
ML Confidential
Machine Learning on Encrypted Data

Michael Naehrig

Microsoft Research
mnaehrig@microsoft.com

joint work with

Thore Graepel (MSR Cambridge)
and Kristin Lauter

Crypto Group Lunch, 27 July 2012

A simple machine learning task

Supervised learning
I Goal: derive a function from labelled training data
I Function can “reasonably” label test data according to the

experience learned from the training data

A simple example: binary classification
I Given a set T of m samples of labelled training data

(x, yx) ∈ Rn × Y , where Y = {−1, 1}
I derive a function f : Rn → Y that labels

a test vector x by a “reasonable” yx = f(x)

Linear Means classifier

I Divide training data T into classes T+1 and T−1 according
to their label

T±1 = {x ∈ T | yx = ±1}, m±1 = |T±1|

I Compute class-conditional mean vectors

m+1 =
1

m+1

∑
x∈T+1

x =
s+1

m+1
, m−1 =

1
m−1

∑
x∈T−1

x =
s−1

m−1

I Compute difference vector w∗ = m+1 −m−1

I and mid-point between means x0 = (m+1 + m−1)/2
I define a hyperplane between the means,

“separating” the two classes

Linear Means classifier

The score function (given a test vector x ∈ Rn) is:

f∗(x; w∗, c∗) = w∗Tx− c∗

I where c∗ = w∗Tx0

I classification yx = sign(f∗(x; w∗, c∗))
I f∗ is linear in x, quadratic in training data

(considering the numbers m+1 and m−1 to be constants)

Polynomial learning algorithm

Definition: A learning algorithm

A : (Rn × Y)m × Rn → Y

is called polynomial of degree d if it is a polynomial of degree d
in its arguments (including training data).

I Linear Means classifier is polynomial of degree 2
(if we consider m+1 and m−1 to be constants)
(if we forget about the sign)

In a division-free world

Imagine you haven’t yet learned how to divide real numbers. . .
You only know how to add, subtract and multiply.

I Come up with algorithms that avoid division
I multiply through with all denominators
I keep denominators separate

same idea: projective coordinates for elliptic curve arithmetic

I cost: more multiplications

Division-Free Linear Means classifier

I Replace means m±1 by

m−1 ·
∑

x∈T+1

x = m−1s+1, m+1 ·
∑

x∈T−1

x = m+1s−1

I and compute w̃∗ := m−1s+1 −m+1 · s−1 =
m+1m−1(m+1 −m−1) = m+1 ·m−1w∗

I replace c∗ by c̃∗ = 2m2
+1m

2
−1c
∗

using x̃0 := m−1s+1 +m+1s−1 = 2m+1m−1x0

I get new score function

f̃∗(x; w̃∗, c̃∗) := 2m+1m−1w̃∗Tx−c̃∗ = 2m2
+1m

2
−1f

∗(x; w∗, c∗)

I result has the same sign as original score
I work with suitable multiples of the original values

In an integer world

Imagine you don’t know real numbers, only integers. . .

I Represent all real data by integers
I normalize: shift mean to 0 and divide by standard deviation
I fix required precision
I move decimal point to the right, accordingly
I round to the nearest integer

[18.94, 21.31, 123.6, 1130, 0.09009, 0.1029, 0.108, 0.07951, 0.1582, 0.05461]
↓

[126, 43, 117, 133,−91,−39,−9, 41,−113,−123]

ML Confidential

The world of Somewhat Homomorphic Encryption (SHE)

I Can only use integer messages
(polynomials with integer coefficients)

I can not divide
I can not compare
I multiplication is extremely expensive

But can do
I division-free
I integer
I low-degree polynomial

learning algorithms under SHE

(No FHE, because bootstrapping, modulus switching, key switching are too painful and maybe not really necessary)

Somewhat homomorphic encryption
(Fan, Vercauteren, 2012)

I Consider ring R = Z[x]/(f(x)), f(x) = xd + 1, d = 2k

I Work in Rq = R/qR, q a power of 2
I Message space: Rt = Zt[x]/(f(x)), t a power of 2
I ∆ = q/t

I discrete Gaussian χ = DZd,σ

SH.Keygen
I Sample small s← χ, secret key sk = s.

Sample RLWE instance:
I Sample a1 ← Rq unif. rand., small error e← χ.

Public key
I pk = (a0 = −(a1s+ e), a1).

Somewhat homomorphic encryption
(Fan, Vercauteren, 2012)

SH.Enc

Given pk = (a0, a1) and a message m ∈ Rq,
I sample u← χ, and f, g ← χ,

Set ciphertext
I ct = (c0, c1) := (a0u+ g + ∆m, a1u+ f).

Somewhat homomorphic encryption
(Fan, Vercauteren, 2012)

SH.Dec

Given sk = s and a ciphertext ct = (c0, c1),
I compute m̃ = c0 + c1s ∈ Rq
I lift to integer coefficients, compute m̃ · t/q
I round to nearest integer and reduce mod t

Correctness:

m̃ = c0 + c1s = (a0u+ g + ∆m) + (a1u+ f)s
= −(a1s+ e)u+ g + ∆m+ a1us+ fs

= ∆m+ (g + fs− eu).

Then m̃ · t/q = m+ (g + fs− eu)t/q, rounding gives back m.

Homomorphic operations

SH.Add
Given ct = (c0, c1) and ct′ = (c′0, c

′
1), set the new ciphertext

I ctadd = (c0 + c′0, c1 + c′1)
= (a0(u+ u′) + (g+ g′) + ∆(m+m′), a1(u+ u′) + (f + f ′)).

SH.Mult
Given ct = (c0, c1) and ct′ = (c′0, c

′
1),

I compute
(c0 + c1X)(c′0 + c′1X) = c0c

′
0 + (c0c′1 + c′0c1)X + c1c

′
1X

2

= e0 + e1X + e2X
2

I ctmlt = (bte0/qe, bte1/qe, bte2/qe)

Encoding integers

encode : Z→ Rt, z = sign(z)(zs, zs−1, . . . , z1, z0)2
7→ mz = sign(z)(z0 + z1x+ . . .+ zsx

s) mod t.

I Homomorphic properties w.r.t. Rt, i.e. mod t and xd + 1
I avoid reduction mod t and mod xd + 1 to ensure

meaningful computations
I need t and d large enough (or integers small enough)
I decode : Rt → Z, m(x) 7→ m(2)
I redundant representation
I m11(x) = 1 + x+ x3, m13(x) = 1 + x2 + x3,

(m11 +m13)(x) = 2 + x+ x2 + 2x3, (m11 +m13)(2) = 24

DFI-LM experiments

(P1) q = 2128, t = 215, σ = 16, d = 4096

SH.Keygen SH.Enc SH.Dec(2) SH.Dec(3) SH.Add SH.Mult

156 379 29 52 1 106

Timing in ms in Magma on a single core of an Intel Core i5 CPU650
@ 3.2 GHz. 128-bit security with distinguishing advantage 2−64.

data # features algorithm train classify
surrogate 2 linear means 230 235
Iris 4 linear means 510 496

not measuring encryption, communication, decryption. “train”: time
for training phase, i.e. to compute classifier from encrypted training
data. “classify”: time for classifying a test vector.

Surrogate data set

Fisher’s Linear Discriminant classifier

I Same score function as LM, but hyperplane takes into
account class-conditional covariance

I change w∗ to w∗ = C−1(m+1 −m−1), C = C+1 + C−1

C±1 :=
1

m±1

∑
x∈T±1

(x−m±1)(xi −m±1)T

I approximate w∗ by gradient descent when minimizing
E (w) := 1

2 ||Cw − (m+1 −m−1)||2

I gradient of E is ∇wE(w) = Cw − (m+1 −m−1)
I iterate wj+1 = Rwj + a, w0 = m+1 −m−1,

where R := I− ηC, a := η(m+1 −m−1)
I can get DFI version working with multiples,

numbers grow quickly→ t large→ q large

DFI-FLD experiments

(P2) q = 2252, t = 235, σ = 8, d = 8192 (128-bit security)
SH.Keygen SH.Enc SH.Dec(2) SH.Dec(3) SH.Add SH.Mult

382 853 98 193 4 370

(P3) q = 2340, t = 240, σ = 8, d = 8192 (80-bit security)
SH.Keygen SH.Enc SH.Dec(2) SH.Dec(3) SH.Add SH.Mult

403 879 118 231 4 446

Surrogate data set, 2 features
algorithm parameters train classify
1-step linear discriminant (P2) 58710 1490
2-step linear discriminant (P3) 74770 2680

All timings in ms.

