Homomorphic Encryption from Ring Learning with Errors

Michael Naehrig

Technische Universiteit Eindhoven
michael@cryptojedi.org

joint work with
Kristin Lauter (MSR Redmond)
Vinod Vaikuntanathan (University of Toronto)

MSR Cambridge, 10 January 2012
Homomorphic encryption

Example 1: RSA public key encryption
- Let $n = p \cdot q$, $p \neq q$ primes, $\varphi(n) = (p - 1)(q - 1)$,
- $pk = (n, e)$, $\gcd(e, \varphi(n)) = 1$,
- $sk = d = e^{-1} \mod \varphi(n)$.
- Encrypt message $m \in \mathbb{Z}_n$:
 \[c = m^e \mod n. \]
- Decrypt ciphertext c:
 \[m = c^d \mod n. \]
- Multiplicative homomorphism:
 If $c_1 = m_1^e \mod n$, $c_2 = m_2^e \mod n$, then
 \[c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod n. \]
Homomorphic encryption

Example 2: ElGamal public key encryption in a group \(G = \langle g \rangle \)

- \(\text{sk} = x \in \mathbb{Z}_{|G|} \),
- \(\text{pk} = h = g^x \).
- Encrypt \(m \in G \): choose \(r \in \mathbb{Z}_{|G|} \) at random and compute
 \[
 (c, d) = (g^r, m \cdot h^r).
 \]
- Decrypt: \(m = d \cdot (c^x)^{-1} \).
- Multiplicative homomorphism:
 If \((c_1, d_1) = (g^{r_1}, m_1 \cdot h^{r_1}), (c_2, d_2) = (g^{r_2}, m_1 \cdot h^{r_2}) \), then
 \[
 (c_1 \cdot c_2, d_1 \cdot d_2) = (g^{r_1} \cdot g^{r_2}, (m_1 \cdot h^{r_1}) \cdot (m_2 \cdot h^{r_2}))
 = (g^{r_1+r_2}, (m_1 \cdot m_2)h^{r_1+r_2}).
 \]
Homomorphic encryption

- Many crypto systems have homomorphic properties: RSA, ElGamal, Benaloh, Paillier, but only provide additive or multiplicative homomorphism, not both.
- With addition and multiplication, can do arbitrary computations.
- First system that could do both: Boneh-Goh-Nissim 2005 many additions and one multiplication (uses pairings).
- Fully homomorphic encryption allows to do arbitrary computations on encrypted data without knowing the secret key,
- in particular it allows doing an arbitrary number of additions and multiplications.
Application scenario

User

\[\xrightarrow{\text{encrypted data}}\]

\[\xrightarrow{\text{encrypted results}}\]

Server

operates on encrypted data: e.g. search, statistics, ...

Server never sees data in the clear.

But does a fully homomorphic encryption scheme exist? And if so, is it efficient?
Gentry proposed the first fully homomorphic encryption scheme in 2009 based on ideal lattices.

- The basis is a somewhat homomorphic encryption scheme that can evaluate low-degree polynomials on encrypted data.
- Ciphertexts are “noisy” and the noise grows slightly during addition and strongly during multiplication.
- If the SWHE scheme can evaluate its own decryption circuit, then a bootstrapping step can refresh ciphertexts by homomorphically decrypting using an encrypted secret key.
- Only works by “squashing” the decryption circuit.
- So far quite inefficient.
Fully homomorphic encryption

- Recently, many improvements, but still inefficient. Implementation (Gentry, Halevi 2011),
 - toy setting: encrypt a bit in 0.2s, recrypt in 6s, public key: 17MB
 - large setting: encrypt in 3min, recrypt in 31min, public key: 2.3GB
- New variants, mostly following Gentry’s blueprint.
- Recent variants based on the LWE problem or RLWE problem.
- Applications might not need fully homomorphic encryption, somewhat homomorphic could be sufficient.
- This talk: somewhat homomorphic encryption scheme by Brakerski and Vaikuntanathan (Crypto 2011) based on RLWE.
The Learning with Errors (LWE) Problem
(Regev 2005)

Let $n \in \mathbb{N}$, $q \in \mathbb{Z}$, and χ a probability distribution on \mathbb{Z}.

Distinguish the following distributions of pairs $(a_i, b_i) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$:

1. **Uniform distribution**
 - Sample $(a_i, b_i) \in \mathbb{Z}_q^{n+1}$ uniformly at random.

2. **LWE distribution**
 - Draw $s \in \mathbb{Z}_q^n$ uniformly at random.
 - Sample $a_i \in \mathbb{Z}_q$ uniformly at random,
 - Sample $e_i \leftarrow \chi$, $\overline{e}_i \in \mathbb{Z}_q$,
 - Set $b_i = \langle a_i, s \rangle + \overline{e}_i$.

The b_i are noisy inner products of random a_i with a secret s.
The Learning with Errors (LWE) Problem
(Regev 2005)

- Regev gave a quantum reduction of certain approximate SVP to LWE, i.e. if one can solve LWE, then there’s a quantum algorithm to solve certain approximate SVP.
- Peikert (2009) gave a reduction using classical algorithms
- Assumption: q prime, χ is a discrete Gaussian error distribution
Here: special case.

- Let $n = 2^k$,
 \[f(x) = x^n + 1 \]
 (2n-th cyclotomic polynomial).

- Define ring
 \[R = \mathbb{Z}[x] / (f) \]
 (ring of integers in 2n-th cyclotomic number field).

- Let q be prime, define
 \[R_q = R / qR \cong \mathbb{Z}_q[x] / (f). \]

- Let χ be an error distribution on R.
Distinguish the following distributions of pairs \((a_i, b_i) \in R^2_q:\)

Uniform distribution on \(R^2_q\)
- Sample \((a_i, b_i) \in R^2_q\) uniformly at random.

RLWE distribution
- Draw \(s \in R_q\) uniformly at random.
- Sample \(a_i \in R_q\) uniformly at random,
- sample \(e_i \leftarrow \chi, \overline{e}_i \in R_q,\)
- set \(b_i = a_i \cdot s + \overline{e}_i.\)

The \(b_i\) are noisy ring (number field) products of random \(a_i\) with a secret \(s.\)
Toy(!) example parameter setting

Let’s take $k = 3$, i.e. $f = x^8 + 1$, $q = 97$.

- A typical (random) element in R_q looks like this:
 \[a = 27x^7 - 11x^6 - 33x^5 + 41x^4 - 18x^3 - 5x^2 - 37x - 16. \]

- A small element sampled coefficient-wise from a narrow Gaussian, might look like this:
 \[e = -2x^6 - 2x^3 + 2x^2 - x + 1. \]

- Addition in R_q:
 \[
 a + e = 27x^7 - 13x^6 - 33x^5 + 41x^4 - 20x^3 - 3x^2 - 38x - 15,
 \]
 \[
 a + a = -43x^7 - 22x^6 + 31x^5 - 15x^4 - 36x^3 - 10x^2 + 23x - 32.
 \]

- Multiplication in R_q:
 \[
 x \cdot a = 27x^8 - 11x^7 - 33x^6 + 41x^5 - 18x^4 - 5x^3 - 37x^2 - 16x
 \]
 \[
 = -11x^7 - 33x^6 + 41x^5 - 18x^4 - 5x^3 - 37x^2 - 16x - 27.
 \]
The Ring Learning with Errors (RLWE) Problem
(Lyubashevsky, Peikert, Regev 2010)

- Believed to be as hard as general LWE problem, i.e. would be solved with the same algorithms.
- Though there’s a lot more structure!
- Recent results indicate RLWE problem easier than LWE, (Schneider 2011 claims in practice speedup is linear in n).
- But much more more efficient.
- Smaller keys, very efficient arithmetic in R_q.

Can be used to build a fully homomorphic encryption scheme.
In both LWE and RLWE problems, it is okay to sample $s \leftarrow \chi$ (and not uniformly at random).

- Sample until $(a_0, b_0 = a_0s + e_0)$ with $a_0 \in R_q^*$ (invertible).
- For every additional sample $(a, b = as + e)$ consider

\[
(a', b') = (-a_0^{-1}a, b + a'b_0) \\
= (a', as + e + a'(a_0s + e_0)) \\
= (a', as + e - as + a'e_0) = (a', a'e_0 + e)
\]

- If one can solve RLWE with small secret, then one can solve it with uniform secret.

- It is also okay to use small multiples of the error terms, i.e. samples $(a_i, b_i = a_i \cdot s + te_i)$ are still indistinguishable from random. For example, take $t = 2$.
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

SH.Keygen

- Sample small $s \leftarrow \chi$. Set secret key $sk = s$.

Sample RLWE instance:

- Sample $a_1 \leftarrow R_q$ unif. rand., small error $e \leftarrow \chi$.

Set public key

- $pk = (a_0 = -(a_1 s + te), a_1)$.

In the example setting: $t = 2$

- $s = -x^7 - x^6 - x^5 + x^4 + x^3 + x^2 + x - 1$
- $e = -2x^6 - 2x^3 + 2x^2 - x + 1$
- $a_1 = 27x^7 - 11x^6 - 33x^5 + 41x^4 - 18x^3 - 5x^2 - 37x - 16$
- $a_0 = 10x^7 - 25x^6 + 46x^5 - 37x^4 + 23x^3 + 27x^2 - 43x + 31$
- $pk = (10x^7 - 25x^6 + 46x^5 - 37x^4 + 23x^3 + 27x^2 - 43x + 31, 27x^7 - 11x^6 - 33x^5 + 41x^4 - 18x^3 - 5x^2 - 37x - 16)$.
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

Message space:

\[R_t = \mathbb{Z}_t[x]/(x^n + 1), \]

\(t \) rel. prime to \(q \), e.g. \(t = 2 \). Encode messages as elements in \(R_q \) with coefficients mod \(t \).

- Can encode \(n \) bits at once.
- For example encode 01011001 as \(m = x^6 + x^4 + x^3 + 1 \).

SH.Enc

Given \(pk = (a_0, a_1) \) and a message \(m \in R_q \),

- sample \(u \leftarrow \chi \), and \(g, h \leftarrow \chi \),

Set ciphertext

- \(ct = (c_0, c_1) := (a_0u + tg + m, a_1u + th) \).
Somewhat homomorphic encryption

Example encryption

- Sample small elements

 \[u = -2x^6 + 3x^5 + 2x^3 - x, \]
 \[g = -x^6 - x^2 + 2x, \]
 \[h = -x^7 + x^5 + x^4 + x + 1. \]

- From \(\text{pk} = (a_0, a_1) \) as above and \(m = x^6 + x^4 + x^3 + 1 \) compute

 \[c_0 = a_0 \cdot u + 2 \cdot g + m \]
 \[= 21x^7 + 2x^6 + 10x^5 + 6x^4 + 9x^3 + 3x^2 - 14x + 1 \]
 \[c_1 = a_1 \cdot u + 2 \cdot h \]
 \[= -44x^7 + 15x^6 - 43x^5 + 37x^4 + 37x^3 - 30x^2 - 22x + 42. \]

- The ciphertext is

 \((c_0, c_1) = (21x^7 + 2x^6 + 10x^5 + 6x^4 + 9x^3 + 3x^2 - 14x + 1, \]
 \[-44x^7 + 15x^6 - 43x^5 + 37x^4 + 37x^3 - 30x^2 - 22x + 42). \]
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

SH.Dec

Given sk = s and a ciphertext ct = (c₀, c₁),

- **compute** \(\tilde{m} = c₀ + c₁s \in \mathbb{R}_q \).

Output the message

- \(\tilde{m} \mod t \).

Correctness:

\[
\tilde{m} = c₀ + c₁s = (a₀u + tg + m) + (a₁u + th)s \\
= -(a₁s + te)u + tg + m + a₁us + ths \\
= m + t(g + hs - eu).
\]

Reduction modulo \(t \) gives back \(m \) as long as the error terms are not too large. Gives bound on standard deviation of the Gaussian.
Somewhat homomorphic encryption

Example decryption

- Use sk = s = \(-x^7 - x^6 - x^5 + x^4 + x^3 + x^2 + x - 1\) and ciphertext

\[
(c_0, c_1) = (21x^7 + 2x^6 + 10x^5 + 6x^4 + 9x^3 + 3x^2 - 14x + 1, \\
-44x^7 + 15x^6 - 43x^5 + 37x^4 + 37x^3 - 30x^2 - 22x + 42).
\]

- Compute

\[
\tilde{m} = c_0 + c_1 \cdot s \\
= 24x^7 + 21x^6 + 4x^5 + 21x^4 + 15x^3 + 16x^2 - 28x - 21.
\]

- Reduce modulo \(t = 2\) and get

\[
x^6 + x^4 + x^3 + 1 = m.
\]
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

Homomorphic operations

SH.Add
Given $ct = (c_0, c_1)$ and $ct' = (c'_0, c'_1)$, set the new ciphertext

- $ct_{add} = (c_0 + c'_0, c_1 + c'_1)$
- $= (a_0(u + u') + t(g + g') + (m + m'), a_1(u + u') + t(h + h'))$.

SH.Mult
Given $ct = (c_0, c_1)$ and $ct' = (c'_0, c'_1)$,

- compute

 $$(c_0 + c_1X)(c'_0 + c'_1X) = c_0c'_0 + (c_0c'_1 + c'_0c_1)X + c_1c'_1X^2$$

- $ct_{mlt} = (c_0c'_0, c_0c'_1 + c'_0c_1, c_1c'_1)$

Errors multiply!

$$(m + t(g + hs - eu))(m' + t(g' + h's + eu')) = mm' + t(...)$$
Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

- Homomorphic operations increase size of error terms.
- Homomorphic multiplication increases the size of the ciphertext.
- Homomorphic addition, multiplication, and decryption generalize to longer ciphertexts.

SH.Dec

Given \(sk = s \) and a ciphertext \(ct = (c_0, c_1, \ldots, c_\delta) \),

- compute \(\tilde{m} = \sum_{i=0}^{\delta} c_i s^i \in R_q \).

Output the message

- \(\tilde{m} \pmod{t} \).
There is a way to go from 3-element ciphertext $ct = (c_0, c_1, c_2)$ back to a 2-element ciphertext.

- We have
 $$c_2 s^2 + c_1 s + c_0 = te_{\text{mult}} + mm'$$

- Publish a “homomorphism key”
 $$h_i = (a_i, b_i = -(a_i s + te_i) + t^i s^2) \quad \text{for } i = 0, \ldots, \lceil \log_t q \rceil - 1$$

- Write c_2 in its base-t representation $c_2 = \sum c_{2,i} t^i$.

Relinearization
(Brakerski, Vaikuntanathan 2011)
Replace ct by $(c_{relin}^0, c_{relin}^1)$ with

$$c_{relin}^1 = c_1 + \sum_{i=0}^{[\log_t q] - 1} c_{2,i} a_i,$$

$$c_{relin}^0 = c_0 + \sum_{i=0}^{[\log_t q] - 1} c_{2,i} b_i.$$

Then

$$c_{relin}^0 + c_{relin}^1 s = c_0 + c_1 s + c_2 s^2 - t e_{relin},$$

$$c_{relin}^0 + c_{relin}^1 s = t (e_{mult} - e_{relin}) + mm'.$$

Okay, ciphertext is smaller, but error has increased!

Decryption still correct if final error $e_{mult} - e_{relin}$ is small enough.
Specific parameter choices

Choosing parameters to “guarantee” security and correctness.

Correctness:

- \(q \) must be large enough when compared to the size of the error terms and \(t \).
- I.e. parameters are chosen s.t. the scheme can evaluate polynomials of a certain fixed degree \(D \) (\(D - 1 \) multiplications and a bunch of additions).

Security:

- Against distinguishing attack with advantage \(2^{-32} \) by Micciancio/Regev 2009.
- Adjust analysis of Lindner/Peikert 2011 to our setting.
- Still assume RLWE is no easier than LWE.
Specific parameters, key and ciphertext sizes

<table>
<thead>
<tr>
<th>t</th>
<th>D</th>
<th>n</th>
<th>$\lceil \lg(q) \rceil$</th>
<th>$\lg(T)$</th>
<th>$l_{R_q}/10^3$</th>
<th>$(2 + \log_t q) \cdot l_{R_q}/10^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>512</td>
<td>19</td>
<td>123</td>
<td>10</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1024</td>
<td>38</td>
<td>107</td>
<td>39</td>
<td>1557</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2048</td>
<td>64</td>
<td>134</td>
<td>132</td>
<td>8651</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4096</td>
<td>120</td>
<td>145</td>
<td>492</td>
<td>59966</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8192</td>
<td>264</td>
<td>117</td>
<td>2163</td>
<td>575276</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
<td>30</td>
<td>164</td>
<td>31</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2048</td>
<td>58</td>
<td>164</td>
<td>119</td>
<td>927</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4096</td>
<td>95</td>
<td>215</td>
<td>390</td>
<td>4475</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8192</td>
<td>171</td>
<td>242</td>
<td>1401</td>
<td>26756</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>16384</td>
<td>368</td>
<td>214</td>
<td>6030</td>
<td>233938</td>
</tr>
</tbody>
</table>
Message encoding

Homomorphic operations reflect operations in R_t.

- Want operations on integers.
- Encode an integer $m = (m_0, m_1, \ldots, m_l)_2$, $m_i \in \{0, 1\}$ as a polynomial of degree l with coefficients m_i. Get back m by evaluating at 2.
- $t = 2$ not useful for addition and multiplication since operations mod 2 are different from integer operations.
- Choose t large enough to allow for enough additions.
- Reduction modulo $x^n + 1$ screws up integer multiplication.
- Choose l small enough to allow a certain number of multiplications before reaching degree n.
Reference implementation

Implementation using the computer algebra system Magma
- Uses polynomial arithmetic in Magma,
- no specific optimization for multiplication, no DFT,
- no optimization for specific parameters (sizes),
- decryption for arbitrary length ciphertexts.

Big potential to improve efficiency
- Main cost is polynomial multiplication modulo $x^n + 1$ in R_q.
Timings

Intel Core 2 Duo @ 2.1 GHz

<table>
<thead>
<tr>
<th>t</th>
<th>D</th>
<th>n</th>
<th>$[\lg(q)]$</th>
<th>S_X</th>
<th>Enc prec.</th>
<th>Dec deg 1</th>
<th>Dec deg 2</th>
<th>Mult</th>
<th>Mult degred</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>512</td>
<td>19</td>
<td>27</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>1024</td>
<td>38</td>
<td></td>
<td>55</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>2048</td>
<td>64</td>
<td></td>
<td>110</td>
<td>29</td>
<td>18</td>
<td>33</td>
<td>56</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>4096</td>
<td>120</td>
<td></td>
<td>223</td>
<td>85</td>
<td>49</td>
<td>94</td>
<td>163</td>
<td>10.6</td>
</tr>
<tr>
<td>10</td>
<td>8192</td>
<td>264</td>
<td></td>
<td>438</td>
<td>425</td>
<td>227</td>
<td>454</td>
<td>887</td>
<td>114.6</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
<td>30</td>
<td>54</td>
<td>5</td>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>2048</td>
<td>58</td>
<td></td>
<td>110</td>
<td>24</td>
<td>15</td>
<td>26</td>
<td>41</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>4096</td>
<td>95</td>
<td></td>
<td>221</td>
<td>81</td>
<td>46</td>
<td>88</td>
<td>154</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>8192</td>
<td>171</td>
<td></td>
<td>440</td>
<td>275</td>
<td>148</td>
<td>288</td>
<td>526</td>
<td>5.3</td>
</tr>
<tr>
<td>10</td>
<td>16384</td>
<td>368</td>
<td></td>
<td>868</td>
<td>1260</td>
<td>664</td>
<td>1300</td>
<td>1593</td>
<td>48.2</td>
</tr>
</tbody>
</table>

- Compute the ciphertext of the sum of 100 numbers of size 128 bits from the single ciphertexts (for mean computation): $< 20\text{ms}$
- Ciphertexts for the sum and sum of squares of 100 such numbers (for mean and variance): $< 6\text{s}$
Questions?

- michael@cryptojedi.org