ML Confidential
Machine Learning on Encrypted Data

Michael Naehrig

Microsoft Research
mnaehrig@microsoft.com

joint work with

Thore Graepel (MSR Cambridge)
and Kristin Lauter

Crypto Group Lunch, 27 July 2012

A simple machine learning task

Supervised learning
» Goal: derive a function from labelled training data

» Function can “reasonably” label test data according to the
experience learned from the training data

A simple example: binary classification
» Given a set T' of m samples of labelled training data
(x,yx) € R" xY,where Y = {-1,1}
» derive a function f : R” — Y that labels
a test vector x by a “reasonable” yx = f(x)

Linear Means classifier

» Divide training data T into classes T';; and T_; according
to their label

Ty ={xeT|yx==£1}, my1 = |T4|

» Compute class-conditional mean vectors

S_|_1 1 S_1
m+1 - g == m m_; = mi X = -
U xery, = -1 -t

» Compute difference vector w* =m; —m_;
» and mid-point between means xp = (my; + m_;)/2

» define a hyperplane between the means,
“separating” the two classes

Linear Means classifier

The score function (given a test vector x € R") is:

T

ffxwh) =w"x— ¢

» where ¢ = w*Tx
» classification yx = sign(f*(x; w*, ¢*))
» f*is linear in x, quadratic in training data
(considering the numbers m_, and m_; to be constants)

Polynomial learning algorithm

Definition: A learning algorithm
A:(R"xY)" xR" =Y
is called polynomial of degree d if it is a polynomial of degree d

in its arguments (including training data).

» Linear Means classifier is polynomial of degree 2
(if we consider m; and m_; to be constants)
(if we forget about the sign)

In a division-free world

Imagine you haven'’t yet learned how to divide real numbers. ..
You only know how to add, subtract and multiply.

» Come up with algorithms that avoid division
» multiply through with all denominators
» keep denominators separate

same idea: projective coordinates for elliptic curve arithmetic

» cost: more multiplications

Division-Free Linear Means classifier

» Replace means m; by

m—_q - Z X =M-1841, myq - Z X =MmM415-1
x€T 1 xeT_1
» and compute W* :=m_1S11 —my -S_1 =
myrm_i1(my; —m_1) =my-m_w*
» replace c* by & = 2m2 m? c*
using X0 1= M_1S4+1 + M41S_1 = 2my1mM_1Xg
» get new score function

Frw*, &) = 2mpmo W x—¢" = 2m2 m? f*(x; w, ¢¥)

» result has the same sign as original score
» work with suitable multiples of the original values

In an integer world

Imagine you don’t know real numbers, only integers. ..

» Represent all real data by integers

» normalize: shift mean to 0 and divide by standard deviation
» fix required precision

» move decimal point to the right, accordingly

» round to the nearest integer

[18.94, 21.31,123.6, 1130, 0.09009, 0.1029, 0.108, 0.07951, 0.1582, 0.05461

!
[126,43,117,133, —91, —39, —9, 41, —113, —123]

ML Confidential

The world of Somewhat Homomorphic Encryption (SHE)
» Can only use integer messages
(polynomials with integer coefficients)
» can not divide
» can not compare
» multiplication is extremely expensive

But can do

» division-free

> integer

» low-degree polynomial
learning algorithms under SHE

(No FHE, because bootstrapping, modulus switching, key switching are too painful and maybe not really necessary)

Somewhat homomorphic encryption
(Fan, Vercauteren, 2012)

» Consider ring R = Z[z]/(f(x)), f(z) = 2% +1,d = 2F
» Work in R, = R/qR, q a power of 2

» Message space: R; = Z[z]/(f(x)), t a power of 2

> A =g/t

» discrete Gaussian x = Dy,

SH.Keygen

» Sample small s < x, secret key sk = s.
Sample RLWE instance:

» Sample a; < R, unif. rand., small error e — .
Public key

» pk = (ap = —(a1s+e),a1).

Somewhat homomorphic encryption
(Fan, Vercauteren, 2012)

SH.Enc

Given pk = (ap, a1) and a message m € Ry,
» sample u «— x, and f,g «— x,

Set ciphertext
> ct = (cp,c1) = (apu + g+ Am,aju + f).

Somewhat homomorphic encryption
(Fan, Vercauteren, 2012)

SH.Dec

Given sk = s and a ciphertext ct = (co, ¢1),
> compute m = co + c15 € Ry
» lift to integer coefficients, compute m - t/q
» round to nearest integer and reduce mod ¢

Correctness:

m=cy+c1s = (apu+g+Am)+ (au+ f)s
= —(ms+eu+g+Am+ajus+ fs
= Am+ (g+ fs—eu).

Thenm -t/qg=m+ (g + fs — eu)t/q, rounding gives back m.

Homomorphic operations

SH.Add
Given ct = (co, 1) and ct’ = (¢, ¢}), set the new ciphertext
> Ctadd = (Co + 66, c1 + Cll)
= (ao(u+u) +(g+9)+Alm+m'),ar(u+u) + (f +).
SH.Mult
Given ct = (¢, 1) and ct’ = (¢, ¢}),

» compute
(co+ 1 X)(ch + ¢, X) = cocly + (coc) + cher) X + e1dy X2
=eo+e1 X + eaX?

> ctmie = ([teo/q], [te1/q], [te2/q])

Encoding integers

encode : Z — Ry, z = sign(2)(2s, Zs—1, - - -, 21, 20)2

— m, = sign(z)(zo + z12 + ... + zs2°) mod ¢.

» Homomorphic properties w.r.t. R;, i.e. mod t and 2% + 1

» avoid reduction mod ¢ and mod z¢ + 1 to ensure
meaningful computations

need ¢t and d large enough (or integers small enough)
decode : Ry — Z, m(x) — m(2)

redundant representation

mii(z) =1+ x4+ 2%, miz(z) =1 + 2% + 23,

(m11 +mi3)(x) =2+ + z? + 223, (m11 +my3)(2) =24

vV v v VY

DFI-LM experiments

(P1) q =28t =2 o =16, d= 4096

SH.Keygen SH.Enc SH.Dec(2) SH.Dec(3) SH.Add SH.Mult

156 379 29 52 1 106

Timing in ms in Magma on a single core of an Intel Core i5 CPU650
@ 3.2 GHz. 128-bit security with distinguishing advantage 254

data # features algorithm train classify
surrogate 2 linear means | 230 235
Iris 4 linear means | 510 496

not measuring encryption, communication, decryption. “train”: time
for training phase, i.e. to compute classifier from encrypted training
data. “classify”: time for classifying a test vector.

Surrogate data set

o
ar o]
Ty o
B o)
o
o]
J 8
& BT P B
(o]
25 Zo @ 33 &%
o o0
. [ele] s} %% (%o
X g?mo o} 2 g% Q
ogo Ooo 8 o8
ot &
[els @?%
D 0.0 oG
At q:():)oOO o) OOO
oo Q o]
Bl O o L
o
1 o 1 1 1 1

Fisher’s Linear Discriminant classifier

» Same score function as LM, but hyperplane takes into
account class-conditional covariance

» change w*tow* = C~t(my; —m_;),C=Cy +C

1
Cil = mi Z (X — mil)(xi — mil)T
+1 xeT+1

» approximate w* by gradient descent when minimizing
E(w) == }[|Cw — (m41 — m_y)|?

» gradientof £ is Vy E(w) = Cw — (m41 —m_;)

> iterate wj;1 = Rw; +a, wo =m ;| —m_y,
where R :=1-7C,a:=n(m;; —m_;)

» can get DFI version working with multiples,
numbers grow quickly — t large — ¢ large

DFI-FLD experiments

(Py) q =2%2 = 2% 5 =8, d = 8192 (128-bit security)
SH.Keygen SH.Enc SH.Dec(2) SH.Dec(3) SH.Add SH.Mult

382 853 98 193 4 370

(P3) g = 2%40, ¢ = 240 5 = 8, d = 8192 (80-bit security)
SH.Keygen SH.Enc SH.Dec(2) SH.Dec(3) SH.Add SH.Mult

403 879 118 231 4 446

Surrogate data set, 2 features

algorithm parameters train classify
1-step linear discriminant (P2) 58710 1490
2-step linear discriminant (Ps) 74770 2680

All timings in ms.

