g%k ElectionGuard

A modular approach
o verifiable elections

Michael Naehrig

Microsoft Research

E-Vote-ID, October 2, 2025

Wedidy =
code

tenntest

’ L P
SEGUETHOS CFGe
m

ARk, Az
"seoyende avden’ o i
} A SR

descyiotion hash?s

Sy

cholder s

ElectionGuard

What is it?
* a free, open-source software toolkit,
* not a full election system!

Election vendors can incorporate it
into their existing election systems.

What it does:
 produces evidence: election record,

* enables end-to-end verifiable
elections.

ElectionGuard

What is it? Microsoft's role
* a free, open-source software toolkit, » Employs researchers.
* not a full election system! * Initiated project in 2018,

Election vendors can incorporate it publicly announced in 2019.

into their existing election systems. « Employed project manager.
 Sponsored 3™ party developers.

What it does: « Helped transition to the Election

» produces evidence: election record, Technology Initiative in 2023.

* enables end-to-end verifiable

lections. EE
elections m= Microsoft

ElectionGuard

What is it? Microsoft's current role
* a free, open-source software toolkit, » Employs researchers.
* not a full election system!

Election vendors can incorporate it
into their existing election systems.

What it does:
 produces evidence: election record,
 enables end-to-end verifiable

lections. Bl anr:
elections m= Microsoft

Deployments

In-person Public Elections Other Elections (Remote)

e 2020 — Fulton, WI « 2020 — U.S. House Democratic Caucus
with VotingWorks with Markup

« 2020 — Inyo County, CA (audit) « 2023 — Neuilly-sur-Seine, FRANCE
with VotingWorks with Electis

o 2022 — Preston, ID « 2023 — Utah absentee voters
with Hart Intercivic with Enhanced Voting

« 2023 - College Park, MD e 2024 - internal election

with Hart Intercivic with Concordium

Voter experience — an example

o Cast or Spoil

Voter experience — an example

n —
& —
n —
n —
>
www findmyballot.com ?r:
Sunwhhyo;pho‘né o —
0-& = —
-
o — g e et
o—]
n —
o Cast or Chall Spoil
ast or Challenge or Spoi

Roles
)
2 * Voters

Protocol sketch M - Election administrator
@ * Trustees (guardians)

LY e & - Verif
@ _ = =l o
ECRE__EN Bay, eritiers
E @ _cuom Ots
'/OI‘OO}%
== Ballots, proofs’ m Public key, proofs — @
— «
>
) Encrypted tallies , ~ I

<

—
—— s—
o= =

| 4"

oo
1]
[Q
V]
1]
~t+
SN
(@)
=0
Y]
o
>

Q
[¢']

Decrypted tallies,
proofs

3 pem—C

Election record

verify

Cryptographic components

 Ballot encryption

* Proofs of ballot well-formedness
e Confirmation code

@ Cast/Challenge

5= | Ballots, proofs> m Public key, proofs
i <
< ' Encrypted tallies .

<

Decrypted tallies,
proofs

13

Election record

verify verify

Cryptographic components

* Distributed key generation

* Verifiable decryption of
tallies and challenged
ballots

Public key, proofs

Ballots, proofs
4>

<

Encrypted tallies ,

<

Decrypted tallies,
proofs

il
.3

Election record

verify verify

Cryptographic components

 Homomorphic tallying
* Facilitate decryption protocols
* Verify proofs

- Ballots, proofs Public key, proofs

— >) > <

E Encrypted tallies

;.E ¥y 3 ’
- = ! p

@ Cast/Challenge > i

Decrypted tallies,
proofs

verify

13

Election record

verify

iotigr

o
i,

Cryptographic Components

Cryptographic parameters

Cyclic group of order g = 22°% — 189

FF43

I 32B

Multiplicative group in a finite field of size p (4096 bits)

6A3D90OA5EA888A04AA367E9F24CB70F7BDE7409452451A92E3D39D98CB4CFCC755572F15AE879FCE930FBBF7CO8F37FCF4B42D7C58C6BDADEF
3FABEFD7BDF32FA8BF6017FC292C730FE8D66F21B33A146F9D591F8CEOEOF8CEAA71894F32223245258214FB3C1FB17CB2F57CO02F6B6BO7C5A
86ACEAAAS54EDE87AS5A1A54E2EC3CD87E1034D23F824204692893C86C17BCA291D0896D9B50D755451BA6C8A3BC1A2A3ECBB10D6BC293A05BA
C675F60E2615F532646E26FD14C7F83643D4CEDCC1380F020B52B912C907E11F4B23DCAAA19F63F49DE22538130A36F40E4906C8BAD24413BF
C2BFEO2B85240FFB8BFD679E0Q0/7993335879743E6101020681A7879057C44CAA3EFA6B40AADE742FOF5009DEFO3EBC12B7142AEB48BA1CO6AC
430195928F889E7BFBFD5BC1D3990CEQ37A75CCOC6002A8617BAB3A493ACO40CE81378976D9B1E4ECA99533E099011D888250DEEBEBASFO900
183847D48C45195049FF89A37A4D209179D3FAQ9839D18F6ADOCA48F79595DE968931302CA8E6CE7FF5F5B30AE9C7CO5EQC502EA8OFADC42418
278312982E44D9994980EE1DB8841C30AF79837238B5C87716460B9A4739C4B544DD8B4B0232D63FF92CA13B4C5CF2D088132B741FBD4376DA
6C17B89541D759EAOB5F17D7E11C8EAB3386EC20BBF1FFOBF2EEA83CDC550279DBF18809771B303A7BAFF3B029D905754932F776A5C25FDB

Cryptographic parameters

Cyclic group of order g = 22°% — 189

FF43
E 32B

Multiplicative group in a finite field of size p (4096 bits)

512B

Generator g of order q 1 =
Operations: multiplication, exponentiation mod

iotigr

o
i,

How are votes encrypted?

Exponential ElGamal public key encryption

Public key v ;ecret key o
— S Decryption with secret key
(r)s — KT
Encryption m = (m T)/(T‘)S
E(m,v) = (9", 9™ K") m = DLg(9™)
Homomorphism
(1 rz’(mq rl) (ms rz)) :(r1+r2’ mq+m, r1+r2)

Ciphertext 1024B

Exponential ElGamal public key encryption

Public key v ;ecret key
— S Decryption with secret key
(r)s — KT
Encryption = (m T)/(T)S
E(m,r) = (g7, K™ K7) m = DL, (K™
Homomorphism
(1 rz’(mq rl) (m, rz)) :(r1+r2’ mq+ms, r1+r2)

Ciphertext 1024B

Exponential ElGamal public key encryption

Public key v ;ecret key o
— S Decryption with secret key
(r)s — KT
Encryption = (m+T)/(T)S
E(m,r) = (9", K™T) m = DL, (K™)

Homomorphism
(1 rz’(m1+r1) (m2+r2)) :(r1+r2’ (m1+m2)+(r1+r2))

Ciphertext 1024B

Exponential ElGamal public key encryption

Public ey ;ecret key
— 1S Decryption with secret key s Decryption with random value r
(r)s — T r
Encryption = m+r)/(")? = m+r)/ "
E(m,r) = (g7, k™) m = DLy (K™) m = DLy (K™)

Homomorphism
(1 rz’(m1+r1) (m2+r2)) :(r1+r2’ (m1+m2)+(r1+r2))

Ciphertext 1024B

Vote encryption

Encrypts a vote m € {0,1}
E(m,r) = (o,) = (g", K™T)

Option not selected: E(0,7) = (o,) = (9", KT)
Option selected: E(1,7) = (o,) = (", K1) = (g7, M

Homomorphic tallies

Multiply all encrypted votes per selection for all selections in all
contests across all ballots

Encrypted votes for a single selection in a contest across all ballots

E(miiri) =())=(ri’ mi_l_ri)

Encrypted tally for that selection

(4, B) = (’) =(ZTi, Zmi+27"i)

iotigr

o
i,

How to ensure a ballot is well-formed?

Proof of well-formedness

Encrypts a vote m € {0,1}
E(m,r) = (o, /) = (9", k™)

Prove that («, /) = (9", K") is an encryption of 0 or 1 with an or-proof

Commitment Challenge Response
0 (@, bo) = (g"°, KH0) Cop=C—C Vo =Uyg—CoT
c=H(K, o, [,a,,by, a,b)
1 (a4, b)) = (g", KM7) C1 Vi =U —C T
Proof

0/1 128B

Total size of encrypted option: (1024 + 128)B =1152B T = (COJ Vo, C1, Ul)

Contest encryption

Alice E

Bob 0 E 0/1
Carol v 1 E 0/1
Dave 0 = 0/1

(4*1152)B = 4608B

Selection limits

Prove that there are not more votes in a contest than allowed

Encrypted votes for all selections in contest

E(mi'ri) =())=(Ti' mi_l_ri)

Encrypted vote total in contest

(4,B) = (,) =(Zri, Zmi+27‘i)

If voters must select exactly L = 1 option in the contest,
prove that the ciphertext encrypting the sum is an encryption of 1.

Selection limits

Alice E
Bob 0 E 0/1
Carol v/ 1 = 0/1
Dave E 0/1

=0..1 0..L

Range proofs .

Alice =001
Bob 0 E 0..1
Carol v/ 1 =0..1
Dave —— =0..1

=0..1 0..L

Range proofs .

Alice =001
Bob 0 E 0..1
Carol v/ 1 =0..1
Dave —— =0..1

0..L

0..1

i
W

Range proofs

Alice
Bob 0
Carol \/\/ 2

© © o o
w W w w

Dave 0

iotigr

o
i,

onfirmation Codes

Confirmation codes

Voters receive a confirmation code while submitting their ballot
Hash of all vote encryptions over all contests on the ballot

Alice

Confirmation codes

Voters receive a confirmation code while submitting their ballot
Hash of all vote encryptions over all contests on the ballot

-)

Confirmation codes

Voters receive a confirmation code while submitting their ballot
Hash of all vote encryptions over all contests on the ballot

.) |) [R

Confirmation codes

Voters receive a confirmation code while submitting their ballot
Hash of all vote encryptions over all contests on the ballot

Your vote has been recorded.

Confirmation Code.

H [] Thank you for voting.
Remove your
Use this ticket to veri
Il a

......
X

et

Enter this code:
7hmcg 9329d 99dcf
7m792 bf7C9 4cmgc
44347 gbh74

How can voters verify that their votes
have been correctly encrypted?

The Benaloh challenge

Challenge the encryption device in an unpredictable way.

s
U

ﬁ':'O)

Cast or Challenge?

The Benaloh challenge

Challenge the encryption device in an unpredictable way.

s
U

ﬁ':'G)

- Cast!

999999999999999
777777777777777
4444444444

If the voter decides to cast, the ballot is cast and the voting device
records the encrypted ballot.

The Benaloh challenge

Challenge the encryption device in an unpredictable way.

H(ﬁ:f':'O)

- Challenge!

999999999999999
777777777777777
4444444444

If the voter decides to challenge, the ballot is opened and can be
checked by the voter.

iotigr

o
i,

Who can decrypt tallies?

Election trustees and secret sharing

Election public key corresponds to a secret election key that is shared
between n trustees (or guardians).

Election public key
— S1

— Sl+52+53
Q’ b

Each guardian secret key s; 1s shared via Shamir secret sharing to
allow threshold decryption with k available guardians.

Verifiable decryption

Trustees jointly decrypt the tallies

Encrypted selection tally

[] (’):(R’ Zmi+R)

Q B i = eEm
%
%

1
%
N

> 2m; = DLg (M)

55 Solve a small discrete
logarithm problem

Verifiable decryption

Trustees jointly decrypt the tallies and prove correct decryption

Encrypted selection tally

[] (4,):(R’ Zmi+R)
Commitments
Q (e by) = (9", 4%)

% % (ab;) = (g%, 4%)

— u1+u2+u3
% * (h,) = (g%, 4%)

— U4 +u2 +U,3

Verifiable decryption

Trustees jointly decrypt the tallies and prove correct decryption

Encrypted selection tally

Q@ - T
%
%

(b)) = (g%, A4)

5 (0, h2) = (9%, 4%)

] (4,):(R’ Zmi+R)

— U4 +u2 +U,3

— _ uq +u2 +U3

U:U1+U2+U3

T = (C, U) E]Proof

iotigr

o
i,

Public evidence

The election record

The public record that provides the
evidence to verify the election.

- Election manifest

- Encrypted submitted ballots

- Challenged ballots

- Encrypted and decrypted tallies

- Cryptographic proofs that the
above are well-formed and correct

",'@
The election record is large:

Example ballot: 17 contests,
47 selectable options total

Ciphertexts + proofs:

= 0/1
47 * 1152B + 17 * 1152B
= 73728B > 70KB

~10000 ballots: > 700MB

What have we learned from pilots?
Challenges:

71+ Performance, interplay between parameters and devices
H < Specifying how data is hashed is important!

"T'@ * Size of the election record

© - Challenge process in real time?

@ * Trustee process is complicated and requires interaction.
For it to be meaningful, trustees must understand their role

iotigr

o
i,

What's next?

Possible changes and extensions

el « Add functionality for verifiable mixnets.
@ * Replace human trustees with secure hardware?

* Use elliptic curve group instead of finite field group.

203 « Make EG post-quantum.

Post-quantum cryptogra

* A large-scale quantum computer
would be able to compute discrete
logarithms in polynomial time

* Breaks ElGamal encryption and thus
privacy of the votes

» Use post-quantum primitives,
e.g. lattice-based cryptography

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

Peter W, Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Abstract

A computer is generally considered to be a universal
computational device; ie., it is believed able to simulate
any physical computational device with a cost in com-
putation time of at most a polynomial factor. It is not
clear whether this is still true when quantum mechanics
is taken into consideration. Several researchers, starting
with David Deutsch, have developed models for quantum
mechanical computers and have investigated their compu-
tational properties. This paper gives Las Vegas algorithms
Jfor finding discrete logarithms and factoring integers on
a quantum computer that take a number of steps which is
polynomial in the input size, e.g., the number of digits of the
integer to be factored. These two problems are generally
considered hard on a classical computer and have been
used as the basis of several proposed cryptosystems. (We
thus give the first examples of quantum cryptanalysis.)

1 Introduction
Since the discovery of quantum mechanics, people have

found the behavior of the laws of probability in quan-
tum mechanics counterintuitive. Because of this behavior,

[1, 2]. Although he did not ask whether quantum mechan-
ics conferred extra power to computation, he did show that
a Turing machine could be simulated by the reversible uni-
tary evolution of a quantum process, which is a necessary
prerequisite for quantum computation. Deutsch [9, 10] was
the first to give an explicit model of quantum computation
He defined both quantum Turing machines and quantum
circuits and investigated some of their properties.

The next part of this paper discusses how quantum com-
putation relates to classical complexity classes. We will
thus first give a brief intuitive discussion of complexity
classes for those readers who do not have this background.
There are generally two resources which limit the ability
of computers to solve large problems: time and space (i.c.,
memory). The field of analysis of algorithms considers
the asymptotic demands that algorithms make for these
resources as a function of the problem size. Theoretical
computer scientists generally classify algorithms as effi-
cient when the number of steps of the algorithms grows as
a polynomial in the size of the input. The class of prob-
lems which can be solved by efficient algorithms is known
as P. This classification has several nice properties. For
one thing, it does a reasonable job of reflecting the per-
formance of algorithms in practice (although an algorithm
whose running time is the tenth power of the input size,

Elliptic Curves

Replace finite field group with elliptic
curve group

. A7l — A3
P-384
p = 2384- _ 2128 _ 296 + 232 —1
p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319

3940200619639447921227904010014361380507973927046544666794 ey
8293404245721771496870329047266088258938001861606973112319

Elliptic Curves

Replace finite field group with elliptic
curve group

E/Fy: y* =x°>—=3x+b
P-384
p = 2384- _ 2128 _ 296 + 232 —1

p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319

I 48B

G = (26247035095799689268623156744566981891852923491109213387815615900925518854738050089022388053975719786650872476732087,
8325710961489029985546751289520108179287853048861315594709205902480503199884419224438643760392947333078086511627871)

G = (e —) — G = we—

Elliptic Curves

* Group elements are smaller for similar security
* Ciphertext can be represented by 2 elements

R=PaQ

2*48B = 96B
== 0/1

* Proofs become slightly larger = 0/1
» Example ballot from earlier:
4*48B = 192B 0/1

64*192B = 12288B > 12KB
10000 ballots > 120MB

iotigr

o
i,

New directions

Commitments

Replace encryption with commitments

Encryption Commitment
E(m,r) = (g7, K™) C(m,r)=g" g

— S

* Generators g and g, are generated publicly without knowledge
of discrete logarithm between them.

* There are no keys anymore!
» Statistically hiding, computationally binding.

Commitments

Replace encryption with commitments

Encryption Commitment

E(m,r) =(T, m+1") C(m,r) — AT m

Encryption homomorphism Commitment homomorphism

(".gTz (KMatT) . (m2+r2)) (1 m1) () mz)

=(T1+r2’ (m1+m2)+(T1+T2)) =(r1+r2 m1+m2)

Commitments

Replace encryption with commitments

Encryption Commitment

E(m,7) = (9", K™ C(m,7)=g" g™
E(mq, 1) = (g™, K™ C(my,r) =g g™
E(my,my) = (972, K™2+72) C(myrs) = g - g™
E(mg,rg) — (7”3’ m3+r3) C(m3,7”3) = g'3 e

E(my, 1) = (g, KMeTT4) C(my,my) =g™ g™

Commitments

Replace encryption with commitments

Encryption Commitment

E(m,r) = (9", k™) Cim,r) =g" - 97"

ot || et I

Alice 0 = 0/1 Alice 0 ? 0/1
Bob 0 = 0/1 Bob 0 ? 0/1
Carol v 1 E 0/1 Carol v 1 ? 0/1
Dave 0 = 0/1 Dave 0 ? 0/1

Tallying committed votes

? 0/1

Commitments to votes ? 0/1

C(m;, 1) = gt 'gini

? 0/1

? 0/1
? 0/1

Device keeps
Sum of random values, running tally, commitments Z;: Ym;
xmg,nti, C(my, 1) — 7 Alice 314 —
Bob 47 —_
Commitment to the tally for that selection Carol 376 —

C=T11C(my, 1) = g&Ti -glZ i Dave 12 -

Vector commitments Example ballot:
47%2*32B + 17*(2* + 6*32B)
C(m,7) = 23680B > 23KB

T mq my ms my mnq

Elliptic curve P-384:
A7*2*48B + 17* (2*48B + 6*48B)

* Per contest: = 11040B > 11KB
A single C(im,r) =
* Proof (with n selections): Elliptic curve P-256:
+ (2*n +6) — 47*2*32B + 17* (2*32B + 6*32B)
* Per selection: 2 — 7360B > 7KB
Add 2 + 6 — per contest

Committing the whole ballot:
A7*2*32B + 17*2*32B + 2*32B +
6*32B = 4352B > 4KB

ElectionGuard

https://www.electionguard.vote/
https://github.com/Election-Tech-Initiative/electionguard
https://electiontechnology.org/

Design specification (Josh Benaloh, M. N., Olivier Pereira):

https://www.electionguard.vote/spec/
Academic paper (Josh Benaloh, M. N., Olivier Pereira, Dan S. Wallach):

https://dl.acm.org/doi/10.5555/3698900.3699207

v2.0 implementations (John Caron):
https://github.com/JohnlLCaron/egk-ec

The MITRE verifier:
https://electionintegrity.mitre.org/verifier/

https://www.electionguard.vote/
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://electiontechnology.org/
https://www.electionguard.vote/spec/
https://dl.acm.org/doi/10.5555/3698900.3699207
https://github.com/JohnLCaron/egk-ec
https://github.com/JohnLCaron/egk-ec
https://github.com/JohnLCaron/egk-ec
https://electionintegrity.mitre.org/verifier/

ElectionGuard

Thank you:

Eion Blanchard, Ales Bizjak, Nicholas Boucher, John Caron, Henri Devillez, Joey Dodds, Felix
Doerre, Gerald Doussot, Aleks Essex, Keith Fung, Pierrick Gaudry, Rainbow Huang, Chris Jeuell,
Anunay Kulshrestha, Moses Liskov, Shreyas Minocha, Arash Mirzaei, Luke Myers, Karan Newatia,
Thomas Peters, John Ramsdell, Marsh Ray, Dan Shumow, Vanessa Teague, Aaron Tomb, Daniel
Tschudi, Daniel Wagner, Jake Waksbaum, Dan Wallach, Matt Wilhelm, Greg Zaverucha

The Microsoft Democracy Forward Team, RC Carter, Inferno Red, Hart Intercivic, Enhanced Voting,
MITRE, Center for Civic Design, the jurisdictions that ran pilot elections

Jiwon Kim for working out the commitment-based scheme during her internship this summer

	Slide 1: A modular approach to verifiable elections
	Slide 5: ElectionGuard
	Slide 6: ElectionGuard
	Slide 7: ElectionGuard
	Slide 8: Deployments
	Slide 9: Voter experience – an example
	Slide 10: Voter experience – an example
	Slide 12: Protocol sketch
	Slide 13: Cryptographic components
	Slide 14: Cryptographic components
	Slide 15: Cryptographic components
	Slide 16
	Slide 17: Cryptographic parameters
	Slide 18: Cryptographic parameters
	Slide 19
	Slide 20: Exponential ElGamal public key encryption
	Slide 21: Exponential ElGamal public key encryption
	Slide 22: Exponential ElGamal public key encryption
	Slide 23: Exponential ElGamal public key encryption
	Slide 24: Vote encryption
	Slide 25: Homomorphic tallies
	Slide 26
	Slide 27: Proof of well-formedness
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: What have we learned from pilots?
	Slide 51
	Slide 52: Possible changes and extensions
	Slide 53: Post-quantum cryptography
	Slide 54: Elliptic Curves
	Slide 55: Elliptic Curves
	Slide 56: Elliptic Curves
	Slide 57
	Slide 58: Commitments
	Slide 59: Commitments
	Slide 60: Commitments
	Slide 61: Commitments
	Slide 62: Tallying committed votes
	Slide 63: Vector commitments
	Slide 64
	Slide 65

