e_i.\)

The \(b_i\) are noisy ring (number field) products of random \(a_i\) with a secret \(s\).
The Ring Learning with Errors (RLWE) Problem
(Lyubashevsky, Peikert, Regev 2010)

- Believed to be as hard as general LWE problem, i.e. would be solved with the same algorithms.
- Though there’s a lot more structure!
- Recent results indicate RLWE problem easier than LWE, (Schneider 2011 claims in practice speedup is linear in n).
- But much more more efficient.
- Smaller keys, very efficient arithmetic in R_q.

Can be used to build a fully homomorphic encryption scheme.
Slight modifications

In both LWE and RLWE problems, it is okay to sample $s \leftarrow \chi$ (and not uniformly at random).

- Sample until $(a_0, b_0 = a_0 s + e_0)$ with $a_0 \in \mathbb{Z}_q^*$ (invertible).
- For every additional sample $(a, b = a s + e)$ consider
 $$(a', b') = (-a_0^{-1} a, b + a' b_0)$$
 $$= (a', a s + e + a' (a_0 s + e_0))$$
 $$= (a', a s + e - a s + a' e_0) = (a', a' e_0 + e)$$

If one can solve RLWE with small secret, then one can solve it with uniform secret.

It is also okay to use small multiples of the error terms, i.e. samples $(a_i, b_i = a_i \cdot s + t e_i)$ are still indistinguishable from random. For example, take $t = 2$.
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

SH.Keygen

- Sample small element $s \leftarrow \chi$.

Set secret key

- $sk = s$.

Sample RLWE instance:

- Sample $a_1 \leftarrow R_q$ uniformly random,
- small error $e \leftarrow \chi$.

Set public key

- $pk = (a_0 = -(a_1 s + te), a_1)$.
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

Message space:

$$R_t = \mathbb{Z}_t[x]/(x^n + 1),$$

t rel. prime to q, e.g. $t = 2$. Encode messages as elements in R_q with coefficients mod t.

- Can encode n bits at once.

SH.Enc

Given $pk = (a_0, a_1)$ and a message $m \in R_q$,

- sample $u \leftarrow \chi$, and $f, g \leftarrow \chi$,

Set ciphertext

- $ct = (c_0, c_1) := (a_0 u + tg + m, a_1 u + tf)$.
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

SH.Dec

Given $sk = s$ and a ciphertext $ct = (c_0, c_1)$,

- compute $\tilde{m} = c_0 + c_1 s \in R_q$.

Output the message

- $\tilde{m} \mod t$.

Correctness:

\[
\tilde{m} = c_0 + c_1 s = (a_0 u + tg + m) + (a_1 u + tf)s \\
= -(a_1 s + te)u + tg + m + a_1 us + tf s \\
= m + t(g + fs - eu).
\]

Reduction modulo t gives back m as long as the error terms are not too large. Gives bound on standard deviation of the Gaussian.
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

Homomorphic operations

SH.Add

Given \(ct = (c_0, c_1)\) and \(ct' = (c'_0, c'_1)\), set the new ciphertext

- \(ct_{add} = (c_0 + c'_0, c_1 + c'_1)\)
 - \(= (a_0(u + u') + t(g + g') + (m + m'), a_1(u + u') + t(f + f'))\).

SH.Mult

Given \(ct = (c_0, c_1)\) and \(ct' = (c'_0, c'_1)\),

- compute
 - \((c_0 + c_1X)(c'_0 + c'_1X) = c_0c'_0 + (c_0c'_1 + c'_0c_1)X + c_1c'_1X^2\)
 - \(ct_{mlt} = (c_0c'_0, c_0c'_1 + c'_0c_1, c_1c'_1)\)

Errors multiply!
- \((m + t(g + fs - eu))(m' + t(g' + f's + eu')) = mm' + t(\ldots)\)
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

- Homomorphic operations increase size of error terms.
- Homomorphic multiplication increases the size of the ciphertext.
- Homomorphic addition, multiplication, and decryption generalize to longer ciphertexts.

SH.Dec

Given $sk = s$ and a ciphertext $ct = (c_0, c_1, \ldots, c_δ)$,
- compute $\tilde{m} = \sum_{i=0}^{δ} c_i s^i \in R_q$.

Output the message
- $\tilde{m} \pmod{t}$.
There is a way to go from 3-element ciphertext $ct = (c_0, c_1, c_2)$ back to a 2-element ciphertext.

- We have $c_2s^2 + c_1s + c_0 = te_{\text{mult}} + mm'$

- Publish a “homomorphism key”

 $h_i = (a_i, b_i = -(a_is + te_i) + t^is^2)$ for $i = 0, \ldots, \lceil \log_t q \rceil - 1$

- Write c_2 in its base-t representation $c_2 = \sum c_{2,i}t^i$.
Relinearization
(Brakerski, Vaikuntanathan 2011)

- Replace ct by \((c_0^{\text{relin}}, c_1^{\text{relin}})\) with
 \[
 c_1^{\text{relin}} = c_1 + \sum_{i=0}^{\lceil \log_t q \rceil - 1} c_{2,i} a_i,
 c_0^{\text{relin}} = c_0 + \sum_{i=0}^{\lceil \log_t q \rceil - 1} c_{2,i} b_i
 \]

- Then
 \[
 c_0^{\text{relin}} + c_1^{\text{relin}} s = c_0 + c_1 s + c_2 s^2 - t e_{\text{relin}}
 \]
 \[
 c_0^{\text{relin}} + c_1^{\text{relin}} s = t(e_{\text{mult}} - e_{\text{relin}}) + mm'
 \]

- Okay, ciphertext is smaller, but error has increased!
- Decryption still correct if final error \(e_{\text{mult}} - e_{\text{relin}}\) is small enough.
Specific parameter choices

Choosing parameters to “guarantee” security and correctness.

Correctness:

- q must be large enough when compared to the size of the error terms and t.
- I.e. parameters are chosen s.t. the scheme can evaluate polynomials of a certain fixed degree D ($D - 1$ multiplications and a bunch of additions).

Security:

- Against distinguishing attack with advantage 2^{-32} by Micciancio/Regev 2009.
- Adjust analysis of Lindner/Peikert 2011 to our setting.
- Still assume RLWE is no easier than LWE.
Specific parameters, key and ciphertext sizes

<table>
<thead>
<tr>
<th>t</th>
<th>D</th>
<th>n</th>
<th>$\lceil \lg(q) \rceil$</th>
<th>$\lg(T)$</th>
<th>$l_{R_q}/10^3$</th>
<th>$(2 + \log_t q) \cdot l_{R_q}/10^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>512</td>
<td>19</td>
<td>123</td>
<td>10</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1024</td>
<td>38</td>
<td>107</td>
<td>39</td>
<td>1557</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2048</td>
<td>64</td>
<td>134</td>
<td>132</td>
<td>8651</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4096</td>
<td>120</td>
<td>145</td>
<td>492</td>
<td>59966</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8192</td>
<td>264</td>
<td>117</td>
<td>2163</td>
<td>575276</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
<td>30</td>
<td>164</td>
<td>31</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2048</td>
<td>58</td>
<td>164</td>
<td>119</td>
<td>927</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4096</td>
<td>95</td>
<td>215</td>
<td>390</td>
<td>4475</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8192</td>
<td>171</td>
<td>242</td>
<td>1401</td>
<td>26756</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>16384</td>
<td>368</td>
<td>214</td>
<td>6030</td>
<td>233938</td>
</tr>
</tbody>
</table>
Message encoding

Homomorphic operations reflect operations in R_t.

- Want operations on integers.
- Encode an integer $m = (m_0, m_1, \ldots, m_l)_2$, $m_i \in \{0, 1\}$ as a polynomial of degree l with coefficients m_i. Get back m by evaluating at 2.
- $t = 2$ not useful for addition and multiplication since operations mod 2 are different from integer operations.
- Choose t large enough to allow for enough additions.
- Reduction modulo $x^n + 1$ screws up integer multiplication.
- Choose l small enough to allow a certain number of multiplications before reaching degree n.
Reference implementation

Implementation using the computer algebra system Magma

- Uses polynomial arithmetic in Magma,
- no specific optimization for multiplication, no DFT,
- no optimization for specific parameters (sizes),
- decryption for arbitrary length ciphertexts.

Big potential to improve efficiency

- Main cost is polynomial multiplication modulo $x^n + 1$ in R_q.

Timings

Intel Core 2 Duo @ 2.1 GHz

<table>
<thead>
<tr>
<th>t</th>
<th>D</th>
<th>n</th>
<th>$\lceil \lg(q) \rceil$</th>
<th>S_{χ}</th>
<th>Enc</th>
<th>Dec $\deg 1$</th>
<th>Dec $\deg 2$</th>
<th>Mult</th>
<th>Mult $\deg \text{red}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>512</td>
<td>19</td>
<td>27</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1024</td>
<td>38</td>
<td></td>
<td>55</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>2048</td>
<td>64</td>
<td></td>
<td>110</td>
<td>29</td>
<td>18</td>
<td>33</td>
<td>56</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>4096</td>
<td>120</td>
<td></td>
<td>223</td>
<td>85</td>
<td>49</td>
<td>94</td>
<td>163</td>
<td>10.6</td>
</tr>
<tr>
<td>10</td>
<td>8192</td>
<td>264</td>
<td></td>
<td>438</td>
<td>425</td>
<td>227</td>
<td>454</td>
<td>887</td>
<td>114.6</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
<td>30</td>
<td>54</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2048</td>
<td>58</td>
<td></td>
<td>110</td>
<td>24</td>
<td>15</td>
<td>26</td>
<td>41</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>4096</td>
<td>95</td>
<td></td>
<td>221</td>
<td>81</td>
<td>46</td>
<td>88</td>
<td>154</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>8192</td>
<td>171</td>
<td></td>
<td>440</td>
<td>275</td>
<td>148</td>
<td>288</td>
<td>526</td>
<td>5.3</td>
</tr>
<tr>
<td>10</td>
<td>16384</td>
<td>368</td>
<td></td>
<td>868</td>
<td>1260</td>
<td>664</td>
<td>1300</td>
<td>1593</td>
<td>48.2</td>
</tr>
</tbody>
</table>

- Compute the ciphertext of the sum of 100 numbers of size 128 bits from the single ciphertexts (for mean computation): < 20ms
- Ciphertexts for the sum and sum of squares of 100 such numbers (for mean and variance): < 6s
Can homomorphic encryption be practical?

► Maybe…

► …if somewhat homomorphic encryption is enough, then probably yes …

► …and if we are not too much off with our parameter choices …

► …maybe even fully homomorphic encryption…