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ElectionGuard

What is it?

• a free, open-source software toolkit,

• not a full election system!

Election vendors can incorporate it 
into their existing election systems.

What it does:

• produces evidence: election record,

• enables end-to-end verifiable 
elections.
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ElectionGuard

What is it?

• a free, open-source software toolkit,

• not a full election system!

Election vendors can incorporate it 
into their existing election systems.

What it does:

• produces evidence: election record,

• enables end-to-end verifiable 
elections.

Microsoft’s current role

• Employs researchers.



Deployments

In-person Public Elections

• 2020 – Fulton, WI 
            with VotingWorks

• 2020 – Inyo County, CA (audit)
            with VotingWorks

• 2022 – Preston, ID
            with Hart Intercivic

• 2023 – College Park, MD 
            with Hart Intercivic

Other Elections (Remote)

• 2020 – U.S. House Democratic Caucus
            with Markup

• 2023 – Neuilly-sur-Seine, FRANCE
            with Electis

• 2023 – Utah absentee voters
            with Enhanced Voting

• 2024 – internal election
            with Concordium



Voter experience – an example

Cast or Spoil



Voter experience – an example

Cast or Challenge or Spoil



Protocol sketch
• Voters

• Election administrator

• Trustees (guardians)

• Verifiers

Roles



Cryptographic components

• Ballot encryption

• Proofs of ballot well-formedness

• Confirmation code 



Cryptographic components
• Distributed key generation

• Verifiable decryption of

tallies and challenged 

ballots



Cryptographic components
• Homomorphic tallying

• Facilitate decryption protocols

• Verify proofs



Cryptographic Components



ELT layout

Cryptographic parameters

Cyclic group of order 𝑞 = 2256 − 189 

3F3FAE5106E930D995517D6CB8B69D06
55F04628535863A5B745089E346A11E3

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF43

32B

Multiplicative group in a finite field of size 𝑝 (4096 bits)

6A3D90A5EA888A04AA367E9F24CB70F7BDE7409452451A92E3D39D98CB4CFCC755572F15AE879FCE930FBBF7C08F37FCF4B42D7C58C6BDADEF
3FABEFD7BDF32FA8BF6017FC292C730FE8D66F21B33A146F9D591F8CE9E0F8CEAA71894F32223245258214FB3C1FB17CB2F57C02F6B6B07C5A
86ACEAAA554EDE87A5A1A54E2EC3CD87E1034D23F824204692893C86C17BCA291D0896D9B50D755451BA6C8A3BC1A2A3ECBB10D6BC293A05BA
C675F60E2615F532646E26FD14C7F83643D4CEDCC1380F020B52B912C907E11F4B23DCAAA19F63F49DE22538130A36F40E4906C8BAD24413BF
C2BFE02B85240FFB8BFD679E007993335879743E6101020681A7879057C44CAA3EFA6B40AADE742F0F5009DEF03EBC12B7142AEB48BA1C06AC
430195928F889E7BFBFD5BC1D3990CE037A75CC0C6002A8617BAB3A493AC040CE81378976D9B1E4ECA99533E099011D888250DEEBEBA5F0900
183847D48C45195049FF89A37A4D209179D3FA09839D18F6AD0C48F79595DE968931302CA8E6CE7FF5F5B30AE9C7C95E0C502EA80FADC42418
278312982E44D9994980EE1DB8841C30AF79837238B5C87716460B9A4739C4B544DD8B4B0232D63FF92CA13B4C5CF2D088132B741FBD4376DA
6C17B89541D759EA0B5F17D7E11C8EAB3386EC20BBF1FF0BF2EEA83CDC550279DBF18809771B303A7BAFF3B029D905754932F776A5C25FDB



ELT layout

Cryptographic parameters

Cyclic group of order 𝑞 = 2256 − 189 

3F3FAE5106E930D995517D6CB8B69D06
55F04628535863A5B745089E346A11E3

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF43

32B

Multiplicative group in a finite field of size 𝑝 (4096 bits)

E742F0F5009DEF03EBC12B7142AEB48BA1C06AC430195928F889E7BFBFD5BC1D3990CE037A75CC0C6002A8617BAB3A493AC040CE81378976D9B1E4ECA99533E099011D888250DEEBEBA5F0900183847D48C45195049FF89A37A4D209179D3FA09839D18F6AD0C48F79595DE968931302CA8E6CE7FF5F5B30AE9C7C95E0C502EA80FADC42418278312982E44D9994980EE1DB8841C30AF79837238B5C87716460B9A4739C4B544DD8B4B0232D63FF92CA13B4C5CF2D088132B741FBD4376DA6C17B89541D759EA0B5F17D7E11C8EAB3386EC20BBF1FF0BF2EEA83CDC550279DBF18809771B303A7BAFF3B029D905754932F776A5C25FDB

512B

Generator 𝑔 of order 𝑞
Operations: multiplication, exponentiation mod 𝑝

𝑔𝑞 ≡ 1 mod 𝑝



How are votes encrypted?



ELT layout

Exponential ElGamal public key encryption

𝐾 = 𝑔𝑠

Public key Secret key 

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝑔𝑚 ⋅ 𝐾𝑟)
Encryption

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝑔𝑚1 ⋅ 𝐾𝑟1 ⋅ 𝑔𝑚2 ⋅ 𝐾𝑟2 = (𝑔𝑟1+𝑟2 , 𝑔𝑚1+𝑚2 ⋅ 𝐾𝑟1+𝑟2)

Homomorphism

Ciphertext 1024B

(𝑔𝑟)𝑠 = 𝐾𝑟

𝑔𝑚 = (𝑔𝑚 ⋅ 𝐾𝑟)/(𝑔𝑟)𝑠

Decryption with secret key

𝑚 = DL𝑔(𝑔𝑚)
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ELT layout

Exponential ElGamal public key encryption

𝐾 = 𝑔𝑠

Public key Secret key 

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

(𝑔𝑟)𝑠 = 𝐾𝑟

𝐾𝑚 = (𝐾𝑚+𝑟)/(𝑔𝑟)𝑠

Decryption with secret key

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝐾𝑚1+𝑟1 ⋅ 𝐾𝑚2+𝑟2 = (𝑔𝑟1+𝑟2 , 𝐾(𝑚1+𝑚2)+(𝑟1+𝑟2))

Homomorphism

Ciphertext 1024B

𝑚 = DL𝐾(𝐾𝑚)



ELT layout

Exponential ElGamal public key encryption

𝐾 = 𝑔𝑠

Public key Secret key 

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐾𝑟

𝐾𝑚 = (𝐾𝑚+𝑟)/𝐾𝑟

Decryption with random value 𝑟

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝐾𝑚1+𝑟1 ⋅ 𝐾𝑚2+𝑟2 = (𝑔𝑟1+𝑟2 , 𝐾(𝑚1+𝑚2)+(𝑟1+𝑟2))

Homomorphism

Ciphertext 1024B

𝑚 = DL𝐾(𝐾𝑚)

(𝑔𝑟)𝑠 = 𝐾𝑟

𝐾𝑚 = (𝐾𝑚+𝑟)/(𝑔𝑟)𝑠

Decryption with secret key 𝑠

𝑚 = DL𝐾(𝐾𝑚)



ELT layout

Vote encryption

Encrypts a vote 𝑚 ∈ {0,1}

𝐸 𝑚, 𝑟 = 𝛼, 𝛽 = (𝑔𝑟 , 𝐾𝑚+𝑟)

Option not selected:     𝐸 0, 𝑟 = 𝛼, 𝛽 = (𝑔𝑟 , 𝐾𝑟)

Option selected:             𝐸 1, 𝑟 = 𝛼, 𝛽 = (𝑔𝑟 , 𝐾1+𝑟) = (𝑔𝑟 , 𝐾 ⋅ 𝐾𝑟)



ELT layout

Homomorphic tallies

Multiply all encrypted votes per selection for all selections in all 
contests across all ballots

𝐴, 𝐵 = ∏𝛼𝑖 , ∏𝛽𝑖 = (𝑔σ 𝑟𝑖 , 𝐾σ 𝑚𝑖+σ 𝑟𝑖)

𝐸 𝑚𝑖 , 𝑟𝑖 = 𝛼𝑖 , 𝛽𝑖 = (𝑔𝑟𝑖 , 𝐾𝑚𝑖+𝑟𝑖)
Encrypted votes for a single selection in a contest across all ballots 

Encrypted tally for that selection



How to ensure a ballot is well-formed?



ELT layout

Proof of well-formedness

Prove that 𝛼, 𝛽 = (𝑔𝑟 , 𝐾𝑟) is an encryption of 0 or 1 with an or-proof

0

1

(𝑎0, 𝑏0) = (𝑔𝑢0 , 𝐾𝑢0)

(𝑎1, 𝑏1) = (𝑔𝑢1 , 𝐾𝑢1−𝑐1)

Commitment

𝑐 = 𝐻 𝐾, 𝛼, 𝛽, 𝑎0 , 𝑏0, 𝑎1, 𝑏1

𝑣0 = 𝑢0 − 𝑐0 ⋅ 𝑟

𝑣1 = 𝑢1 − 𝑐1 ⋅ 𝑟

Challenge Response

𝜋 = (𝑐0, 𝑣0, 𝑐1, 𝑣1)
Proof

0/1 128B

𝑐0 = 𝑐 − 𝑐1

𝑐1

Total size of encrypted option: (1024 + 128)B = 1152B

Encrypts a vote 𝑚 ∈ {0,1}

𝐸 𝑚, 𝑟 = 𝛼, 𝛽 = (𝑔𝑟 , 𝐾𝑚+𝑟)



ELT layout

Contest ElectionGuard

Alice 0

Bob 0

Carol 1

Dave 0

0/1

0/1

0/1

0/1

(4*1152)B = 4608B

Contest encryption



ELT layout

Prove that there are not more votes in a contest than allowed

𝐴, 𝐵 = ∏𝛼𝑖 , ∏𝛽𝑖 = (𝑔σ 𝑟𝑖 , 𝐾σ 𝑚𝑖+σ 𝑟𝑖)

𝐸 𝑚𝑖 , 𝑟𝑖 = 𝛼𝑖 , 𝛽𝑖 = (𝑔𝑟𝑖 , 𝐾𝑚𝑖+𝑟𝑖)
Encrypted votes for all selections in contest 

Encrypted vote total in contest 

If voters must select exactly 𝐿 = 1 option in the contest, 

prove that the ciphertext encrypting the sum is an encryption of 1. 

Selection limits



ELT layout

Contest ElectionGuard

Alice 0

Bob 0

Carol 1

Dave 0

Total 1

0/1

0/1

0/1

0/1

L=1

Selection limits



ELT layout

Contest ElectionGuard

Alice 0

Bob 0

Carol 1

Dave 0

Total 1

0..1

0..1

0..1

0..1

0..2

0..1 0..L

..

0..3
Range proofs



ELT layout

Contest ElectionGuard

Alice 1

Bob 0

Carol 1

Dave 0

Total 2

0..1

0..1

0..1

0..1

0..2

0..1 0..L

..

0..3
Range proofs



ELT layout

Contest ElectionGuard

Alice 1

Bob 0

Carol 2

Dave 0

Total 3

0..3

0..3

0..3

0..3

0..3

0..1 0..L

..

0..3
Range proofs



Confirmation Codes



ELT layout

Voters receive a confirmation code while submitting their ballot

Hash of all vote encryptions over all contests on the ballot

Contest ElectionGuard

Alice 0

Bob 0

Carol 1

Dave 0

Total 1

0..1

0..1

0..1

0..1

0..1

Confirmation codes



ELT layout

Voters receive a confirmation code while submitting their ballot

Hash of all vote encryptions over all contests on the ballot

Confirmation codes



ELT layout

Voters receive a confirmation code while submitting their ballot

Hash of all vote encryptions over all contests on the ballot

Confirmation codes



ELT layout

H(       )

Voters receive a confirmation code while submitting their ballot

Hash of all vote encryptions over all contests on the ballot

Confirmation codes



How can voters verify that their votes 

have been correctly encrypted?



Challenge the encryption device in an unpredictable way.

H(            )

Cast or Challenge?

The Benaloh challenge



Challenge the encryption device in an unpredictable way.

H(            )

Cast!

If the voter decides to cast, the ballot is cast and the voting device 

records the encrypted ballot.

The Benaloh challenge



Challenge the encryption device in an unpredictable way.

H(            )

Challenge!

If the voter decides to challenge, the ballot is opened and can be 

checked by the voter.

The Benaloh challenge



Who can decrypt tallies?



ELT layout

Election public key corresponds to a secret election key that is shared 

between 𝑛 trustees (or guardians).

𝐾1 = 𝑔𝑠1

𝐾2 = 𝑔𝑠2

𝐾3 = 𝑔𝑠3

𝐾 = 𝐾1 ⋅ 𝐾2 ⋅ 𝐾3

= 𝑔𝑠1+𝑠2+𝑠3

Election public key 

Each guardian secret key 𝑠𝑖 is shared via Shamir secret sharing to 

allow threshold decryption with 𝑘 available guardians.

Election trustees and secret sharing



ELT layout

Trustees jointly decrypt the tallies

𝐴, 𝐵 = (𝑔𝑅 , 𝐾σ 𝑚𝑖+𝑅)
Encrypted selection tally 

𝑀1 = 𝐴𝑠1

𝑀2 = 𝐴𝑠2

𝑀3 = 𝐴𝑠3

𝑀 = 𝐵/ ഥ𝑀 = 𝐾σ 𝑚𝑖

σ𝑚𝑖 = DL𝐾(𝑀)

Solve a small discrete 

logarithm problem

ഥ𝑀 = 𝑀1 ⋅ 𝑀2 ⋅ 𝑀3 = 𝐴𝑠

Verifiable decryption



ELT layout

Trustees jointly decrypt the tallies and prove correct decryption

(𝑎1, 𝑏1) = (𝑔𝑢1 , 𝐴𝑢1)
Commitments

𝑏 = 𝑏1 ⋅ 𝑏2 ⋅ 𝑏3 = 𝐴𝑢1+𝑢2+𝑢3

𝑎 = 𝑎1 ⋅ 𝑎2 ⋅ 𝑎3 = 𝑔𝑢1+𝑢2+𝑢3

(𝑎2, 𝑏2) = (𝑔𝑢2 , 𝐴𝑢2)

(𝑎2, 𝑏2) = (𝑔𝑢2 , 𝐴𝑢2)

Verifiable decryption

𝐴, 𝐵 = (𝑔𝑅 , 𝐾σ 𝑚𝑖+𝑅)
Encrypted selection tally 

𝑀1 = 𝐴𝑠1

𝑀2 = 𝐴𝑠2

𝑀3 = 𝐴𝑠3



ELT layout

𝜋 = (𝑐, 𝑣) Proof

𝑣 = 𝑣1 + 𝑣2 + 𝑣3

Trustees jointly decrypt the tallies and prove correct decryption

Verifiable decryption

𝐴, 𝐵 = (𝑔𝑅 , 𝐾σ 𝑚𝑖+𝑅)
Encrypted selection tally 

(𝑎1, 𝑏1) = (𝑔𝑢1 , 𝐴𝑢1)
Commitments

𝑏 = 𝑏1 ⋅ 𝑏2 ⋅ 𝑏3 = 𝐴𝑢1+𝑢2+𝑢3

𝑎 = 𝑎1 ⋅ 𝑎2 ⋅ 𝑎3 = 𝑔𝑢1+𝑢2+𝑢3

(𝑎2, 𝑏2) = (𝑔𝑢2 , 𝐴𝑢2)

(𝑎2, 𝑏2) = (𝑔𝑢2 , 𝐴𝑢2)

𝑀1 = 𝐴𝑠1

𝑀2 = 𝐴𝑠2

𝑀3 = 𝐴𝑠3



Public evidence



ELT layout

The public record that provides the 

evidence to verify the election.

 Election manifest

 Encrypted submitted ballots

 Challenged ballots

 Encrypted and decrypted tallies

 Cryptographic proofs that the 

above are well-formed and correct

The election record is large:

Example ballot: 17 contests, 

47 selectable options total

Ciphertexts + proofs:

 

47 * 1152B + 17 * 1152B

= 73728B > 70KB

~10000 ballots: > 700MB

The election record



What have we learned from pilots?

Challenges:

• Performance, interplay between parameters and devices

• Specifying how data is hashed is important!

• Size of the election record

• Challenge process in real time?

• Trustee process is complicated and requires interaction. 
For it to be meaningful, trustees must understand their role

𝐻



What’s next?



Possible changes and extensions

• Add functionality for verifiable mixnets.

• Replace human trustees with secure hardware? 

• Use elliptic curve group instead of finite field group.

• Make EG post-quantum.



Post-quantum cryptography

• A large-scale quantum computer 
would be able to compute discrete 
logarithms in polynomial time

• Breaks ElGamal encryption and thus 
privacy of the votes

• Use post-quantum primitives, 
e.g. lattice-based cryptography



Elliptic Curves

𝐸/𝔽𝑝: 𝑦2 = 𝑥3 − 3𝑥 + 𝑏 

Replace finite field group with elliptic 
curve group

𝑝 = 2384 − 2128 − 296 + 232 − 1

P-384

𝑝 = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319

3940200619639447921227904010014361380507973927046544666794
8293404245721771496870329047266088258938001861606973112319

3940200619639447921227904010014361380507973927046544666794
8293404245721771496870329047266088258938001861606973112319



𝑝 = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319

Elliptic Curves

𝐸/𝔽𝑝: 𝑦2 = 𝑥3 − 3𝑥 + 𝑏 

Replace finite field group with elliptic 
curve group

𝑝 = 2384 − 2128 − 296 + 232 − 1

P-384

𝐺 = ( ,  )

𝐺 = (26247035095799689268623156744566981891852923491109213387815615900925518854738050089022388053975719786650872476732087,
 8325710961489029985546751289520108179287853048861315594709205902480503199884419224438643760392947333078086511627871)

→  𝐺 =

48B



Elliptic Curves

• Group elements are smaller for similar security

• Ciphertext can be represented by 2 elements

2*48B = 96B

• Proofs become slightly larger

4*48B = 192B
• Example ballot from earlier: 

64*192B = 12288B > 12KB
10000 ballots > 120MB

0/1

0/1



New directions



Commitments

Replace encryption with commitments

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐶 𝑚, 𝑟 = 𝑔𝑟 ⋅ 𝑔1
𝑚

Commitment

• Generators 𝑔 and 𝑔1 are generated publicly without knowledge 
of discrete logarithm between them.

• There are no keys anymore!

• Statistically hiding, computationally binding. 

𝐾 = 𝑔𝑠

Everlasting privacy!



Commitments

Replace encryption with commitments

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐶 𝑚, 𝑟 = 𝑔𝑟 ⋅ 𝑔1
𝑚

Commitment

𝑔𝑟1 ⋅ 𝑔𝑟2 , 𝐾𝑚1+𝑟1 ⋅ 𝐾𝑚2+𝑟2

= (𝑔𝑟1+𝑟2 , 𝐾(𝑚1+𝑚2)+(𝑟1+𝑟2))

Encryption homomorphism

𝑔𝑟1 ⋅ 𝑔1
𝑚1 ⋅ 𝑔𝑟2 ⋅ 𝑔1

𝑚2

= (𝑔𝑟1+𝑟2 ⋅ 𝑔1
𝑚1+𝑚2)

Commitment homomorphism



Commitments

Replace encryption with commitments

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐶 𝑚, 𝑟 = 𝑔𝑟 ⋅ 𝑔1
𝑚

Commitment

𝐸 𝑚1, 𝑟1 = (𝑔𝑟1 , 𝐾𝑚1+𝑟1)

𝐸 𝑚2, 𝑟2 = (𝑔𝑟2 , 𝐾𝑚2+𝑟2)

𝐸 𝑚3, 𝑟3 = (𝑔𝑟3 , 𝐾𝑚3+𝑟3)

𝐸 𝑚4, 𝑟4 = (𝑔𝑟4 , 𝐾𝑚4+𝑟4)

𝐶 𝑚1, 𝑟1 = 𝑔𝑟1 ⋅ 𝑔1
𝑚1

𝐶 𝑚2, 𝑟2 = 𝑔𝑟2 ⋅ 𝑔1
𝑚2

𝐶 𝑚3, 𝑟3 = 𝑔𝑟3 ⋅ 𝑔1
𝑚3

𝐶 𝑚4, 𝑟4 = 𝑔𝑟4 ⋅ 𝑔1
𝑚4



Commitments

Replace encryption with commitments

𝐸 𝑚, 𝑟 = (𝑔𝑟 , 𝐾𝑚+𝑟)
Encryption

𝐶 𝑚, 𝑟 = 𝑔𝑟 ⋅ 𝑔1
𝑚

Commitment



ELT layout

Tallying committed votes

𝐶 = ∏𝐶 𝑚𝑖 , 𝑟𝑖 = 𝑔σ 𝑟𝑖 ⋅ 𝑔1
σ 𝑚𝑖

𝐶 𝑚𝑖 , 𝑟𝑖 =  𝑔𝑟𝑖 ⋅ 𝑔1
𝑚𝑖

Commitments to votes 

Commitment to the tally for that selection

Device keeps 

σ𝑚𝑖,σ𝑟𝑖, 𝐶 𝑚𝑖 , 𝑟𝑖   
Sum of random values, running tally, commitments 



• Per contest: 

A single 𝐶 𝑚, 𝑟  = 

• Proof (with 𝑛 selections): 
                      + (2* 𝑛 +6) 

• Per selection: 2

Add 2                       + 6      per contest

Vector commitments

𝐶 𝑚, 𝑟

= 𝑔𝑟 ⋅ 𝑔1
𝑚1 ⋅ 𝑔2

𝑚2 ⋅ 𝑔3
𝑚3 ⋅ 𝑔4

𝑚4 ⋅ … ⋅ 𝑔𝑛
𝑚𝑛

Example ballot:  

47*2*32B + 17*(2*512B + 6*32B) 

= 23680B > 23KB

Elliptic curve P-384:

47*2*48B + 17* (2*48B + 6*48B) 

= 11040B > 11KB

Elliptic curve P-256: 

47*2*32B + 17* (2*32B + 6*32B)

7360B > 7KB

Committing the whole ballot: 

47*2*32B + 17*2*32B + 2*32B + 

6*32B =  4352B > 4KB



https://www.electionguard.vote/

https://github.com/Election-Tech-Initiative/electionguard

https://electiontechnology.org/ 

Design specification (Josh Benaloh, M. N., Olivier Pereira): 

https://www.electionguard.vote/spec/ 

Academic paper (Josh Benaloh, M. N., Olivier Pereira, Dan S. Wallach): 

https://dl.acm.org/doi/10.5555/3698900.3699207

v2.0 implementations (John Caron): 

https://github.com/JohnLCaron/egk-ec 

The MITRE verifier: 

https://electionintegrity.mitre.org/verifier/ 

https://www.electionguard.vote/
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://github.com/Election-Tech-Initiative/electionguard
https://electiontechnology.org/
https://www.electionguard.vote/spec/
https://dl.acm.org/doi/10.5555/3698900.3699207
https://github.com/JohnLCaron/egk-ec
https://github.com/JohnLCaron/egk-ec
https://github.com/JohnLCaron/egk-ec
https://electionintegrity.mitre.org/verifier/


Thank you:

Eion Blanchard, Ales Bizjak, Nicholas Boucher, John Caron, Henri Devillez, Joey Dodds, Felix 

Doerre, Gerald Doussot, Aleks Essex, Keith Fung, Pierrick Gaudry, Rainbow Huang, Chris Jeuell, 

Anunay Kulshrestha, Moses Liskov, Shreyas Minocha, Arash Mirzaei, Luke Myers, Karan Newatia, 

Thomas Peters, John Ramsdell, Marsh Ray, Dan Shumow, Vanessa Teague, Aaron Tomb, Daniel 

Tschudi, Daniel Wagner, Jake Waksbaum, Dan Wallach, Matt Wilhelm, Greg Zaverucha

The Microsoft Democracy Forward Team, RC Carter, Inferno Red, Hart Intercivic, Enhanced Voting, 

MITRE, Center for Civic Design, the jurisdictions that ran pilot elections

Jiwon Kim for working out the commitment-based scheme during her internship this summer
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