
A modular approach
to verifiable elections

Michael Naehrig

Microsoft Research

E-Vote-ID, October 2, 2025

ElectionGuard

What is it?

• a free, open-source software toolkit,

• not a full election system!

Election vendors can incorporate it
into their existing election systems.

What it does:

• produces evidence: election record,

• enables end-to-end verifiable
elections.

ElectionGuard

What is it?

• a free, open-source software toolkit,

• not a full election system!

Election vendors can incorporate it
into their existing election systems.

What it does:

• produces evidence: election record,

• enables end-to-end verifiable
elections.

Microsoft’s role

• Employs researchers.

• Initiated project in 2018,
publicly announced in 2019.

• Employed project manager.

• Sponsored 3rd party developers.

• Helped transition to the Election
Technology Initiative in 2023.

ElectionGuard

What is it?

• a free, open-source software toolkit,

• not a full election system!

Election vendors can incorporate it
into their existing election systems.

What it does:

• produces evidence: election record,

• enables end-to-end verifiable
elections.

Microsoft’s current role

• Employs researchers.

Deployments

In-person Public Elections

• 2020 – Fulton, WI
 with VotingWorks

• 2020 – Inyo County, CA (audit)
 with VotingWorks

• 2022 – Preston, ID
 with Hart Intercivic

• 2023 – College Park, MD
 with Hart Intercivic

Other Elections (Remote)

• 2020 – U.S. House Democratic Caucus
 with Markup

• 2023 – Neuilly-sur-Seine, FRANCE
 with Electis

• 2023 – Utah absentee voters
 with Enhanced Voting

• 2024 – internal election
 with Concordium

Voter experience – an example

Cast or Spoil

Voter experience – an example

Cast or Challenge or Spoil

Protocol sketch
• Voters

• Election administrator

• Trustees (guardians)

• Verifiers

Roles

Cryptographic components

• Ballot encryption

• Proofs of ballot well-formedness

• Confirmation code

Cryptographic components
• Distributed key generation

• Verifiable decryption of

tallies and challenged

ballots

Cryptographic components
• Homomorphic tallying

• Facilitate decryption protocols

• Verify proofs

Cryptographic Components

ELT layout

Cryptographic parameters

Cyclic group of order 𝑞 = 2256 − 189

3F3FAE5106E930D995517D6CB8B69D06
55F04628535863A5B745089E346A11E3

FF43

32B

Multiplicative group in a finite field of size 𝑝 (4096 bits)

6A3D90A5EA888A04AA367E9F24CB70F7BDE7409452451A92E3D39D98CB4CFCC755572F15AE879FCE930FBBF7C08F37FCF4B42D7C58C6BDADEF
3FABEFD7BDF32FA8BF6017FC292C730FE8D66F21B33A146F9D591F8CE9E0F8CEAA71894F32223245258214FB3C1FB17CB2F57C02F6B6B07C5A
86ACEAAA554EDE87A5A1A54E2EC3CD87E1034D23F824204692893C86C17BCA291D0896D9B50D755451BA6C8A3BC1A2A3ECBB10D6BC293A05BA
C675F60E2615F532646E26FD14C7F83643D4CEDCC1380F020B52B912C907E11F4B23DCAAA19F63F49DE22538130A36F40E4906C8BAD24413BF
C2BFE02B85240FFB8BFD679E007993335879743E6101020681A7879057C44CAA3EFA6B40AADE742F0F5009DEF03EBC12B7142AEB48BA1C06AC
430195928F889E7BFBFD5BC1D3990CE037A75CC0C6002A8617BAB3A493AC040CE81378976D9B1E4ECA99533E099011D888250DEEBEBA5F0900
183847D48C45195049FF89A37A4D209179D3FA09839D18F6AD0C48F79595DE968931302CA8E6CE7FF5F5B30AE9C7C95E0C502EA80FADC42418
278312982E44D9994980EE1DB8841C30AF79837238B5C87716460B9A4739C4B544DD8B4B0232D63FF92CA13B4C5CF2D088132B741FBD4376DA
6C17B89541D759EA0B5F17D7E11C8EAB3386EC20BBF1FF0BF2EEA83CDC550279DBF18809771B303A7BAFF3B029D905754932F776A5C25FDB

ELT layout

Cryptographic parameters

Cyclic group of order 𝑞 = 2256 − 189

3F3FAE5106E930D995517D6CB8B69D06
55F04628535863A5B745089E346A11E3

FF43

32B

Multiplicative group in a finite field of size 𝑝 (4096 bits)
6A3D90A5EA888A04AA367E9F24CB70F7BDE7409452451A92E3D39D98CB4CFCC755572F15AE879FCE930FBBF7C08F37FCF4B42D7C58C6BDADEF3FABEFD7BDF32FA8BF6017FC292C730FE8D66F21B33A146F9D591F8CE9E0F8CEAA71894F32223245258214FB3C1FB17CB2F57C02F6B6B07C5A86ACEAAA554EDE87A5A1A54E2EC3CD87E1034D23F824204692893C86C17BCA291D0896D9B50D755451BA6C8A3BC1A2A3ECBB10D6BC293A05BAC675F60E2615F532646E26FD14C7F83643D4CEDCC1380F020B52B912C907E11F4B23DCAAA19F63F49DE22538130A36F40E4906C8BAD24413BFC2BFE02B85240FFB8BFD679E007993335879743E6101020681A7879057C44CAA3EFA6B40AAD
E742F0F5009DEF03EBC12B7142AEB48BA1C06AC430195928F889E7BFBFD5BC1D3990CE037A75CC0C6002A8617BAB3A493AC040CE81378976D9B1E4ECA99533E099011D888250DEEBEBA5F0900183847D48C45195049FF89A37A4D209179D3FA09839D18F6AD0C48F79595DE968931302CA8E6CE7FF5F5B30AE9C7C95E0C502EA80FADC42418278312982E44D9994980EE1DB8841C30AF79837238B5C87716460B9A4739C4B544DD8B4B0232D63FF92CA13B4C5CF2D088132B741FBD4376DA6C17B89541D759EA0B5F17D7E11C8EAB3386EC20BBF1FF0BF2EEA83CDC550279DBF18809771B303A7BAFF3B029D905754932F776A5C25FDB

512B

Generator 𝑔 of order 𝑞
Operations: multiplication, exponentiation mod 𝑝

𝑔𝑞 ≡ 1 mod 𝑝

How are votes encrypted?

ELT layout

Exponential ElGamal public key encryption

𝐾 = 𝑔𝑠

Public key Secret key

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝑔𝑚 ⋅ 𝐾𝑟)
Encryption

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝑔𝑚1 ⋅ 𝐾𝑟1 ⋅ 𝑔𝑚2 ⋅ 𝐾𝑟2 = (𝑔𝑟1+𝑟2 , 𝑔𝑚1+𝑚2 ⋅ 𝐾𝑟1+𝑟2)

Homomorphism

Ciphertext 1024B

(𝑔𝑟)𝑠 = 𝐾𝑟

𝑔𝑚 = (𝑔𝑚 ⋅ 𝐾𝑟)/(𝑔𝑟)𝑠

Decryption with secret key

𝑚 = DL𝑔(𝑔𝑚)

ELT layout

Exponential ElGamal public key encryption

𝐾 = 𝑔𝑠

Public key Secret key

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚 ⋅ 𝐾𝑟)
Encryption

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝐾𝑚1 ⋅ 𝐾𝑟1 ⋅ 𝐾𝑚2 ⋅ 𝐾𝑟2 = (𝑔𝑟1+𝑟2 , 𝐾𝑚1+𝑚2 ⋅ 𝐾𝑟1+𝑟2)

Homomorphism

Ciphertext 1024B

(𝑔𝑟)𝑠 = 𝐾𝑟

𝐾𝑚 = (𝐾𝑚 ⋅ 𝐾𝑟)/(𝑔𝑟)𝑠

Decryption with secret key

𝑚 = DL𝐾(𝐾𝑚)

ELT layout

Exponential ElGamal public key encryption

𝐾 = 𝑔𝑠

Public key Secret key

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

(𝑔𝑟)𝑠 = 𝐾𝑟

𝐾𝑚 = (𝐾𝑚+𝑟)/(𝑔𝑟)𝑠

Decryption with secret key

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝐾𝑚1+𝑟1 ⋅ 𝐾𝑚2+𝑟2 = (𝑔𝑟1+𝑟2 , 𝐾(𝑚1+𝑚2)+(𝑟1+𝑟2))

Homomorphism

Ciphertext 1024B

𝑚 = DL𝐾(𝐾𝑚)

ELT layout

Exponential ElGamal public key encryption

𝐾 = 𝑔𝑠

Public key Secret key

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐾𝑟

𝐾𝑚 = (𝐾𝑚+𝑟)/𝐾𝑟

Decryption with random value 𝑟

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝐾𝑚1+𝑟1 ⋅ 𝐾𝑚2+𝑟2 = (𝑔𝑟1+𝑟2 , 𝐾(𝑚1+𝑚2)+(𝑟1+𝑟2))

Homomorphism

Ciphertext 1024B

𝑚 = DL𝐾(𝐾𝑚)

(𝑔𝑟)𝑠 = 𝐾𝑟

𝐾𝑚 = (𝐾𝑚+𝑟)/(𝑔𝑟)𝑠

Decryption with secret key 𝑠

𝑚 = DL𝐾(𝐾𝑚)

ELT layout

Vote encryption

Encrypts a vote 𝑚 ∈ {0,1}

𝐸 𝑚, 𝑟 = 𝛼, 𝛽 = (𝑔𝑟 , 𝐾𝑚+𝑟)

Option not selected: 𝐸 0, 𝑟 = 𝛼, 𝛽 = (𝑔𝑟 , 𝐾𝑟)

Option selected: 𝐸 1, 𝑟 = 𝛼, 𝛽 = (𝑔𝑟 , 𝐾1+𝑟) = (𝑔𝑟 , 𝐾 ⋅ 𝐾𝑟)

ELT layout

Homomorphic tallies

Multiply all encrypted votes per selection for all selections in all
contests across all ballots

𝐴, 𝐵 = ∏𝛼𝑖 , ∏𝛽𝑖 = (𝑔σ 𝑟𝑖 , 𝐾σ 𝑚𝑖+σ 𝑟𝑖)

𝐸 𝑚𝑖 , 𝑟𝑖 = 𝛼𝑖 , 𝛽𝑖 = (𝑔𝑟𝑖 , 𝐾𝑚𝑖+𝑟𝑖)
Encrypted votes for a single selection in a contest across all ballots

Encrypted tally for that selection

How to ensure a ballot is well-formed?

ELT layout

Proof of well-formedness

Prove that 𝛼, 𝛽 = (𝑔𝑟 , 𝐾𝑟) is an encryption of 0 or 1 with an or-proof

0

1

(𝑎0, 𝑏0) = (𝑔𝑢0 , 𝐾𝑢0)

(𝑎1, 𝑏1) = (𝑔𝑢1 , 𝐾𝑢1−𝑐1)

Commitment

𝑐 = 𝐻 𝐾, 𝛼, 𝛽, 𝑎0 , 𝑏0, 𝑎1, 𝑏1

𝑣0 = 𝑢0 − 𝑐0 ⋅ 𝑟

𝑣1 = 𝑢1 − 𝑐1 ⋅ 𝑟

Challenge Response

𝜋 = (𝑐0, 𝑣0, 𝑐1, 𝑣1)
Proof

0/1 128B

𝑐0 = 𝑐 − 𝑐1

𝑐1

Total size of encrypted option: (1024 + 128)B = 1152B

Encrypts a vote 𝑚 ∈ {0,1}

𝐸 𝑚, 𝑟 = 𝛼, 𝛽 = (𝑔𝑟 , 𝐾𝑚+𝑟)

ELT layout

Contest ElectionGuard

Alice 0

Bob 0

Carol 1

Dave 0

0/1

0/1

0/1

0/1

(4*1152)B = 4608B

Contest encryption

ELT layout

Prove that there are not more votes in a contest than allowed

𝐴, 𝐵 = ∏𝛼𝑖 , ∏𝛽𝑖 = (𝑔σ 𝑟𝑖 , 𝐾σ 𝑚𝑖+σ 𝑟𝑖)

𝐸 𝑚𝑖 , 𝑟𝑖 = 𝛼𝑖 , 𝛽𝑖 = (𝑔𝑟𝑖 , 𝐾𝑚𝑖+𝑟𝑖)
Encrypted votes for all selections in contest

Encrypted vote total in contest

If voters must select exactly 𝐿 = 1 option in the contest,

prove that the ciphertext encrypting the sum is an encryption of 1.

Selection limits

ELT layout

Contest ElectionGuard

Alice 0

Bob 0

Carol 1

Dave 0

Total 1

0/1

0/1

0/1

0/1

L=1

Selection limits

ELT layout

Contest ElectionGuard

Alice 0

Bob 0

Carol 1

Dave 0

Total 1

0..1

0..1

0..1

0..1

0..2

0..1 0..L

..

0..3
Range proofs

ELT layout

Contest ElectionGuard

Alice 1

Bob 0

Carol 1

Dave 0

Total 2

0..1

0..1

0..1

0..1

0..2

0..1 0..L

..

0..3
Range proofs

ELT layout

Contest ElectionGuard

Alice 1

Bob 0

Carol 2

Dave 0

Total 3

0..3

0..3

0..3

0..3

0..3

0..1 0..L

..

0..3
Range proofs

Confirmation Codes

ELT layout

Voters receive a confirmation code while submitting their ballot

Hash of all vote encryptions over all contests on the ballot

Contest ElectionGuard

Alice 0

Bob 0

Carol 1

Dave 0

Total 1

0..1

0..1

0..1

0..1

0..1

Confirmation codes

ELT layout

Voters receive a confirmation code while submitting their ballot

Hash of all vote encryptions over all contests on the ballot

Confirmation codes

ELT layout

Voters receive a confirmation code while submitting their ballot

Hash of all vote encryptions over all contests on the ballot

Confirmation codes

ELT layout

H()

Voters receive a confirmation code while submitting their ballot

Hash of all vote encryptions over all contests on the ballot

Confirmation codes

How can voters verify that their votes

have been correctly encrypted?

Challenge the encryption device in an unpredictable way.

H()

Cast or Challenge?

The Benaloh challenge

Challenge the encryption device in an unpredictable way.

H()

Cast!

If the voter decides to cast, the ballot is cast and the voting device

records the encrypted ballot.

The Benaloh challenge

Challenge the encryption device in an unpredictable way.

H()

Challenge!

If the voter decides to challenge, the ballot is opened and can be

checked by the voter.

The Benaloh challenge

Who can decrypt tallies?

ELT layout

Election public key corresponds to a secret election key that is shared

between 𝑛 trustees (or guardians).

𝐾1 = 𝑔𝑠1

𝐾2 = 𝑔𝑠2

𝐾3 = 𝑔𝑠3

𝐾 = 𝐾1 ⋅ 𝐾2 ⋅ 𝐾3

= 𝑔𝑠1+𝑠2+𝑠3

Election public key

Each guardian secret key 𝑠𝑖 is shared via Shamir secret sharing to

allow threshold decryption with 𝑘 available guardians.

Election trustees and secret sharing

ELT layout

Trustees jointly decrypt the tallies

𝐴, 𝐵 = (𝑔𝑅 , 𝐾σ 𝑚𝑖+𝑅)
Encrypted selection tally

𝑀1 = 𝐴𝑠1

𝑀2 = 𝐴𝑠2

𝑀3 = 𝐴𝑠3

𝑀 = 𝐵/ ഥ𝑀 = 𝐾σ 𝑚𝑖

σ𝑚𝑖 = DL𝐾(𝑀)

Solve a small discrete

logarithm problem

ഥ𝑀 = 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3 = 𝐴𝑠

Verifiable decryption

ELT layout

Trustees jointly decrypt the tallies and prove correct decryption

(𝑎1, 𝑏1) = (𝑔𝑢1 , 𝐴𝑢1)
Commitments

𝑏 = 𝑏1 ⋅ 𝑏2 ⋅ 𝑏3 = 𝐴𝑢1+𝑢2+𝑢3

𝑎 = 𝑎1 ⋅ 𝑎2 ⋅ 𝑎3 = 𝑔𝑢1+𝑢2+𝑢3

(𝑎2, 𝑏2) = (𝑔𝑢2 , 𝐴𝑢2)

(𝑎2, 𝑏2) = (𝑔𝑢2 , 𝐴𝑢2)

Verifiable decryption

𝐴, 𝐵 = (𝑔𝑅 , 𝐾σ 𝑚𝑖+𝑅)
Encrypted selection tally

𝑀1 = 𝐴𝑠1

𝑀2 = 𝐴𝑠2

𝑀3 = 𝐴𝑠3

ELT layout

𝜋 = (𝑐, 𝑣) Proof

𝑣 = 𝑣1 + 𝑣2 + 𝑣3

Trustees jointly decrypt the tallies and prove correct decryption

Verifiable decryption

𝐴, 𝐵 = (𝑔𝑅 , 𝐾σ 𝑚𝑖+𝑅)
Encrypted selection tally

(𝑎1, 𝑏1) = (𝑔𝑢1 , 𝐴𝑢1)
Commitments

𝑏 = 𝑏1 ⋅ 𝑏2 ⋅ 𝑏3 = 𝐴𝑢1+𝑢2+𝑢3

𝑎 = 𝑎1 ⋅ 𝑎2 ⋅ 𝑎3 = 𝑔𝑢1+𝑢2+𝑢3

(𝑎2, 𝑏2) = (𝑔𝑢2 , 𝐴𝑢2)

(𝑎2, 𝑏2) = (𝑔𝑢2 , 𝐴𝑢2)

𝑀1 = 𝐴𝑠1

𝑀2 = 𝐴𝑠2

𝑀3 = 𝐴𝑠3

Public evidence

ELT layout

The public record that provides the

evidence to verify the election.

 Election manifest

 Encrypted submitted ballots

 Challenged ballots

 Encrypted and decrypted tallies

 Cryptographic proofs that the

above are well-formed and correct

The election record is large:

Example ballot: 17 contests,

47 selectable options total

Ciphertexts + proofs:

47 * 1152B + 17 * 1152B

= 73728B > 70KB

~10000 ballots: > 700MB

The election record

What have we learned from pilots?

Challenges:

• Performance, interplay between parameters and devices

• Specifying how data is hashed is important!

• Size of the election record

• Challenge process in real time?

• Trustee process is complicated and requires interaction.
For it to be meaningful, trustees must understand their role

𝐻

What’s next?

Possible changes and extensions

• Add functionality for verifiable mixnets.

• Replace human trustees with secure hardware?

• Use elliptic curve group instead of finite field group.

• Make EG post-quantum.

Post-quantum cryptography

• A large-scale quantum computer
would be able to compute discrete
logarithms in polynomial time

• Breaks ElGamal encryption and thus
privacy of the votes

• Use post-quantum primitives,
e.g. lattice-based cryptography

Elliptic Curves

𝐸/𝔽𝑝: 𝑦2 = 𝑥3 − 3𝑥 + 𝑏

Replace finite field group with elliptic
curve group

𝑝 = 2384 − 2128 − 296 + 232 − 1

P-384

𝑝 = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319

3940200619639447921227904010014361380507973927046544666794
8293404245721771496870329047266088258938001861606973112319

3940200619639447921227904010014361380507973927046544666794
8293404245721771496870329047266088258938001861606973112319

𝑝 = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319

Elliptic Curves

𝐸/𝔽𝑝: 𝑦2 = 𝑥3 − 3𝑥 + 𝑏

Replace finite field group with elliptic
curve group

𝑝 = 2384 − 2128 − 296 + 232 − 1

P-384

𝐺 = (,)

𝐺 = (26247035095799689268623156744566981891852923491109213387815615900925518854738050089022388053975719786650872476732087,
 8325710961489029985546751289520108179287853048861315594709205902480503199884419224438643760392947333078086511627871)

→ 𝐺 =

48B

Elliptic Curves

• Group elements are smaller for similar security

• Ciphertext can be represented by 2 elements

2*48B = 96B

• Proofs become slightly larger

4*48B = 192B
• Example ballot from earlier:

64*192B = 12288B > 12KB
10000 ballots > 120MB

0/1

0/1

New directions

Commitments

Replace encryption with commitments

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐶 𝑚, 𝑟 = 𝑔𝑟 ⋅ 𝑔1
𝑚

Commitment

• Generators 𝑔 and 𝑔1 are generated publicly without knowledge
of discrete logarithm between them.

• There are no keys anymore!

• Statistically hiding, computationally binding.

𝐾 = 𝑔𝑠

Everlasting privacy!

Commitments

Replace encryption with commitments

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐶 𝑚, 𝑟 = 𝑔𝑟 ⋅ 𝑔1
𝑚

Commitment

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝐾𝑚1+𝑟1 ⋅ 𝐾𝑚2+𝑟2

= (𝑔𝑟1+𝑟2 , 𝐾(𝑚1+𝑚2)+(𝑟1+𝑟2))

Encryption homomorphism

𝑔𝑟1 ⋅ 𝑔1
𝑚1 ⋅ 𝑔𝑟2 ⋅ 𝑔1

𝑚2

= (𝑔𝑟1+𝑟2 ⋅ 𝑔1
𝑚1+𝑚2)

Commitment homomorphism

Commitments

Replace encryption with commitments

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐶 𝑚, 𝑟 = 𝑔𝑟 ⋅ 𝑔1
𝑚

Commitment

𝐸 𝑚1, 𝑟1 = (𝑔𝑟1 , 𝐾𝑚1+𝑟1)

𝐸 𝑚2, 𝑟2 = (𝑔𝑟2 , 𝐾𝑚2+𝑟2)

𝐸 𝑚3, 𝑟3 = (𝑔𝑟3 , 𝐾𝑚3+𝑟3)

𝐸 𝑚4, 𝑟4 = (𝑔𝑟4 , 𝐾𝑚4+𝑟4)

𝐶 𝑚1, 𝑟1 = 𝑔𝑟1 ⋅ 𝑔1
𝑚1

𝐶 𝑚2, 𝑟2 = 𝑔𝑟2 ⋅ 𝑔1
𝑚2

𝐶 𝑚3, 𝑟3 = 𝑔𝑟3 ⋅ 𝑔1
𝑚3

𝐶 𝑚4, 𝑟4 = 𝑔𝑟4 ⋅ 𝑔1
𝑚4

Commitments

Replace encryption with commitments

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐶 𝑚, 𝑟 = 𝑔𝑟 ⋅ 𝑔1
𝑚

Commitment

ELT layout

Tallying committed votes

𝐶 = ∏𝐶 𝑚𝑖 , 𝑟𝑖 = 𝑔σ 𝑟𝑖 ⋅ 𝑔1
σ 𝑚𝑖

𝐶 𝑚𝑖 , 𝑟𝑖 = 𝑔𝑟𝑖 ⋅ 𝑔1
𝑚𝑖

Commitments to votes

Commitment to the tally for that selection

Device keeps

σ𝑚𝑖,σ𝑟𝑖, 𝐶 𝑚𝑖 , 𝑟𝑖
Sum of random values, running tally, commitments

• Per contest:

A single 𝐶 𝑚, 𝑟 =

• Proof (with 𝑛 selections):
 + (2* 𝑛 +6)

• Per selection: 2

Add 2 + 6 per contest

Vector commitments

𝐶 𝑚, 𝑟

= 𝑔𝑟 ⋅ 𝑔1
𝑚1 ⋅ 𝑔2

𝑚2 ⋅ 𝑔3
𝑚3 ⋅ 𝑔4

𝑚4 ⋅ … ⋅ 𝑔𝑛
𝑚𝑛

Example ballot:

47*2*32B + 17*(2*512B + 6*32B)

= 23680B > 23KB

Elliptic curve P-384:

47*2*48B + 17* (2*48B + 6*48B)

= 11040B > 11KB

Elliptic curve P-256:

47*2*32B + 17* (2*32B + 6*32B)

7360B > 7KB

Committing the whole ballot:

47*2*32B + 17*2*32B + 2*32B +

6*32B = 4352B > 4KB

https://www.electionguard.vote/

https://github.com/Election-Tech-Initiative/electionguard

https://electiontechnology.org/

Design specification (Josh Benaloh, M. N., Olivier Pereira):

https://www.electionguard.vote/spec/

Academic paper (Josh Benaloh, M. N., Olivier Pereira, Dan S. Wallach):

https://dl.acm.org/doi/10.5555/3698900.3699207

v2.0 implementations (John Caron):

https://github.com/JohnLCaron/egk-ec

The MITRE verifier:

https://electionintegrity.mitre.org/verifier/

https://www.electionguard.vote/
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://electiontechnology.org/
https://www.electionguard.vote/spec/
https://dl.acm.org/doi/10.5555/3698900.3699207
https://github.com/JohnLCaron/egk-ec
https://github.com/JohnLCaron/egk-ec
https://github.com/JohnLCaron/egk-ec
https://electionintegrity.mitre.org/verifier/

Thank you:

Eion Blanchard, Ales Bizjak, Nicholas Boucher, John Caron, Henri Devillez, Joey Dodds, Felix

Doerre, Gerald Doussot, Aleks Essex, Keith Fung, Pierrick Gaudry, Rainbow Huang, Chris Jeuell,

Anunay Kulshrestha, Moses Liskov, Shreyas Minocha, Arash Mirzaei, Luke Myers, Karan Newatia,

Thomas Peters, John Ramsdell, Marsh Ray, Dan Shumow, Vanessa Teague, Aaron Tomb, Daniel

Tschudi, Daniel Wagner, Jake Waksbaum, Dan Wallach, Matt Wilhelm, Greg Zaverucha

The Microsoft Democracy Forward Team, RC Carter, Inferno Red, Hart Intercivic, Enhanced Voting,

MITRE, Center for Civic Design, the jurisdictions that ran pilot elections

Jiwon Kim for working out the commitment-based scheme during her internship this summer

	Slide 1: A modular approach to verifiable elections
	Slide 5: ElectionGuard
	Slide 6: ElectionGuard
	Slide 7: ElectionGuard
	Slide 8: Deployments
	Slide 9: Voter experience – an example
	Slide 10: Voter experience – an example
	Slide 12: Protocol sketch
	Slide 13: Cryptographic components
	Slide 14: Cryptographic components
	Slide 15: Cryptographic components
	Slide 16
	Slide 17: Cryptographic parameters
	Slide 18: Cryptographic parameters
	Slide 19
	Slide 20: Exponential ElGamal public key encryption
	Slide 21: Exponential ElGamal public key encryption
	Slide 22: Exponential ElGamal public key encryption
	Slide 23: Exponential ElGamal public key encryption
	Slide 24: Vote encryption
	Slide 25: Homomorphic tallies
	Slide 26
	Slide 27: Proof of well-formedness
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: What have we learned from pilots?
	Slide 51
	Slide 52: Possible changes and extensions
	Slide 53: Post-quantum cryptography
	Slide 54: Elliptic Curves
	Slide 55: Elliptic Curves
	Slide 56: Elliptic Curves
	Slide 57
	Slide 58: Commitments
	Slide 59: Commitments
	Slide 60: Commitments
	Slide 61: Commitments
	Slide 62: Tallying committed votes
	Slide 63: Vector commitments
	Slide 64
	Slide 65

