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ABSTRACT
Recent advances in quantum computing and the announcement

by the National Institute of Standards and Technology (NIST) to

define new standards for digital-signature, encryption, and key-

establishment protocols increased interest in post-quantum crypto-

graphic schemes.

This paper introduces Kyber (part of the CRYSTALS – Crypto-
graphic Suite for Algebraic Lattices – package that will be submitted

to the NIST call for post-quantum standards), a portfolio of post-

quantum cryptographic primitives built around a key-encapsulation

mechanism (KEM), based on hardness assumptions over module

lattices. We first introduce a CPA-secure public key encryption

scheme, apply a variant of the Fujisaki–Okamoto transform to cre-

ate a CCA-secure KEM, and eventually construct, in a black-box

manner, CCA-secure encryption, key exchange, and authenticated-

key-exchange schemes. The security of our primitives is based on

the hardness of Module-LWE in the classical and quantum random

oracle models, and our concrete parameters conservatively target

more than 128 bits of post-quantum security.

We implemented and benchmarked the CCA-secure KEM and

key exchange protocols against the ones that are based on LWE and

Ring-LWE: we conclude that our schemes are not only as efficient

but also feature more flexibility and security advantages over the

latter schemes.

KEYWORDS
Lattice cryptography, Key encapsulation mechanism, Implementa-

tion, Module lattices, (Authenticated) key exchange, CCA security.

1 INTRODUCTION
There has been an increased interest in post-quantum cryptographic

schemes triggered by recent advances in quantum computing [34]

and the announcement by the National Institute of Standards and

Technology (NIST) to define new standards for digital-signature,

encryption, and key-establishment protocols [26]. Constructions

based on the hardness of lattice problems are considered to be one

of the leading candidates to replace the currently used schemes

based on the believed hardness of the traditional number theoretic

problems such as integer factorization and discrete logarithms.

Lattice cryptography initially gained a lot of interest in the theo-

retical community due to the fact that the designs for cryptographic

constructions were accompanied by security proofs based on worst-
case instances of lattice problems. The first lattice-based encryption

scheme was proposed by Ajtai and Dwork [1]. This scheme was

later simplified and improved upon by Regev in [65, 66]. One of the

major achievements of Regev’s work was the introduction of an

intermediate problem – the Learning With Errors (LWE) Problem –

which was relatively simple to use in cryptographic constructions

and asymptotically at least as hard as some standard worst-case

lattice problems [23, 59].

The LWE assumption states that it is hard to distinguish from

uniform the distribution (A,As+e), whereA is a uniformly-random

matrix in Zm×nq , s is a uniformly-random vector in Znq , and e is a
vector with random “small” coefficients chosen from some distri-

bution. Applebaum et al. [5] showed that the secret s in the LWE

problem does not need to be chosen uniformly at random: the prob-

lem remains hard if s is chosen from the same narrow distribution as

the errors e. Based on the idea from the NTRU cryptosystem [43] of

working with elements over polynomial rings rather than over the

integers, and following a series of works on this topic [54, 56, 61, 68],

Lyubashevsky et al. [55] showed that it is also hard to distinguish a

variant of the LWE distribution from the uniform one over certain

polynomial rings, thus defining the Ring-LWE assumption.

The combination of all of the above results finally led to the cryp-

tosystem in Section 3.
1
Setting the parameter k to 1 and defining

Rq = Zq [X ]/(Xn +1) makes the scheme a Ring-LWE cryptosystem

as originally defined in [55], whereas setting the ring Rq to Zq ,

makes the scheme an LWE-based one.
2
If one sets the ring Rq to

some polynomial ring of dimension greater than 1 and sets k > 1,

then the scheme is based on the hardness of the Module-LWE prob-

lem [22, 51]. The number of bits that can be transmitted is related

to the dimension of the ring, thus using a ring Rq of larger degree

n allows one to transmit more bits, and this is the main reason that

Ring-LWE encryption is more efficient than LWE encryption. On

the other hand, having a smaller k implies more algebraic struc-

ture, making the scheme potentially susceptible to more avenues

1
It should be noted that this cryptoscheme design, as well as the result from [5] applied

to the Learning Parity with Noise (LPN) problem, was already present much earlier in

the work of Alekhnovich [3] in which he constructed a cryptosystem based on the

hardness of the LPN problem. The LWE problem is a generalization of LPN and results

in more efficient cryptosystems.

2
The original cryptosystems did not include the “bit-dropping” Compressq functions

in key generation and encryption, but this idea was considered folklore (see [63,

Sec. 2.3] for some references).
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of attack. Nevertheless, at this point in time, it is unknown how to

exploit the algebraic structure of Ring-LWE and concrete parame-

ters are chosen according to the corresponding LWE problem of

dimension k · n.
This cryptosystem design was also applied to build a CPA-secure

KEM by Ding et al. [35] and Peikert [60]. The main difference

between this KEM and the encryption scheme is in how the param-

eterv is defined in line 6 of the encryption algorithm (Algorithm 2).

The advantage of the constructions in [35, 60] is that if one would

like to construct a CPA-secure KEM transmitting a b-bit key, then
the ciphertext is b bits shorter, which is about a 3% savings for

typical parameters.
3
If one wishes to construct a CCA-secure KEM,

however, this advantage disappears since typical transformations

from CPA-secure KEMs to CCA-secure ones implicitly go through

a CPA-secure encryption scheme, which will result in adding b
bits to the KEM. Since in this paper we are only concerned with

CCA-secure constructions, we find it simpler to start directly from

the CPA-secure encryption scheme design in Section 3.

The above designs based on Ring-LWE have resulted in many

recent concrete proposals accompanied by practical implementa-

tions. The instantiation presented [19] is based on Ring-LWE and

was subsequently improved in [4, 52], which resulted in an exper-

iment by Google where they used this key-exchange protocol in

their Chrome Canary browser from July to November 2016 [21, 49].

Although the Ring-LWE problem results in very practical key-sizes

and protocol communication, the additional algebraic structure

might inspire less confidence in the underlying security. This was

the motivation to study a very similar practical instantiation of a

key-exchange protocol but based on LWE in [18], or to propose

an efficient implementation of a CCA-secure KEM over a different

ring [12].

1.1 Our contribution
Our main contribution is a highly-optimized instantiation of a

CCA-secure KEM called Kyber, which is based on the hardness

of Module-LWE. More precisely, we instantiate a CPA-secure PKE

schemeKyber.CPA in Section 3, then apply a variant of the Fujisaki–

Okamoto transform to create a CCA-Secure KEM Kyber in Section 4.
The security reduction from the hardness of Module-LWE is tight

in the random-oracle model, but non-tight is the quantum-random-

oracle model [44]. From a CCA-secure KEM, one can construct, in a

black-box manner, CCA-secure encryption (Kyber.Hybrid), key ex-

change (Kyber.KE), and authenticated-key-exchange (Kyber.AKE)
schemes. Our resulting schemes are as efficient as ones that are

based on Ring-LWE, but have additional flexibility and security

advantages.

Flexibility. One of the most expensive operations in lattice-based

schemes over rings is polynomialmultiplication. If a scheme is based

on the Ring-LWE assumption (i.e., with k = 1 in Algorithm 2), then

if one wants to vary the security parameter related to the scheme,

one would need to change the ring Rq and re-implement all the

ring operations. With our design, where we only work over the

3
It was mentioned in [60, Sec. 4] that the ciphertext in the KEM goes down by a

factor of two compared to encryption schemes. However, this applies only to the naive

instantiations of encryption schemes where the “bit-dropping” Compressq function

is not applied to v in line 6 of Algorithm 2.

ring Rq = Z7681[X ]/(X
256 + 1), there is only one ring over which

operations need to be optimized. Increasing and decreasing the

security of the scheme can then be done simply by changing the

dimension k of the matrix. Our proposed conservative parameters,

which we believe have very generous margins for 128-bit post-

quantum security, use k = 3. This is the scheme we recommend

using for long-term security. But if one only needs short-term

security, we believe that today (and probably for the near future)

one can safely use k = 2 for which we conservatively estimate

102-bit post quantum security. This latter parameter set will reduce

the communication size of the key exchange by around 33% and

considerably speed up the scheme. The main building blocks of the

two schemes are exactly the same, and any optimized software /

hardware used for efficient multiplication in Rq can be re-used.

Security. There have been recent attacks exploiting the algebraic

structure of cyclotomic ideal lattices [15, 24, 31, 32], and others that

exploit the presence of dense sub-lattices in NTRU lattices [2, 47].

In these attacks, it appears that the dimension of the module makes

a big difference. In particular, the quantum attacks on finding short

vectors in ideals currently do not extend to Ring-LWE [15, 24, 31,

32]. The obstacle seems to be that solutions to the shortest vector

problem in ideal lattices are ring elements, whereas solutions to the

Ring-LWE problem are elements in a module of dimension 2. In that

respect, solutions to Module-LWE are in a module of dimension

k + 1. Similarly, the larger module dimension also decreases the

relative dimension of the dense sub-lattice, making the attack of [47]

inapplicable. Based on the recent cryptanalytic progress, it therefore

seems that practical attacks are less likely to appear against Module-

LWE than against Ring-LWE or NTRU.

High performance.As we previously mentioned, the main reason

that Ring-LWE is preferred to LWE in practical applications is

because it allows for a larger message to be transmitted in the same

amount of communication.We show that the flexibility and security

improvements by moving from Ring-LWE to Module-LWE come at

almost no cost. In particular, since public-key protocols only need

to transmit 256 bits of information, it is unnecessary to work with

rings that are greater than dimension 256 in order to be able to

transmit one bit per coefficient of a ring element. Thus the key and

message sizes of our protocols versus those based on Ring-LWE

are not affected.

The one part where using a k > 1 is less efficient than k = 1 is

when dealing with the k × k random matrix A. If one uses k = 1

and a ring of dimension n, then the representation of A is k2n = n
elements in Zq . On the other hand, if one uses k = 3 and a ring

of dimension n/3 (thus keeping the lattice-reduction security the

same), then A requires k2n = 3n elements in Zq to represent. Since

the matrix A is never stored, but rather expanded from some seed

ρ using an XOF, this disadvantage only manifests in the slight

increase in the running time used in the expansion. This is to some

extent mitigated because the k2 entries of the matrix A can be

expanded independently, which enables very efficient vectorization

of the XOF computation.

Take away. In this paper, we propose and implement a portfolio

of post-quantum cryptographic primitives (CPA-secure encryp-

tion, CCA-secure KEM, CCA-secure public-key encryption, key
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exchange and authenticated key exchange) based on the hardness

of Module-LWE in the classical and quantum random-oracle mod-

els. Our schemes are as efficient as the ones based on Ring-LWE,

but also feature flexibility and security advantages.

Availability of software.We place all software described in this

paper into the public domain to maximize reusability of our re-

sults. It is available for download on GitHub: https://github.com/

pq-crystals/kyber.

2 PRELIMINARIES
All our algorithms are probabilistic. If b is a string, then a ← A(b)
denotes the output of algorithm A when run on input b; if A is

deterministic, then a is a fixed value and we write a B A(b). We use

the notationb B A(b; r ) to make the randomness r of a probabilistic
algorithm A explicit.

2.1 Cryptographic definitions
A public-key encryption scheme PKE = (KeyGen,Enc,Dec) is a
triple of probabilistic algorithms together with a message spaceM.

The key-generation algorithm KeyGen returns a pair (pk, sk) con-
sisting of a public key and a secret key. The encryption algorithm

Enc takes a public key pk and a message m ∈ M to produce a

ciphertext c . Finally, the deterministic decryption algorithm Dec
takes a secret key sk and a ciphertext c , and outputs either a mes-

sagem ∈ M or a special symbol ⊥ to indicate rejection. We say

that PKE is (1 − δ )-correct if for all messages m ∈ M, we have

Pr[Dec(sk,Enc(pk,m)) = m] ≥ 1 − δ , where the probability is

taken over (pk, sk) ← KeyGen() and the random coins of Enc.
We recall the standard security notions for public-key encryp-

tion of indistinguishability under chosen-ciphertext and chosen-

plaintext attacks (IND-CCA and IND-CPA) [64]. The advantage of
an adversary A is defined as AdvccaPKE (A) =

����������

Pr



b = b ′ :

(pk, sk) ← KeyGen();
(m0,m1,s ) ← ADec( ·) (pk);
b ← {0,1}; c∗ ← Enc(pk,mb );

b ′ ← ADec( ·) (s,c∗)



−
1

2

����������

,

where the decryption oracle is defined as Dec(·) B Dec(sk, ·). We

further require that |m0 | = |m1 | and that in the second phase A is

not allowed to query Dec(·) with the challenge ciphertext c∗. The
advantage AdvcpaPKE (A) of an adversary A is defined as AdvccaPKE (A),
with the modification that A cannot query the decryption oracle.

A key-encapsulation scheme KEM = (KeyGen,Encaps,Decaps)
is a triple of probabilistic algorithms together with a key space K .

The key-generation algorithm KeyGen returns a pair (pk, sk) con-
sisting of a public key and a secret key. The encapsulation algorithm

Encaps takes a public key pk to produce a ciphertext c and a key

K ∈ K . Finally, the deterministic decapsulation algorithm Decaps
takes a secret key sk and a ciphertext c , and outputs either a key

K ∈ K or a special symbol⊥ to indicate rejection. We say that KEM
is (1− δ )-correct if Pr[Decaps(sk,c ) = K : (c,K ) ← Encaps(pk)] ≥
1− δ , where the probability is taken over (pk, sk) ← KeyGen() and
the random coins of Encaps.

We recall the standard security notion for key encapsulation of

indistinguishability under chosen-ciphertext attack. The advantage

of an adversary A is defined as AdvccaKEM (A) =

����������

Pr



b = b ′ :

(pk, sk) ← KeyGen();
b ← {0,1};
(c∗,K∗

0
) ← Encaps(pk);K∗

1
← K ;

b ′ ← ADecaps( ·) (pk,c∗,K∗b )



−
1

2

����������

,

where the Decaps oracle is defined as Decaps(·) B Decaps(sk, ·).
We further require that A is not allowed to query Decaps(·) with
the challenge ciphertext c∗.

In the random oracle model [9], the adversary A is additionally

given access to a random oracle that it can query up to qH times.

If the adversary has access to a quantum computer, it is realistic

to model its access to all “offline primitives” (such as hash func-

tions) in a quantum setting. Concretely, in the quantum random

oracle model [17] the adversary has access to a quantum random

oracle (also called quantum accessible random oracle) that can be

queried up to qH times on arbitrary quantum superpositions of

input strings.

2.2 Rings and distributions
Let R and Rq denote the rings Z[X ]/(Xn + 1) and Zq[X ]/(X

n +

1), respectively, where n = 2
n′−1

such that Xn + 1 is the 2
n′
-th

cyclotomic polynomial. Throughout this paper, the values of n, n′

and q are 256, 9 and 7681, respectively. Regular font letters denote

elements in R or Rq (which includes elements in Z and Zq ) and bold
lower-case letters represent vectors with coefficients in R or Rq . By
default, all vectors will be column vectors. Bold upper-case letters

are matrices. For a vector v (or matrix A), we denote by vT (or AT )
its transpose.

Modular reductions. For an even (resp. odd) positive integer α ,
we define r ′ = r mod

± α to be the unique element r ′ in the range

−α
2
< r ′ ≤ α

2
(resp. −α−1

2
≤ r ′ ≤ α−1

2
) such that r ′ = r mod α .

For any positive integer α , we define r ′ = r mod
+α to be the unique

element r ′ in the range 0 ≤ r ′ < α such that r ′ = r mod α . When

the exact representation is not important, we simply write r mod α .

Rounding. For an element x ∈ Q we denote by ⌈x⌋ rounding of x
to the closest integer with ties being rounded up.

Sizes of elements. For an element w ∈ Zq , we write ∥w ∥∞ to

mean |w mod
± q |. We now define the ℓ∞ and ℓ2 norms for w =

w0 +w1X + . . . +wn−1X
n−1 ∈ R:

∥w ∥∞ = max

i
∥wi ∥∞, ∥w ∥ =

√
∥w0∥

2

∞ + . . . + ∥wn−1∥
2

∞.

Similarly, for w = (w1, . . . ,wk ) ∈ R
k
, we define

∥w∥∞ = max

i
∥wi ∥∞, ∥w∥ =

√
∥w1∥

2 + . . . + ∥wk ∥
2.

Distributions. For a set S , wewrite s ← S to denote that s is chosen
uniformly at random from S . If S is a probability distribution, then

this denotes that s is chosen according to the distribution S .

Extendable output function. Suppose that Sam is an extendable

output function, that is a function on bit strings in which the out-

put can be extended to any desired length. If we would like Sam
to take as input x and then produce a value y that is distributed

according to distribution S (or uniformly over a set S), we write

3
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y ∼ S B Sam(x ). It is important to note that this procedure is

completely deterministic: a given x will always produce the same y.
For simplicity we assume that the output distribution of Sam is

perfect, whereas in practice Sam will be implemented using ran-

dom oracles and produces an output that is statistically close to the

perfect distribution.

Binomial distribution.We define the centered binomial distribu-

tion Bη for some positive integer η as follows:

Sample (a1, . . . ,aη ,b1, . . . ,bη ) ← {0,1}
2η

and output

η∑
i=1

(ai −bi ).

If v is an element of R, we write v ← βη to mean that v ∈ R is gen-

erated from a distribution where each of its coefficients is generated

according to Bη . Similarly, a k-dimensional vector of polynomials

v ∈ Rk can be generated according to the distribution βkη .

Compression and Decompression. We now define a function

Compressq (x ,d ) that takes an element x ∈ Zq and outputs an

integer in {0, . . . ,2d − 1}, where d < ⌈log
2
(q)⌉. We furthermore

define a function Decompressq , such that

x ′ = Decompressq
(
Compressq (x ,d ),d

)
(1)

is an element close to x – more specifically

|x ′ − x mod
± q | ≤ Bq B

⌈ q

2
d+1

⌋
.

The functions satisfying these requirements are defined as:

Compressq (x ,d ) = ⌈(2
d/q) · x⌋ mod

+
2
d ,

Decompressq (x ,d ) = ⌈(q/2
d ) · x⌋ .

If x ′ is a function of x as in Eq. (1), then for a randomly chosen

x ← Zq , the distribution of

x ′ − x mod
± q

is almost uniform over the integers of magnitude at most Bq . In
particular, this distribution has equal weight over integers of mag-

nitude at most Bq − 1 and has a smaller weight on the integer(s) of

magnitude Bq .
When Compressq or Decompressq is used with x ∈ Rq or x ∈

Rkq , the procedure is applied to each coefficient individually.

The main reason for defining the Compressq and Decompressq
functions is to be able to discard some low-order bits in the public

key and the ciphertext which do not have much effect on the cor-

rectness probability of decryption – thus making the parameters

smaller. The Compressq function is also used in one other place

where its intuitive purpose is not to “compress”. In line 3 of the

decryption procedure (Algorithm 3), the function is used to decrypt

to a 1 if v − sT u is closer to ⌈q/2⌋ than to 0, and decrypt to a 0

otherwise.

2.3 Module-LWE
Let k be a positive integer parameter. The hard problem under-

lying the security of our schemes is Module-LWE. It consists in

distinguishing uniform samples (ai ,bi ) ← Rkq × Rq from samples

(ai ,bi ) ∈ Rkq ×Rq where ai ← Rkq is uniform and bi = aTi s+ei with

s ← βkη common to all samples and ei ← βη fresh for every sam-

ple.
4
More precisely, for an algorithm A, we define Advmlwe

m,k,η (A) =

�����
Pr

[
b ′ = 1 :

A← Rm×kq ; (s,e) ← βkη × β
m
η ;

b = As + e;b ′ ← A(A,b)

]

− Pr
[
b ′ = 1 : A← Rm×kq ; b← Rmq ;b ′ ← A(A,b)

] ��� .

3 KYBER’S IND-CPA-SECURE ENCRYPTION
Let k,dt ,du ,dv be positive integer parameters, and recall that n =
256. Let M = {0,1}256 denote the message space, where every

message m ∈ M can be viewed as a polynomial in R with co-

efficients in {0,1}. Consider the public-key encryption scheme

Kyber.CPA = (KeyGen,Enc,Dec) as described in Algorithms 1 to 3.

Algorithm 1 Kyber.CPA.KeyGen(): key generation

1: ρ,σ ← {0,1}256

2: A ∼ Rk×kq B Sam(ρ)

3: (s,e) ∼ βkη × βkη B Sam(σ )
4: t B Compressq (As + e,dt )
5: return (pk B (t,ρ), sk B s)

Algorithm 2 Kyber.CPA.Enc(pk = (t,ρ),m ∈ M): encryption

1: r ← {0,1}256

2: t B Decompressq (t,dt )
3: A ∼ Rk×kq B Sam(ρ)

4: (r,e1,e2) ∼ βkη × βkη × βη B Sam(r )

5: u B Compressq (A
T r + e1,du )

6: v B Compressq
(
tT r + e2 +

⌈q
2

⌋
·m,dv

)
7: return c B (u,v )

Algorithm 3 Kyber.CPA.Dec(sk = s,c = (u,v )): decryption

1: u B Decompressq (u,du )
2: v B Decompressq (v,dv )

3: return Compressq (v − s
T u,1)

Correctness. We show below the correctness of the encryption

scheme described in Algorithms 1 to 3. We will select parameters

in Section 6 to make the decryption error negligible, i.e., so that

Kyber.CPA is (1 − δ )-correct with δ < 2
−128

.

Theorem 3.1. Letk be a positive integer parameter. Let s,e,r,e1,e2
be random variables that have the same distribution as in Algorithms 1
and 2. Also, let ct ← ψk

dt
,cu ← ψk

du
,cv ← ψdv be distributed

according to the distributionψ defined as follows:
Letψk

d be the following distribution over R:

4
While the exact distribution shape does not seem to play any role in the hardness

of (Module)-LWE encryption schemes, we mention that it is possible to show with

a simple Rényi divergence-based analysis a la [4, 7] that one can substitute βη with

the n-dimensional rounded Gaussian distribution of standard deviation

√
η/2, which

was the one considered in [51].

4



1: Choose uniformly-random y← Rk

2: return
(
y − Decompressq

(
Compressq (y,d ),d

))
mod± q.

Denote

δ = Pr

[


e
T r + e2 + cv − sT e1 + cTt r + s

T cu



∞ ≥

⌈
q/4
⌋ ]
.

Then Kyber.CPA is (1 − δ )-correct.

Remark 3.2. We provide with our software a Python script that

allows to compute a tight upper bound on δ ; the parameter set we

recommend for Kyber in Table 1 yields δ = 2
−142

.

Proof. The value of t in line 6 of Algorithm 2 is:

t = Decompressq
(
Compressq (As + e,dt ),dt

)
= As + e + ct ,

for some ct ∈ Rk . The value of u in Algorithm 3 is

u = Decompressq
(
Compressq (A

T r + e1,du ),du
)
= AT r+e1+cu ,

for some cu ∈ Rk . And the value of v is

v = Decompressq
(
Compressq (t

T r + e2 +
⌈
q/2
⌋
·m,dv ),dv

)
= tT r + e2 +

⌈
q/2
⌋
·m + cv

= (As + e + ct )T r + e2 +
⌈
q/2
⌋
·m + cv

= (As + e)T r + e2 +
⌈
q/2
⌋
·m + cv + cTt r,

for some cv ∈ R. In all of the above, we can safely assume that the

values ct ,cu , and cv are distributed according to the distributionψ
defined in the Theorem statement. The reason is that all of these

are of the form

(
y − Decompressq

(
Compressq (y,d ),d

))
mod

± q

where y is pseudo-random based on the hardness of Module-LWE.

Using the above, we obtain

v − sT u = eT r + e2 +
⌈
q/2
⌋
·m + cv + cTt e1 − s

T r + sT cu

If



e
T r + e2 + cv − sT e1 + cTt r + s

T cu



∞ < ⌈q/4⌋, then we can

write v − sT u = w + ⌈q/2⌋ · m where ∥w ∥∞ < ⌈q/4⌋ . Define
m′ = Compressq (v − s

T u,1). We then know that

⌈q/4⌋ ≥ ∥v − sT u− ⌈q/2⌋ ·m′∥∞ = ∥w + ⌈q/2⌋ ·m − ⌈q/2⌋ ·m′∥∞.

By the triangle inequality and the fact that ∥w ∥∞ < ⌈q/4⌋, we
obtain

∥⌈q/2⌋ · (m −m′)∥∞ < 2 · ⌈q/4⌋,

which (for all oddq) implies thatm =m′, and proves the correctness
of Kyber.CPA. □

Security. We prove that the encryption scheme defined above is

IND-CPA secure under the Module-LWE hardness assumption.

Theorem 3.3. For any adversary A, there exists an adversary B
such that AdvcpaKyber.CPA (A) ≤ 2 · Advmlwe

k+1,k,η (B).

Proof. Let A be an adversary that is executed in the IND-CPA

security experiment which we call game G0, i.e., Adv
cpa

PKE (A) =
| Pr[b = b ′ in game G0] − 1/2|. In game G1, the value t′ B As + e
which is used in KeyGen is substituted by a uniform random value.

It is possible to verify that there exists an adversary B with the

same running time as that of A such that | Pr[b = b ′ in game G0] −

| Pr[b = b ′ in game G1]| ≤ Advmlwe

k,k,η (B) ≤ Advmlwe

k+1,k,η (B). In game

G2, the values u′ B AT r + e1 and v ′ B tT r + e2 used in the

generation of the challenge ciphertext are simultaneously substi-

tuted with uniform random values. Again, there exists an adver-

sary B with the same running time as that of A with | Pr[b =

b ′ in game G1] − | Pr[b = b ′ in game G2]| ≤ Advmlwe

k+1,k,η (B). Note
that in game G2, the value v from the challenge ciphertext is in-

dependent of bit b and therefore Pr[b = b ′ in game G2] = 1/2.

Collecting the probabilities yields the required bound. □

4 THE CCA-SECURE KEM
Let G: {0,1}∗ → {0,1}3×256 and H: {0,1}∗ → {0,1}256 be hash

functions. Consider the public-key key encapsulation mechanism

Kyber = (KeyGen,Encaps,Decaps) as described in Algorithms 1, 4

and 5, where KeyGen is the same as the one of Kyber.CPA from the

previous section, with the difference that sk also contains pk = (ρ, t)
and a secret 256-bit random value z. It is obtained by applying a

KEM variant [44] of the Fujisaki–Okamoto transform [37, 69] to

the Kyber.CPA encryption scheme. Note that we make explicit the

randomness r in the Enc algorithm.

Algorithm 4 Kyber.Encaps(pk = (ρ, t))

1: m ← {0,1}256

2: (K̂ ,r ,d ) B G(pk,m)
3: (u,v ) B Kyber.CPA.Enc ((ρ, t),m; r )
4: c B (u,v,d )
5: K B H(K̂ ,c )
6: return (c,K )

Algorithm 5 Kyber.Decaps(sk = (s,z,ρ, t),c = (u,v,d ))

1: m′ B Kyber.CPA.Dec(s, (u,v ))
2: (K̂ ′,r ′,d ′) B G(pk,m′)
3: (u′,v ′) B Kyber.CPA.Enc ((ρ, t),m′; r ′)
4: if (u′,v ′,d ′) = (u,v,d ) then
5: return K B H(K̂ ′,c )
6: else
7: return K B H(z,c )
8: end if

We stress that Kyber.Decaps never returns ⊥. Instead, in case

re-encryption fails, it returns a pseudo-random key K := H(z,c ),
where z is a random, secret seed.

Correctness. If Kyber.CPA is (1 − δ )-correct and G is a random

oracle, then Kyber is (1 − δ )-correct [44].

Security. The following concrete security statement provesKyber’s
CCA-security when the hash functions G and H are modeled as

random oracles. We provide the concrete security bounds from [44]

which considers the KEM variant of the FO transformation and also

takes a non-zero correctness error δ into account.

Theorem 4.1. For any adversary A that makes at most qH many
queries to random oracle H, at most qG many queries to random
oracle G, and qD queries to the decryption oracle, there exists an
adversary B such that

AdvccaKyber (A) ≤ 3AdvcpaKyber.CPA (B) + qH · δ +
2qG + qH + 1

2
256

.
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Note that the security bound is tight. In particular, in combination

with Theorems 3.1 and 3.3 we obtain a tight reduction from the

Module-LWE hardness assumption. We remark that there exists an

alternative security reduction from the weaker notion of ONE-WAY

CPA-security [44] of Kyber.CPA which is, however, not tight as it

loses a multiplicative factor qG .
The value d in Kyber’s ciphertexts is not necessary for the secu-

rity proof in case H and G are modeled as standard random oracles.

However, it is crucial for a proof in the quantum random oracle

model. Concretely [44, 69] proved that Kyber is CCA secure in

the quantum random oracle model, provided that Kyber.CPA is

CPA-secure. Again, we provide the concrete bound from [44].

Theorem 4.2. For any quantum adversary A that makes at most
qH many queries to quantum random oracle H, at most qG many
queries to quantum random oracle G, and at most qD many (classical)
queries to the decryption oracle, there exists a quantum adversary B
such that

AdvccaKyber (A) ≤ 4qH

√
qD · qH · δ + qG ·

√
AdvcpaKyber.CPA (B).

Unfortunately, as it is common for proofs in the quantum ran-

dom oracle model, the above security bound is far from tight and

therefore can only serve as an asymptotic indication of Kyber’s
CCA-security in the quantum random oracle model.

Hashing pk into K̂ . The Kyber CCA transform is essentially the

transform from [44, 69], with one small tweak: we hash the public

key pk into K̂ . This tweak has two effects. First, it makes the KEM

contributory; the shared keyK does not depend only on input of one

of the two parties. The second effect is a multi-target protection.

Consider an attacker who searches through many values m to

find one that is “likely” to produce a failure during decryption.

Such a decryption failure of a legitimate ciphertext would leak

some information about the secret key. In the pre-quantum setting

this attack approach is doomed because of the negligible failure

probability δ . In a post-quantum setting, the attacker could use

Grover’s algorithm to search for such anm. However, the attacker

is then facing the problem to encode “likely to produce a decryption

failure” in the Grover oracle. This is equivalent to identifying noise

vectors that are likely to have a large inner product with (s,e);
probably the best strategy is to search for m that produce noise

vectors of large norm. Even though we believe this attack approach

is unlikely to result in any better performance than a brute-force

Grover search of the 256-bit shared keyK , hashingpk into K̂ ensures

that an attacker would not be able to use precomputed valuesm
against multiple targets.

CCA-secure public-key encryption. We remark that a CCA-

secure public-key encryption scheme can be obtained by combining

the CCA-secure KEM Kyber with any CCA-secure symmetric en-

cryption scheme [33] (aka. DEM). We describe the resulting hybrid

encryption scheme Kyber.Hybrid in Appendix A.

5 KEY EXCHANGE PROTOCOLS
Let Kyber = (KeyGen,Encaps,Decaps) be the IND-CCA secure

KEM from the previous section. Figure 1 describes the Kyber key
exchange protocol Kyber.KE obtained as a direct application of the

key encapsulation mechanism. In key exchange constructions using

a KEM, it is common to hash the “view” of each participant (i.e.,

all received and sent messages) into the final key. In Kyber, the
public key pk is hashed into the “pre-key” K̂ and the ciphertext is

hashed into the final key K ; hence the shared key obtained in a key

exchange already includes the complete “view” of each participant.

P1 P2

(pk, sk) ← Kyber.KeyGen() pk

(c, K ) ← Kyber.Encaps(pk)

ckey B Kyber.Decaps(sk, c ) key B K

Figure 1:Kyber.KE –KeyExchange protocol using theKyber =
(KeyGen,Encaps,Decaps) key encapsulation mechanism.

Authenticated key exchanges protocols. Note that the protocol
of Fig. 1 by itself only provides security against passive adversaries

(and in particular fails to protect against man-in-the-middle attacks).

Let H: {0,1}∗ → {0,1}256 be a hash function. Figure 2 describes

our one-sided (unilateral) authenticated key exchange protocol

Kyber.UAKE in which party P1 knows the static (long-term) key

of party P2, and Fig. 3 describes our authenticated key-exchange

protocol Kyber.AKE where each party knows the static (long-term)

key of the other party.

P1 P2
Static keys

(pk
2
, sk2 ) ← Kyber.KeyGen()

pk
2

public auth. key

sk2 secret auth. key

(pk, sk) ← Kyber.KeyGen()
(c2, K2 ) ← Kyber.Encaps(pk

2
)

pk, c2

(c, K ) ← Kyber.Encaps(pk)
K ′
2
B Kyber.Decaps(sk2, c2 )

cK ′ B Kyber.Decaps(sk, c )

key B H(K ′, K2 ) key B H(K, K ′
2
)

Figure 2: Kyber.UAKE – One-sided authenticated key ex-
change protocol using Kyber, where P1 knows the static pub-
lic key of P2.

The shared key derived at the end of the above protocols not only

depends on the ephemeral key and ciphertext (pk,c ), but also on the
static (long-term) keys pki and associated ephemeral ciphertexts ci
(where i = 2 and i = 1,2 respectively).

Our authenticated key-exchange protocols follow a generic con-

struction from any CCA-secure encryption scheme. Concretely,
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P1 P2
Static keys

(pk
1
, sk1 ) ← Kyber.KeyGen() (pk

2
, sk2 ) ← Kyber.KeyGen()

pk
1

public auth. key

sk1 secret auth. key

pk
2

public auth. key

sk2 secret auth. key

(pk, sk) ← Kyber.KeyGen()
(c2, K2 ) ← Kyber.Encaps(pk

2
)

pk, c2

(c, K ) ← Kyber.Encaps(pk)
(c1, K1 ) ← Kyber.Encaps(pk

1
)

K ′
2
B Kyber.Decaps(sk2, c2 )

c, c1K ′ B Kyber.Decaps(sk, c )
K ′
1
B Kyber.Decaps(sk1, c1 )

key B H(K ′, K ′
1
, K2 ) key B H(K, K1, K ′

2
)

Figure 3: Kyber.AKE – Authenticated key exchange protocol
usingKyber, where both parties knows their respective static
public keys.

Table 1: Kyber parameter set, aiming at 128-bit classical and
post-quantum security, with generous margins.

n k q η (du ,dv ,dt ) δ pq-sec

Kyber 256 3 7681 4 (11,3,11) 2
−142

161

security of Kyber.AKE in the Canetti–Krawczyk model with weak

forward secrecy [25] follows directly from the generic security

bounds of [20, 36]. (Note that full forward secrecy is not achievable

for a two-round authenticated key-exchange protocol [25].)

6 PARAMETERS AND SECURITY ANALYSIS
In this section we give the Kyber parameter set that aims at 128 bits

of post-quantum (and classical) security, with a generous security

margin to account for future improvements in cryptanalysis. We

only consider the parameters that are relevant to the underlying

lattice problem; instantiations of symmetric primitives are given in

Section 7.

The parameters of Kyber are summarized in Table 1. The first

parameter we fixed was n = 256, which stems from the fact that we

want to encapsulate 256 bits of entropy (targeting a 128-bit security

level for symmetric keys [39]) and that we want to encode each of

these bits into one polynomial coefficient. We then picked q = 7681

as the smallest prime that fulfills q ≡ 1 mod 2n, which allows us

to use fast multiplication in Rq based on the negacyclic number-

theoretic transform (NTT). The next parameter we fixed is k = 3,

which controls the dimension of the lattice, and thereby largely the

security. Finallywe tuned the parametersη,du ,dv , anddt to balance
security, failure probability δ , public-key size, and ciphertext size.

We decided to fixdu = dt = 11, which unifies compression of public

keys and the “key component” u of the ciphertext.

Core-SVP hardness. To analyze the security of Kyber, we follow
the methodology introduced in [4, Sec. 6.1]. This means that we

assume that the best way to solve the Module-LWE problem under-

lying Kyber is to treat it as a general LWE problem. Moreover we

consider the primal and dual attacks to be the only known attacks

relevant to our parameter sets. After optimizing the parameters for

the primal attack with respect to the success criteria of [4, Sec. 6.3],

we find that the attack would invoke BKZ with blocksize 610 to 615

(depending on whether one uses the primal or dual attack). The cost

of BKZ with blocksize 610 is dominated by a polynomial number of

calls to a dimension 610 SVP solver. Suppressing this polynomial

number of SVP calls and all subexponential factors in the cost of

the best known quantum algorithm for SVP [48, Sec. 14.2.10], this

implies a cost of > 2
161

operations in the quantum RAM model.

According to this very conservative analysis, Kyber offers 161 bits
of security against the best known quantum attacks targeting the

underlying lattice problem.

LWE security vs. LWR security. The analysis in the previous

paragraph considers only the noise introduced by addition of “noise

polynomials” sampled from βη ; it does not take into account the ad-
ditional uniform noise introduced by rounding. Various recent pro-

posals for lattice-based cryptosystems rely only on this noise from

rounding. See for example the schemes proposed in [12] and [28].

In some sense, the rounding induces a deterministic noise, and it is

not clear how this determinism affects concrete security. On one

hand, there are reductions between LWR and LWE, but they involve

substantial losses, especially in the ring setting [8]. In particular,

they do not apply when the number of dropped bits is so small. On

the other hand, there is, to our knowledge, no attack that performs

better on LWR than LWE with the corresponding uniform noise.

(See [16, Sec. 4] for a reduction from LWR to LWE with correspond-

ing uniform noise.) Yet it is not clear to us that LWR has received

any dedicated attention from cryptanalysts, and we therefore prefer

to remain conservative and estimate security of Kyber only based

on the LWE noise.

Resistance to hybrid attacks. Several schemes [12, 42] are poten-

tially vulnerable to a hybrid attack [38, 45], mixing lattice reduction

techniques with Meet-in-the-Middle combinatorial search. This

attack is particularly difficult to analyze, and recent work [70] sug-

gests that it is often not as competitive as previously thought. We

note that this attack is especially relevant when secrets and errors

are ternary and sparse, which is not the case for our design.

Algebraic attacks. The main novelty of our design is in the use of

Module-LWE rather than Ring-LWE. One of the motivations for

this change is to move further away from the recently uncovered

weaknesses of ideal lattices [15, 24, 31, 32] – yet without the cost

of using completely unstructured LWE. The work of [32] mentions

obstacles towards a quantum attack on Ring-LWE from their new

techniques, but nevertheless suggests using Module-LWE, as it

plausibly creates even more obstacles.

Scaling security and performance. A particularly attractive fea-

ture of Module-LWE (as compared to LWE or Ring-LWE) is, that

scaling security only needs marginal changes to existing, possibly
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highly optimized implementations. Specifically, the only param-

eters that need to change to scale security (and performance) of

Kyber, are k and η; note that optimized code for polynomial arith-

metic is not affected by changing those parameters. Table 2 lists one

“paranoid” parameter set aiming at security similar to NewHope

(using dimension n · k = 1024) and one “light” parameter set that

might become interesting for the 96-bit security level, or, with a

tighter security analysis for the 128-bit security level, if continued

effort in cryptanalysis does not produce significantly better attacks.

The Core-SVP hardness analysis against the best known quan-

tum attacks yields 218 bits of security for the paranoid parameter

set and 102 bits of security for the light parameter set.

A note on passively secure KEMs. We note that in order to

support the CCA transformation, we need a negligible (in the

cryptographic sense) failure probability. Previous proposals like

NewHope [4] or Frodo [18] are designed to only achieve pas-

sive security and can live with much higher failure probabilities

(≈ 2
−60

for NewHope and 2
−38.9

for the recommended parame-

ter set of Frodo). If one were to optimize a passively secure KEM

from Module-LWE, one could reduce the rounding parameters du
and dt to du = dt = 10 to further reduce public-key size (to 992

bytes) and ciphertext size (to 1088 bytes) while increasing the failure

probability (to 2
−71.9

).

7 IMPLEMENTATION
In this section we give all the remaining details of our implemen-

tations of Kyber and report on performance of subroutines. Both

implementations are fully protected against timing attacks. All

cycle counts in this section were obtained on one core of an In-

tel Core-i7 4770K (Haswell) with hyperthreading and TurboBoost

turned off running at 3.5GHz. They are median cycle counts over

1000 measurements.

7.1 Primitives and encodings
Sections 3 and 4 introduce Kyber in abstract terms without fixing

concrete instantiations of the functions H, G, and Sam, and with-

out fixing encodings of messages. This subsection details concrete

instantiations of these building blocks.

Symmetric primitives. The main symmetric building blocks are

the two hash functions H and G, a function that accepts as input

the public seed ρ and generates the uniform matrix A ∈ Rk×kq , and

a function that accepts as input a secret seed r and generates as

output noise polynomials sampled from βη . Note that in passively

secure KEMs like BCNS [19], NewHope [4], or Frodo [18], the

choice of how noise polynomials are sampled is a local decision:

implementations on different platforms can choose whatever PRNG

is the best option on the respective platform. This is also true for

noise generation in Kyber’s key generation, but, because of the CCA
transform, is no longer true for noise generation in encapsulation.

We decided to instantiate all hash functions with the extendable

output function SHAKE-128, standardized in FIPS 202 [58]. For the

expansion of (public and secret) seeds we use the domain-separated

version cSHAKE-128, that has recently been standardized in FIPS

800-185 [46]. All cSHAKE-128 domain separators in Kyber are 2
bytes long; we will denote them in the following as (i, j ), where i is

the byte at the lower address. With this choice, all symmetric prim-

itives in Kyber rely on the same underlying primitive, namely the

Keccak-f 1600 permutation. The only exception is that for key gen-

eration, different implementations are free to use whatever PRNG

is offering the best performance and security on their respective

platform.

We are aware that another choice of symmetric primitives would

yield somewhat better performance on most platforms. For exam-

ple, we could have decided to use SHA256 for all hashes (with

output extension for G via MGF1; see [57, App. B.2.1]), and AES

in counter mode for the expansion of seeds. This choice would

certainly be faster on platforms with hardware AES and SHA256

support. However, on platforms without hardware support, AES

implementations are notorious for timing-attack vulnerabilities.

Furthermore, as pointed out in [4, Sec. 3], the use of a PRG (which

AES in counter mode is), is not helpful to argue security, because in

the generation of A, the input is public, whereas security of a PRG

is only given for secret inputs.

Other possible choices of primitives that would yield better per-

formance are be the ChaCha20 stream cipher [10] that has recently

been standardized for TLS [50] or the BLAKE2X extendable output

function [6]. Unfortunately, neither of these functions has received

a lot of cryptanalytic attention, yet, so we prefer to stick to the

conservative choice of SHAKE-128, which was standardized after

years of cryptanalytic scrutiny through the course of the SHA-3

competition.

The NTT domain. Computing the discrete Fourier transform on

elements from Rq can be done with methods analogous to the

fast Fourier transform [29], except that operations on coefficients

are defined in a finite field [62]. This is often referred to as the

number theoretic transform (NTT). Before being able to define the

expansion of the seed ρ into the matrix A, we need to define the

NTT domain of polynomials. Let ω = 3844 ∈ Zq andψ =
√
ω = 62,

whereψ is chosen as the smallest element of multiplicative order 2
9

in F∗q = F
∗
7681

.

For a polynomial g =
∑
255

i=0 дiX
i ∈ Rq we define the polynomial ĝ

in NTT domain as

NTT(g) = ĝ =
255∑
i=0

д̂iX
i , with д̂i =

255∑
j=0

ψ jдjω
i j .

The inverse NTT−1 of the function NTT is essentially the same as

the computation of NTT, except that it uses ω−1 mod q = 6584,

multiplies by powers of ψ−1 mod q = 1115 after the summation,

and also multiplies each coefficient by the scalar n−1 mod q = 7651,

so that

NTT−1 (ĝ) = g =
255∑
i=0

дiX
i , with дi = n

−1ψ−i
255∑
j=0

д̂jω
−i j .

For two polynomials f ,g ∈ Rq , the product fg can be computed as

NTT−1 (NTT(f ) ◦ NTT(g)), where ◦ denotes the point-wise multi-

plication.

Generation of A. Generation of the matrix A = (ai,j ) ∈ Rk×kq
receives as input the public seed ρ. To generate the entry ai,j ∈ Rq
we first expand ρ through cSHAKE-128 with the 2-byte domain

separator (i, j ). The output of this expansion is considered a stream
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Table 2: Alternative parameter sets for higher and lower security levels.

n k q η (du ,dv ,dt ) δ pq sec. |pk | in bytes |c | in bytes

Paranoid 256 4 7681 3 (11,3,11) 2
−145

218 1 440 1 536

Light 256 2 7681 5 (11,3,11) 2
−169

102 736 832

of 16-bit little-endian integers. On this sequence of 16-bit integers

we run rejection sampling as follows: first set the upper 3 bits of

the integers to zero, then use the resulting integer as coefficient

for ai,j if it is smaller than q, otherwise discard it and move to

the next 16-bit integer. Fill the polynomial ai,j starting from the

constant coefficient moving to the coefficient belonging to Xn−1
.

The resulting polynomial ai,j is assumed to be in NTT domain.

Note that this generation of A exhibits k2-way parallelism for the

expansion of ρ.

Generation of noise polynomials. Noise polynomials in Kyber
are sampled from β4. To obtain such a noise polynomial we first

expand a seed to an array of n = 256 uniformly random bytes

(r0, . . . ,r255). We then generate coefficient ei of a noise polynomial

e =
∑
255

i=0 eiX
i
by subtracting the Hamming weight of the most

significant nibble of ri from the Hamming weight of the least sig-

nificant nibble of ri . As stated above, the choice of how the 256

uniformly random bytes are generated during key generation is a

local, platform-dependent choice. During encapsulation we again

use cSHAKE-128 with 2-byte domain separators to expand the 32-

byte secret r to 256 bytes. To generate r = (r0,r1,r2) we use domain

separators (0,0), (1,0), and (2,0); to generate e1 = (e1,0,e1,1,e1,2)
we use domain separators (3,0), (4,0), and (5,0); and to generate

e2 we use domain separator (6,0). Note that r is used as input to

a multiplication, which is computed via the fast negacyclic NTT
operation outlined above. In order to compute the NTT inplace,

we would first have to bit-reverse the order of coefficients in r.
As in NewHope, we omit this bitreversal, and instead assume the

coefficients of r to be in bit-reversed order.

Inputs toG andH . The description of the CCA transform includes

the public key pk as input of G and includes the ciphertext c =
(u,v,d ) as input of H. In the implementation we instead include

H(pk ) and H(c ). The two additional hashes may seem redundant,

but simplify implementation with a non-incremental API for G

and H. Furthermore using H(pk ) instead of pk as input to G enables

a small speedup for decapsulation at the cost of a slightly increased

secret-key size as explained in the next paragraph.

Encoding of keys and ciphertexts. In NewHope, polynomials

in public keys and the ciphertext are in NTT domain; in Kyber all
polynomials sent over the channel are in normal domain. This is

necessary for the compression through rounding (see Section 3) to

work.

A Kyber public key is a tuple (t,ρ), where t is a vector of three
polynomials with 256 11-bit coefficients each, and ρ is a 32-byte

seed.We encode the polynomials in compressed little-endian format

to fit it in (256 · 11)/8 = 352 bytes, concatenate the compressed

three polynomials and finally concatenate ρ to obtain public keys

of 3 · 352 + 32 = 1088 bytes.

A Kyber secret key is a vector of three polynomials in NTT
domain with 256 13-bit coefficients each. We store these polyno-

mials in compressed little-endian format resulting in a total of

(3 · 256 · 13)/8 = 1248 bytes. For re-encapsulation during decapsula-

tion we additionally need the public key, which we simply concate-

nate and store as part of the secret key. Finally, we also concatenate

H(pk ) to avoid having to compute this hash during decapsulation

and concatenates the 32 bytes of the value z that is used to compute

the pseudo-random returned key when re-encapsulation fails. This

results in a total size of 1248 + 1088 + 32 + 32 = 2400 bytes for the

secret key.

A Kyber ciphertext is a 3-tuple (u,v,d ), where u is a vector of

three polynomials with 256 11-bit coefficients each, v is a polyno-

mial with 256 3-bit coefficients, and d is a 32-byte hash. Using the

same compressed little-endian format for polynomials as for keys

we obtain ciphertexts with a total size of 3 · 352+ (3 · 256)/8+ 32 =
1184 bytes.

Size-speed tradeoffs. It is possible to use different tradeoffs be-

tween secret-key size and decapsulation speed. If secret-key size is

critical, it is of course possible to not store H(pk ) and also to not

store the public key as part of the secret key but instead recompute

it during decapsulation. Furthermore, not keeping the secret key in

NTT domain makes it possible to compress each coefficient to only

5 bits, resulting in a total size of only 320 bytes for the three poly-

nomials. Finally, as all randomness in key generation is generated

from two 32-byte seeds, it is also possible to only store these seeds

and re-run key generation during decapsulation.

In the other direction, if secret-key size does not matter very

much and decapsulation speed is critical, one might decide to store

the expanded matrix A as part of the secret key and avoid recom-

putation from the seed ρ during the re-encapsuation part of decap-

sulation.

All performance results reported in the following assume the

secret-key format described in the previous paragraph; i.e., with

polynomials in NTT domain, including the public key and H(pk ),
but not including A.

7.2 Reference implementation
Kyber’s reference implementation in C follows much in the spirit of

the NewHope reference implementation described in [4, Sec. 7.2].

In particular, it only relies on 16-bit and 32-bit integer arithmetic

(outside of Keccak) and uses the same combination of short Bar-

rett reductions and Montgomery reductions to accelerate the NTT
computation. One consequence of the modulus q = 7681 is that

the short Barrett reduction becomes slightly more efficient; an un-

signed 16-bit integer a can be reduced to an unsigned integer r
between 0 and 11768 and congruent modulo q via the following

three operations:
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u = a >> 13;
u *= KYBER_Q;
r = a - u;

7.3 AVX2 implementation
Modern 64-bit Intel processors feature the AVX2 vector-instruction

set that supports operations on 256-bit vectors that can be in-

terpreted as vectors of 8 single-precision or 4-double-precision

floating-point numbers, or as vectors of integers of various sizes.

These AVX2 instructions were also used for the optimized imple-

mentation of the optimized NewHope software described in [4,

Sec. 7].

Polynomial arithmetic. For polynomial arithmetic we represent

polynomials as arrays of double-precision floating-point numbers.

This representation results in a very fast NTT computation as first

described in [41, Sec. 3.2] and also used for NewHope in [4]. Essen-

tially, our implementation of the NTT follows the same approach

as [41] and [4], except that we carefully optimize for n = 256 and

q = 7681. Specifically, we merge levels 0–4 and then merge lev-

els 5–7 to reduce load and store operations. The 13-bit modulus

q allows us to reduce coefficients modulo q only every 3 levels.

We reduce after level 1 (i.e., after 2 levels), then again after level

4, and finally after level 7. To make best use of the 53-bit radix of

double-precision floats, we precompute powers of ω in the range

[−q/2,q/2] and also reduce to this range inside the NTT. Only the

last modular reduction goes back to unsigned representation. One

NTT takes 1 992 cycles; an NTT−1 operation includes a bit reversal

and takes 2 632 cycles.

We also use vectorized double-precision floating point arith-

metic for pointwise multiplication and polynomial addition and

subtraction.

Vectorized Keccak. As mentioned earlier, Keccak has a reputa-

tion of not being particularly fast in software. One reason is that

Keccak is very hard to vectorize; in fact, according to the eBACS

benchmarks, the fastest implementation of Keccak on Intel Haswell

processors is the non-vectorized “simple64” implementation.

The picture changes drastically if a protocol can compute multi-

ple independent streams of SHA-3, SHAKE, or cSHAKE on inputs

and outputs of the same length. More specifically, the Keccak code

package [14] includes an implementation for AVX2 that computes 4

independent streams in parallel. We make use of this 4-way parallel

implementation in the expansion of ρ involved in the generation of

the matrixA and also in the generation of noise polynomials during

encapsulation. Specifically, for the generation of A, we generate 8
streams of uniformly random 16-bit numbers via two calls to this

function, leaving only one sequential SHAKE-128 call. In encap-

sulation we generate 8 arrays of 256 uniformly random bytes via

two calls to 4-way parallel cSHAKE-128 and discard one of those

arrays. The speedup from vectorized Keccak is crucial: compared

to NewHope, Kyber needs to generate more than twice as many

uniformly random polynomial coefficients, yet, with 34 304 cycles,

generation of the matrix a is about as fast as generation of the

equivalent value a in NewHope.

Rejection sampling. Part of the generation of A is rejection sam-

pling on the stream of 16-bit integers produced by the cSHAKE-128

expansion. We adopt the fast vectorized approach described in [40]

for this task. One difference is that we do not need to first con-

ditionally subtract q four times; we simply eliminate the upper 3

bits of each 16-bit integer in a 256-bit vector through one mask

instructions and then compare to a constant vector filled with 16-bit

copies of q.

7.4 Flexibility of Kyber
One possible use of Kyber is for ephemeral key exchange, for exam-

ple in TLS 1.2 as illustrated by [19] and by Google’s post-quantum

TLS experiment [21] with NewHope.
5
Indeed, the experiment con-

cluded that they “did not find any unexpected impediment to de-

ploying something like NewHope” [49] and Kyber features perfor-
mances close to the one of NewHope but with smaller sizes.

However, the CCA security of Kyber makes it a much more

versatile tool. Not only is it possible to cache ephemeral keys for

some time (which would be a security disaster for BCNS, Frodo,

or NewHope), we can also use it for classical IND-CCA public-

key encryption of messages of arbitrary length [33] (cf. the hybrid

CCA-secure scheme of Appendix A) and for authenticated key

exchange protocols, as described in Fig. 3. The Kyber software
package includes implementations of the unilaterally authenticated

key exchange Kyber.UAKE described in Fig. 2 and the mutually

authenticated key exchange Kyber.AKE described in Fig. 3.

8 PERFORMANCE RESULTS AND
COMPARISON

In this section we report on the performance of our standalone im-

plementations of Kyber, Kyber-based authenticated key exchange,

and an integration of Kyber within the Open Quantum Safe (OQS)

framework
6
[67].

8.1 Standalone Kyber
In Table 3 we give performance results of the standalone imple-

mentations of Kyber and compare them to results from the litera-

ture on lattice-based KEMS, key-exchange protocols, and encryp-

tion schemes. We compiled the Kyber software with gcc-4.9.2
with optimization flags -O3 -fomit-frame-pointer -msse2avx
-mavx2 -march=corei7-avx, except for the non-vectorized im-

plementation of Keccak, which we compile with clang-3.5.10
with flags -march=native -O3 -fomit-frame-pointer -fwrapv
-Qunused-arguments.

To give an indication of security levels obtained by the different

schemes we include the core-SVP hardness estimation (“Sec. estim.”)

following the approach from [4]. Note that this estimate does not

say anything about the applicability of hybrid or algebraic attacks.

8.2 Kyber-based authenticated key exchanges
To illustrate one use case of Kyber and to establish a data point for

high-performance post-quantum authenticated key exchanges, the

Kyber software package includes implementations of Kyber.AKE
and Kyber.UAKE. The performance in terms of message sizes and

CPU cycles (for our AVX2 optimized software) is summarized in

5
Note that one can easily combine KEMs (e.g., Kyber with a pre-quantum KEM) by

hashing the shared secret keys together.

6
https://www.openquantumsafe.org
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Table 3: Comparison of lattice-based KEMs and public-key encryption. Benchmarks were performed on an Intel Core i7-4770K
(Haswell) if not indicated otherwise. Cycles are stated for key generation (K), encapsulation/encryption (E), and decapsu-
lation/decryption (D) Bytes are given for secret keys (sk), public keys (pk), and ciphertexts (c). The column “ct?” indicates
whether the software is running in constant time, i.e., with protection against timing attacks.

Scheme Sec. estim. Prob. ct? Cycles Bytes

Passively secure KEMs

BCNS [19] 78
a

Ring-LWE yes K: ≈ 2 477 958 sk: 4096

E: ≈ 3 995 977 pk: 4096

D: ≈ 481 937 c: 4224

NewHope [4] 255
a

Ring-LWE yes K: 88 920 sk: 1792

(AVX2 optimized) E: 110 986 pk: 1824

D: 19 422 c: 2048

Frodo [18] 130
a

LWE yes K: ≈ 2 938 000
b sk: 11 280

(recommended parameters) E: ≈ 3 484 000
b pk: 11 296

D: ≈ 338 000
b c: 11 288

CCA-secure KEMs

NTRU Prime [12] 129
a

NTRU
k

yes K: ?
c sk: 1417

E: > 51488
c pk: 1232

D: ?
c c: 1141

spLWE-KEM [27] 128
i

spLWE ? K: ≈ 336 700
d sk: ?

(128-bit PQ parameters) E: ≈ 813 800
d pk: ?

D: ≈ 785 200
d c: 804

Kyber (this paper) 161
i

Module-LWE yes K: 276 720 sk: 2368

(C reference) E: 332 800 pk: 1088

D: 376 104 c: 1184

Kyber (this paper) 161
i

Module-LWE yes K: 77 892 sk: 2400

(AVX2 optimized) E: 119 652 pk: 1088

D: 125 736 c: 1184

CCA-secure public-key encryption

NTRUEncrypt ees743ep1[42] 159
a

NTRU no K: 1 194 816 sk: 1 120

E: 57 440 pk: 1 027

D: 110 604 c: 980

Lizard [28] 128
i

LWE+LWR no K: 97 573 000
f sk: 466 944

g,h

(recommended parameters) E: ≈ 35 050
f pk: 2 031 616

h

D: ≈ 80 840
f c: 1072

a
According to the conservative “best known quantum attack” estimates from [4].

b
Benchmarked on a 2.6GHz Intel Xeon E5 (Sandy Bridge).

c
The NTRU Prime paper reports benchmarks only for polynomial multiplication.

d
Benchmarked on “PC (Macbook Pro) with 2.6GHz Intel Core i5”.

e
Benchmarked by eBACS [13] on Intel Xeon E3-1275 (Haswell).

f
As reported by the software from https://github.com/LizardOpenSource/Lizard_c, compiled with gcc-6.3 with flags

-O3 -fomit-frame-pointer -msse2avx -mavx2 -march=native on Intel Core i7-4770K.

g
Unlike our scheme, the paper reports secret-key size without the public key required for decryption in the Targhi-Unruh transform.

h
Sizes used by the software; those could be compressed by a factor 1.6, incurring only small computational overhead.

i
According to the conservative “best known quantum attack” estimates from [4], with appropriate adaptations (balanced lattice attacks [28, Sec. 4.2]).

k
The problem underlying NTRU Prime is subtly different than in NTRU; it uses a different ring than commonly used in NTRU and uses deterministic noise.
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Table 4: Message sizes and cycle counts for Kyber.UAKE and
Kyber.AKE.

Bytes Cycles

P1 → P2 P2 → P1 P1(start) P2 P1(end)

UAKE 2 272 1 184 197 980 248 388 253 448

AKE 2 272 2 368 195 464 364 188 379 036

Table 5: Timings for post-quantum key exchanges (C refer-
ence implementations) in Open Quantum Safe.

Scheme Operations (µs)
P1 (start) P2 P1 (end)

SIDH [30] 15 015 33 530 14 241

McBits [11] 170 892 53 133

Frodo [18] 3 436 4 027 105

BCNS [19] 1 087 1 729 178

NewHope [53] 60 104 19

NewHope [4] 69 107 18

Kyber 77 100 110

Table 4. The only paper describing an implementation of lattice-

based authenticated key exchange that we are aware of is [71]. Our

software outperforms the results of [71] by more than two orders

of magnitude.

8.3 Integration with OQS
The Open Quantum Safe (OQS) aims at supporting the development

and prototyping of quantum-resistant cryptography. In particular,

it proposes a common API for post-quantum key exchange algo-

rithms, making it easy to integrate new algorithms and compare to

alternatives. We integrated the reference C implementation of our

CCA-secure KEM Kyber in OQS library, liboqs, and ran the bench-

marking command ./test_kex --bench; the results are provided
in Table 5.

Note that the timings differ slightly from those of Table 3. Indeed,

liboqs provides reference implementations for randomness sam-

pling, AES, Keccak and ChaCha20; our reference implementation

has been minimally modified to be compatible with those API. Also,

only the reference C implementation of NewHope is (as of today)

integrated to liboqs and not the AVX2-optimized version listed in

Table 3. Finally, all implementations have been compiled with the

same flags, which does not necessary reflect the full potential of

every implementation. Note that, once integrated to liboqs, it is
easy to integrate Kyber to OQS’s fork of OpenSSL 1.0.2.
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A THE CCA-SECURE ENCRYPTION SCHEME
We use the canonical way proposed by Cramer and Shoup to

compose Kyber, our secure key encapsulation mechanism (KEM),

with a secure one-time symmetric-key encryption (SKE, or DEM)

scheme [33]. We call Kyber.Hybrid the resulting hybrid encryption

scheme.

On the choice of a symmetric encryption scheme. Any SKE scheme

that is (one-time) secure against chosen-ciphertext attacks and with

key space K = {0,1}256 can be combined with our key encapsula-

tion mechanism Kyber. Typical examples include AES-OCB, AES-

GCM or ChaCha20-Poly1305. Depending on one’s application and
architecture, different needs and choices for the symmetric encryp-

tion scheme are possible; we decide in this paper to not restrict

ourselves to a specific application nor to a specific cipher. Addition-

ally to the previously mentioned ciphers, several submissions to

the Caesar competition for authenticated encryption are serious

candidates for SKE.

Description of Kyber.Hybrid. We describe the public-key hybrid

encryption scheme Kyber.Hybrid = (KeyGen,Enc,Dec) in Algo-

rithms 6 to 8, assuming a SKE (E,D) where the encryption algo-

rithm E takes as input a key in K = {0,1}256 and a message in

{0,1}∗ and outputs a ciphertext, and where the decryption algo-

rithmD takes as input a key and a ciphertext and outputs a message

(or the rejection symbol ⊥).

Algorithm 6 Kyber.Hybrid.KeyGen()

1: (pk B (ρ, t), sk B (s,ρ, t)) ← Kyber.KeyGen()
2: return (pk, sk)

Algorithm 7 Kyber.Hybrid.Enc(pk = (ρ, t),m)

1: (c,K ) ← Kyber.Encaps(pk)
2: c ′ B E (K ,m)
3: return c ′′ B (c,c ′)

Algorithm 8 Kyber.Hybrid.Dec(sk = (s,z,ρ, t),c ′′ = (c,c ′))

1: K B Kyber.Decaps(sk,c )
2: return m B D (K ,c ′)

Correctness and security. The correctness and security of our

hybrid encryption scheme Kyber.Hybrid follow from those of the

KEM and the chosen SKE [33, Th. 5].
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