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Abstract. In the context of attacking elliptic-curve scalar multiplica-
tion with template attacks, one can interleave template generation and
template matching to reduce the amount of template traces. This paper
enhances the power of this technique by defining and applying the con-
cept of online template attacks (OTA); a general attack technique with
minimal assumptions for an attacker, who has very limited control over
the target device. We show that OTA need only one power consumption
trace of a scalar multiplication on the target device; they are thus suit-
able not only against ECDSA and static Diffie-Hellman, but also against
elliptic-curve scalar multiplication in ephemeral Diffie-Hellman. In addi-
tion, OTA need only one template trace per scalar bit and they can be
applied to almost all scalar-multiplication algorithms.
To demonstrate the power of OTA we recover scalar bits of a scalar
multiplication using the double-and-add-always algorithm on a twisted
Edwards curve running on a smartcard with an ATmega163 CPU.
Keywords: Side-channel analysis, template attacks, scalar multiplica-
tion, elliptic curves.

1 Introduction

Side-channel attacks exploit various physical leakages of secret information
or instructions from cryptographic devices and they constitute a constant
threat for cryptographic implementations. We focus on power-analysis
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attacks that exploit the power-consumption leakage from a device run-
ning some cryptographic algorithm. Attacking elliptic-curve cryptosys-
tems (ECC) with natural protection against side-channel attacks, e.g.
implementations using Edwards curves, is quite challenging. This form
of elliptic curves, proposed by Edwards in 2007 [14] and promoted for
cryptographic applications by Bernstein and Lange [3], has several advan-
tages compared to elliptic curves in Weierstrass form. For instance, the
fast and complete formulas for addition and doubling make these types of
curves more appealing for memory-constrained devices and at the same
time resistant to classical simple power analysis (SPA) techniques. Al-
though considered a very serious threat against ECC implementations,
differential power analysis (DPA), as proposed in [12,25], cannot be ap-
plied directly to ECDSA or ephemeral Diffie-Hellman because the secret
scalar is used only once. This is incompatible with the requirement of DPA
to see large number of power traces of computations on the same secret
data. In order to attack various asymmetric cryptosystems, new tech-
niques that reside between SPA and DPA were developed; most notably
collision [35,34,38,18,15,1] and template attacks [29,31,33]. The efficiency
of most collision-based attacks is shown only on simulated traces; no prac-
tical experiments on real ECC implementations have verified these results.
To the best of our knowledge, only two practical collision-based attacks
on exponentiation algorithms are published, each of which relies on very
specific assumptions and deals with very special cases. Hanley et al. ex-
ploit collisions between input and output operations of the same trace [16].
Wenger et al. in [36] performed a hardware-specific attack on consecutive
rounds of a Montgomery ladder implementation. However, both attacks
are very restrictive in terms of applicability to various ECC implemen-
tations as they imply some special implementation options, such as the
use of López-Dahab coordinates, where field multiplications use the same
key-dependent coordinate as input to two consecutive rounds. In contrast,
our attack is much more generic as it applies to arbitrary choices of curves
and coordinates, and many scalar multiplication algorithms.

Previous work. Collision attacks exploit leakages by comparing two por-
tions of the same or different traces to discover when values are reused.
The Big Mac attack [35] is the first theoretical attack on public key cryp-
tosystems, in which only a single trace is required to observe key depen-
dencies and collisions during an RSA exponentiation. Witteman et al.
in [37] performed a similar attack on the RSA modular exponentiation in
the presence of blinded messages. Clavier et al. introduced in [11] hori-
zontal correlation analysis, as a type of attack where a single power trace
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is enough to recover the private key. They also extended the Big Mac
attack by using different distinguishers. Horizontal correlation analysis
was performed on RSA using the Pearson correlation coefficient in [11]
and triangular trace analysis of the exponent in [10]. The first horizontal
technique relevant to ECC is the doubling attack, presented by Fouque
and Valette in [15]. Homma et al. in [18] proposed a generalization of this
attack to binary right-to-left, m-ary, and sliding-window methods. The
most recent attack, proposed by Bauer et al. in [1], is a type of horizon-
tal collision correlation attack on ECC, which combines atomicity and
randomization techniques.

Template attacks are a combination of statistical modeling and power-
analysis attacks consisting of two phases, as follows. The first phase is the
template building phase, where the attacker builds templates to charac-
terize the device by executing a sequence of instructions on fixed data.
The second phase is the template matching phase, where the attacker
matches the templates to actual traces of the device. The attacker is as-
sumed to possess a device which behaves the same as the target device,
in order to build template traces while running the same implementa-
tion as the target. Medwed and Oswald demonstrated in [29] a practi-
cal template attack on ECDSA. However, their attack required an offline
DPA attack on the EC scalar-multiplication operation during the tem-
plate building phase, in order to select the points of interest. They also
need 33 template traces per key-bit. Furthermore, attacks against ECDSA
and other elliptic-curve signature algorithms only need to recover a few
bits of the ephemeral scalar for multiple scalar multiplications with differ-
ent ephemeral scalars and can then employ lattice techniques to recover
the long-term secret key [33,31,2]. This is not possible in the context of
ephemeral Diffie-Hellman: an attacker gets only a single trace and needs
to recover sufficiently many bits of this ephemeral scalar from side-channel
information to be able to compute the remaining bits through, for exam-
ple, Kangaroo techniques.

Our contribution. In this paper we introduce an adaptive template
attack technique, which we call Online Template Attacks (OTA). This
technique is able to recover a complete scalar from only one power trace
of a scalar multiplication using this scalar. The attack is characterized
as online, because we create the templates after the acquisition of the
target trace. While we use the same terminology, our attack is not a
typical template attack; i.e. no preprocessing template building phase is
necessary. Our attack functions by acquiring one target trace from the
device under attack and comparing patterns of certain operations from
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this trace with templates obtained from the attacker’s device that runs the
same implementation. Pattern matching is performed at suitable points
in the algorithm, where key-bit related assignments take place by using
an automated module based on the Pearson correlation coefficient.

The attacker needs only very limited control over the device used to
generate the online template traces. The main assumption is that the at-
tacker can choose the input point to a scalar multiplication, an assumption
that trivially holds even without any modification to the template device
in the context of ephemeral Diffie-Hellman. It also holds in the context
of ECDSA, if the attacker can modify the implementation on the tem-
plate device or can modify internal values of the computation. This is no
different than for previous template attacks against ECDSA.

Our methodology offers a generic attack framework, which is appli-
cable to various forms of curves (Weierstrass, Edwards and Montgomery
curves) and implementations. As a proof of concept, we attack the dou-
bling operation in the double-and-add-always algorithm. Contrary to the
doubling attack [15], our attack can be launched against right-to-left algo-
rithms and Montgomery ladder. We further note that Medwed and Oswald
perform a very special template attack based on a set of assumptions: DPA
performed in advance to find intermediate points for templates, implemen-
tation with Hamming-weight leakage and applicability only to ECDSA.
Online template attacks do not have these restrictions, they need only a
single target trace, and only a single template trace per key-bit. The ad-
vantages of our attack over previously proposed attacks are the following:

– It does not require any cumbersome preprocessing template building
phase, but a rather simple post-processing phase.

– It does not assume any previous knowledge of the leakage model.
– It does not require full control of the device under attack.
– It works against SPA-protected and some DPA-protected implemen-

tations with unified formulas for addition and doubling.
– Countermeasures such as scalar randomization and changing point

representation from affine to (deterministic) projective representation
inside the implementation do not prevent our attack.

– It is applicable to the Montgomery ladder and to constant-time (left-
to-right and right-to-left) exponentiation algorithms.

– It is experimentally confirmed on an implementation of double-and-
add-always scalar multiplication on the twisted Edwards curve used
in the Ed25519 signature scheme.

Online template attacks require only one target trace and one online
template trace per key-bit. We can, therefore, claim that our technique
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demonstrates the most efficient practical side-channel attack applicable
to ephemeral-scalar ECC. When applied to ECDSA, the proposed attack
can be used in combination with lattice techniques similar to [2,33], in
order to derive the whole private key from a few bits of multiple ephemeral
keys.

Organization of the paper. This paper is organized as follows. We in-
troduce and explain OTA in Section 2. Section 3 gives specific examples
of how the attack applies to different scalar-multiplication algorithms.
Section 4 presents our practical OTA on double-and-add-always scalar
multiplication. A discussion of how the proposed attack can be applied
to implementations that include countermeasures that randomize the al-
gorithm or operands is given in Section 5. Finally, Section 6 summarizes
our contribution and concludes the paper.

2 Online Template Attacks

We define an online template attack as a side-channel attack with the
following conditions:

1. The attacker obtains only one power trace of the cryptographic algo-
rithm involving the targeted secret data. This trace is called the target
trace. We call the device from which the target trace is obtained the
target device. This property makes it possible to attack scalar multipli-
cation algorithms with ephemeral scalar and with randomized scalar.

2. The attacker is generating template traces after having obtained the
target trace. These traces are called (online) template traces.

3. The attacker obtains the template traces on the target device or a
similar device4 with very limited control over it, i.e. access to the device
to run several executions with chosen public inputs. The attacker does
not rely on the assumption that the secret data is the same for all
template traces.

4. At least one assignment in the exponentiation algorithm is made de-
pending on the value of particular scalar bit(s), but there are no
branches with key-dependent computations. Since we are attacking
the doubling operation, this key-dependent assignment should be dur-
ing doubling. As a counterexample, we note that the binary right-
to-left add-always algorithm for Lucas recurrences [21] is resistant to
the proposed attack, because the result of the doubling is stored in a
non-key-dependent variable.

4 By similar device we mean the same type of microcontroller running the same algo-
rithm.
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In the following we show that online template attacks are feasible and
can be applied against implementations of various scalar-multiplication
algorithms. In fact, we show that we need only a single template trace per
scalar bit. Transfer of the approach to the corresponding exponentiation
algorithms (for example in RSA or DSA) is straight-forward. Transfer to
other cryptographic algorithms is clearly not trivial; we consider online
template attacks as a specialized means to attack scalar multiplication
and exponentiation algorithms.

2.1 Attack Description

Template attacks consist of two phases, template building for character-
izing the device and template matching, where the characterization of the
device together with a power trace from the device under attack are used
to determine the secret [28]. Therefore, the first condition of our proposed
attack is typically fulfilled by all attacks of this kind.

It is well known that template attacks against scalar multiplication
can generate templates “on-the-fly”, i.e., interleaving the template building
and matching phases. See, for example, [29, Sec. 5.3]. We take this idea
further by building templates after the target trace has been obtained
(condition 2). The attacker, being able to do things in this order, needs
only limited control over the target device. Moreover, the attacker is not
affected by randomization of the secret data during different executions
of the algorithm, since he always has to compare his template traces with
the same target trace.

The basic idea consists of comparing the traces for inputs PPP (target
trace) and 2PPP (online template trace) while executing scalar multiplication
and then finding similar patterns between them, based on hypothesis on
a bit for a given operation. The target trace is obtained only once. For
every bit of the scalar, we need to obtain an online template trace with
input kPPP , k ∈ Z, where k is chosen as a function of our hypothesis on this
bit. We hereby note that the template trace is part of the target trace (for
instance it corresponds to the first doubling) and it is compared bit-by-bit
with the target trace. Therefore, alignment of traces is not necessary.

We performed pattern matching for our traces using an automated
module based on the Pearson correlation coefficient, ρ(X,Y ), which mea-
sures the linear relationship between two variables X and Y . For power
traces, the correlation coefficient shows the relationship between two points
of the trace, which indicates the Hamming-weight leakage of key-dependent
assignments during the execution of a cryptographic algorithm. Exten-
sions to other leakage models and distinguishers are straightforward. Our
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pattern matching corresponds to a list of the correlation coefficients that
show the relationship between all samples from the template trace to the
same consecutive amount of samples in the target trace. If our hypothesis
on the given key-bit is correct, then the pattern match between our traces
at the targeted operation will be high (in our experiments it reached 99%).

In this way we can recover the first i bits of the key. Knowledge of
the first i bits provides us with complete knowledge of the internal state
of the algorithm just before the (i + 1)th bit is processed. Since at least
one operation in the loop depends on this bit, we can make a hypothesis
about the (i + 1)th bit, compute an online template trace based on this
hypothesis, and correlate this trace with the target trace at the relevant
predetermined point of the algorithm.

3 Applying the attack to scalar-multiplication algorithms

3.1 Attacking the double-and-add-always algorithm

The core idea and feasibility of the attack is demonstrated through an ex-
ample to the double-and-add-always algorithm described in Algorithm 1.
We note that the first execution of the loop always starts by doubling the
input point PPP , for all values of k. We assume that kx−1 = 1. Depending on
the second-most significant key bit kx−2, the output of the first iteration of
the algorithm will be either 2PPP or 3PPP . For any point PPP we can, therefore,
get a power trace for the operation 2PPP , i.e. we let the algorithm execute
the first two double-and-add iterations. In our setup, we can zoom into
the level of one doubling, which will be our target trace. Then we perform
the same procedure with 2PPP as the input point to obtain the online tem-
plate trace that we want to compare with the target trace. If we assume
that the second-most significant bit of k is 0, then we compare the 2PPP
template with the output of the doubling at first iteration. Otherwise, we
compare it with the online template trace for 3PPP .

Assuming that the first (i− 1) bits of k are known, we can derive the
i-th bit by computing the two possible states of RRR0 after this bit has been
treated and recover the key iteratively. Note that only the assignment in
the ith iteration depends on the key-bit ki, but none of the computations
do, so we need to compare the trace of the doubling operation in the
(i+1)th iteration with our original target trace. To decide whether the ith

bit of k is zero or one, we compare the trace that the doubling operation
in the (i + 1)th iteration would give for ki+1 = 0 with the target trace.
For completeness, we can compare the target trace with a trace obtained
for ki+1 = 1 and verify that it has lower pattern match percentage; in
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Algorithm 1: The left-to-right double-and-add-always algorithm
Input: PPP , k = (kx−1, kx−2, . . . , k0)2
Output: QQQ = k ·PPP
RRR0 ← PPP ;
for i← x− 2 down to 0 do

RRR0 ← 2RRR0 ;
RRR1 ← RRR0 +PPP ;
RRR0 ← RRRki ;

end
return RRR0

this case, the performed attack needs two online template traces per key
bit. However, if during the acquisition phase the noise level is low and
the signal is of good quality, we can perform an efficient attack with only
our target trace and a single trace for the hypothetical value of RRRki+1

.
Attacking the right-to-left double-and-add-always algorithm of [22] is a

Algorithm 2: Binary right-to-left double-and-add-always algorithm
Input: PPP , k = (kx−1, kx−2, . . . , k0)2
Output: QQQ = k ·PPP
RRR0 ← OOO;
RRR1 ← PPP ;
for i← 0 up to x-1 do

b← 1− ki ;
RRRb ← 2RRRb ;
RRRb ← RRRb +RRRki ;

end
return RRR0

type of key-dependent assignment OTA. We target the doubling operation
and note that the input point will be doubled either in the first (if k0 = 0)
or in the second iteration of the loop (if k0 = 1). If k is fixed we can
easily decide between the two by inputting different points, since if k0 = 1
we will see the common operation 2OOO. If the k is not fixed, we simply
measure the first two iterations and again use the operation 2OOO if the
template generator should use the first or second iteration. Once we are
able to obtain clear traces, the attack itself follows the general description
of Sect. 2. If we assume that the first i bits of k are known and we wish
to derive the (i+ 1)th bit, this means that we know the values of RRR0 and
RRR1 at the start of the (i+ 1)th iteration. By making a hypothesis on the
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value of the (i + 1)th key bit, we can decide according to the matching
percentage if RRR0 or RRR1 was used.

3.2 Attacking the Montgomery ladder

The Montgomery Ladder, initially presented by Montgomery in [30] as a
way to speed up scalar multiplication on elliptic curves, and later used as
the primary secure and efficient choice for resource-constrained devices, is
one of the most challenging algorithms for simple side-channel analysis due
to its natural regularity of operations. A comprehensive security analysis
of the Montgomery ladder given by Joye and Yen in [24] showed that the
regularity of the algorithm makes it intrinsically protected against a large
variety of implementation attacks (SPA, some fault attacks, etc.). For a
specific choice of projective coordinates for the Montgomery ladder, as
described in Algorithm 3, one can do computations with only X and Z
coordinates, which makes this option more memory efficient than other
algorithms.

Algorithm 3: The Montgomery Ladder
Input: PPP , k = (kx−1, kx−2, . . . , k0)2
Output: QQQ = k ·PPP
RRR0 ← PPP ;
RRR1 ← 2P2P2P ;
for i← x− 2 down to 0 do

b← 1− ki ;
RRRb ← RRR0 +RRR1 ;
RRRki ← 2 ·RRRki ;

end
return RRR0

The main observation that makes our attack applicable to the Mont-
gomery ladder is that at least one of the computations, namely the dou-
bling in the main loop, directly depends on the key-bit ki. For example,
if we assume that the first three bits of the key are 100, then the output
of the first iteration will be R0 = 2PPP . If we assume that the first bits are
110, then the output of the first iteration will be R0 = 3PPP . Therefore, if
we compare the pattern of the output of the first iteration of Algorithm 3
with scalar k = 100, we will observe higher correlation with the pattern
of R0 = 2PPP than with the pattern of R0 = 3PPP .



10 Batina, Chmielewski, Papachristodoulou, Schwabe, Tunstall

3.3 Attacking Side-Channel Atomicity

Side-channel atomicity is a countermeasure proposed by Chevallier-Mames
et al. [9], in which individual operations are implemented in such a way
that they have an identical side-channel profile (e.g. for any branch and
any key-bit related subroutine). In short, it is suggested in [9] that the
point doubling and addition operations are implemented such that the
same code is executed for both operations. This renders the operations
indistinguishable by simply inspecting a suitable side-channel. One could,
therefore, implement an exponentiation as described in Algorithm 4.

Algorithm 4: Side-Channel Atomic double-and-add algorithm
Input: PPP , k = (kx−1, kx−2, . . . , k0)2
Output: QQQ = k ·PPP
R0 ← OOO; R1 ← PPP ; i← x− 1 ;
n← 0 ;
while i ≥ 0 do

RRR0 ← RRR0 +RRRn ;
n← n⊕ ki ;
i← i− ¬n ;

end
return RRR0

There are certain choices of coordinates and curves where this ap-
proach can be deployed by using unified or complete addition formulas for
the group operations. For example, the Jacobi form [27] and Hessian [23]
curves come with a unified group law. Edwards curves [6,7] even have a
complete group law. For Weierstrass curves, Brier and Joye suggest an
approach for unified addition in [8].

Simple atomic algorithms do not offer any protection against online
template attacks, because the regularity of point operations does not pre-
vent mounting this sort of attack. The point 2PPP , as output of the third
iteration of Algorithm 4, will produce a power trace with very similar
pattern to the trace that would have the point 2PPP as input. Therefore,
the attack will be the similar as the one described in Sect. 3.1; the only
difference is that instead of the output of the second iteration of the algo-
rithm, we have to focus on the pattern of the third iteration. In general,
when an attacker forms a hypothesis about a certain number of bits of k,
the hypothesis will include the point in time where RRR0 will contain the
predicted value. This will mean that an attacker would have to acquire a
larger target trace to allow all hypotheses to be tested.
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4 Experimental Results

This section presents our experimental results. Firstly, in Sect. 4.1 we
describe the attacked implementation and the experimental setup that we
use to perform attacks. Secondly, we present experimental results of an
OTA with projective input in Section 4.2; in particular, we present the
results when we perform the attack bit-by-bit iteratively or in group of
five bits. Finally, Sect. 4.3 presents an OTA with affine input.

4.1 Target Implementation and Experimental Setup

To validate feasibility and efficiency of our proposed method, we attack
an elliptic-curve scalar multiplication implementation running on an “AT-
mega card”, i.e., an ATmega163 microcontroller [13] in a smart card. To
illustrate that our attack also works if the template device is not the same
as the target device, we used two different smart cards: one to obtain the
target trace and one to obtain the online template traces.

Our measurement setup uses a Picoscope 52035 with sampling rate of
125M samples per second for both target trace and online template traces.

This oscilloscope has limited acquisition memory buffer to 32M sam-
ples. Since 5 iterations of the scalar multiplication algorithm take around
235 ms, it means that with sampling rate of 125M samples per second we
can record a trace of approximately 29.4M samples.

The scalar multiplication algorithm is based on the curve arithmetic
of the Ed25519 implementation presented in [19], which is available online
at http://cryptojedi.org/crypto/#avrnacl. The elliptic curve used in
Ed25519 is the twisted Edwards curve E : −x2 + y2 = 1 + dx2y2 with
d = −(121665/121666) and base point

PPP = (15112221349535400772501151409588531511454012693041857206046113283949847762202,

46316835694926478169428394003475163141307993866256225615783033603165251855960).

For more details on Ed25519 and this specific curve, see [4,5].
We modified the software to perform a double-and-add-always scalar

multiplication (see Algorithm 1). The whole underlying field and curve
arithmetic is the same as in [19]. This means in particular that points are
internally represented in extended coordinates as proposed in [17]. In this
coordinate system a point PPP = (x, y) is represented as (X : Y : Z : T )
with x = X/Z, y = Y/Z, x · y = T/Z.

5 http://www.picotech.com/discontinued/PicoScope5203.html

http://cryptojedi.org/crypto/#avrnacl
http://www.picotech.com/discontinued/PicoScope5203.html
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4.2 Online Template Attack with Projective Input

In this subsection we describe how to apply an OTA if the input supplied
to the scalar multiplication is in projective (or extended) coordinates, i.e,
if the attacker has full control over all coordinates of the starting point.
This is a realistic assumption if a protocol avoids inversions entirely and
protects against leakage of projective coordinates by randomization as
proposed in [32, Sec. 6].

The attack targets the output of the doubling operation. We performed
pattern matching for our traces as described in Section 2.1. In this way,
we could determine the leakage of key-dependent assignments during the
execution of the algorithm.

We first demonstrate how to attack a single bit and then we present our
results from recovering the five most significant unknown bits of the scalar
(recall that the highest bit is always set to one; see Algorithm 1). The
remaining bits can be attacked iteratively in the same way as described
in Section 2.1; as stated above we were not able to do so due to technical
limitations of our measurement setup.

The first observation from our experiments is that when we execute
the same algorithm with the same input point on two different cards, there
is a constant vertical misalignment between the two obtained traces, but
the patterns look almost identical. This fact validates our choice of the
correlation coefficient as our pattern-matching metric, since this metric
does not depend on the difference in absolute values and therefore the
constant misalignment does not affect the results.

For our target trace, we compute a multiple of a point PPP . We know
that the most significant bit of the scalar is 1, so after the first iteration of
the double-and-add-always loop the value of RRR0 is either 2PPP (if the second
bit of k is zero) or 3PPP (if the second bit of k is one).

To determine the second bit of the secret scalar k, we generate tem-
plate traces by inputting exactly the projective representations of 2PPP and
3PPP and computing the correlation of the first iteration of the template
trace with the second iteration of the target trace.

In fact, from our experiments we observe that the correlation between
the correct template trace and the target trace is so much higher than
between the wrong template trace and the target trace, that just one of
the two template traces is sufficient to determine the second bit of k. 6

For validation of our results, we conducted several experiments with
different input points from the target card and the template card, and
6 Figures from experiments and measurements for different points and cards can be
found in the full version of the paper in the IACR ePrint archive.
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computed the correlation in the obtained power traces. We notice that
the trace obtained from the point 2PPP is almost identical to the pattern
obtained from the target trace; as expected the correlation is at least 97%
for all our experiments. On the other hand, the percentage correlation of
the target trace with the template trace for 3PPP is at most 83%. To deter-
mine the value of one bit, we can thus simply compute only one template
trace, and decide the value of the targeted bit depending on whether the
correlation is above or below a certain threshold set somewhere between
83% and 97%.

The results presented so far are obtained while attacking one single
bit of the exponent. When we attack five bits with one acquisition, we
observe lower numbers for pattern matching for both the correct and the
wrong scalar guess. The correlation results for pattern matching are not so
high, mainly due to the noise that is occurring in our setup during longer
acquisitions. This follows from the fact that our power supply is not per-
fectly stable during acquisitions that are longer than 200 ms. However,
the difference between correct and wrong assumptions is still remarkable.
Correct bit assumptions have 84− 88% matching patterns, while the per-
centage for wrong assumptions drops to 50− 72%. Therefore, we can set
a threshold for recognizing a bit to be at 80%.

Note that the attack with projective inputs does not make any assump-
tions on formulas used for elliptic-curve addition and doubling. In fact,
we carried out the attack for specialized doublings and for doublings that
use the same unified addition formulas as addition and obtained similar
results.

4.3 Online Template Attack with Affine Input

The attack as explained in the previous section makes the assumption
that the attacker has full control over the input in projective coordinates.
Most implementations of ECC use inputs in affine (or compressed affine)
coordinates and internally convert to projective representation. We now
explain how to adapt the attack to also handle those cases.

The input is now given as (x, y) and at the beginning of the computa-
tion converted to (x : y : 1 : xy). However, already after the first iteration
of the double-and-add-always loop, Z = 1 does not hold anymore. In the
following we consider an attack on the second-most significant bit (which
is again set to zero) and input point PPP of the target trace. After one it-
eration of the double-and-add-always loop, the value of RRR0 is determined
by the value of the second-most significant scalar bit. Choosing the affine
versions of 2PPP and 3PPP to generate template traces does not help us now,
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because they do not have any coordinates in common with the projective
representations used internally. To successfully perform the attack we need
to modify our approach and take a closer look at the formulas used for
point doubling. We illustrate the approach with the specialized doubling
formulas from [17]. For details, see http://www.hyperelliptic.org/EFD/g1p/

auto-twisted-extended-1.html#doubling-dbl-2008-hwcd. These doubling for-
mulas begin with the following operations:

A = X^2, B = Y^2, C = 2*Z^2 ...

Our idea is not to attack a whole doubling operation but just a single
squaring; in the following example we attack the squaring B = Y 2. The
idea is to use input pointsQQQ andRRR for the template traces, such that the y-
coordinate of QQQ is the same as the Y -coordinate in the internal projective
representation of 2PPP and the y-coordinate ofRRR is the same as Y -coordinate
of the internal projective representation of 3PPP . Unfortunately, such points
do not always exist, but our experiments showed that it is sufficient to
select points QQQ and RRR such that their y-coordinate is almost the same
as the Y -coordinate of the respective internal projective representation.
By almost the same we mean that the y-coordinate is allowed to differ in
one bit. This flexibility in choosing the template input allows us to find
suitable points with overwhelmingly large probability. When we compare
the traces for PPP as input at the second iteration to the trace for QQQ at the
first iteration during the second squaring operation (computing B) then
we can observe that the two traces are almost identical; see Figure 1 for
details. This figure is taken from an experiment where we have an exact
match of the y-coordinate, i.e., we did not have to flip one bit in the
expected internal value to find a suitable affine template point.

Fig. 1: Comparison between P ′P ′P ′ at the second iteration to QQQ at first iteration; the area of
computing B is highlighted

For validation of our result, we conducted several experiments with
different input points using one card (for the sake of simplicity), and
found the correlation in the obtained power traces. Let us assume that
the scalar is k = 10 (let us recall the the most significant bit is always
set to 1). Figure 2 shows the pattern match between a template trace
during computation of B of input point QQQ (iteration 1) to the target trace

http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd
http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd


Online Template Attacks 15

for P ′P ′P ′ (iteration 2) and the pattern match between the template trace
(iteration 1) for RRR to the target trace (iteration 2). We notice that the
trace obtained from the pointQQQ is almost identical to the pattern obtained
from the target trace; as expected, the correlation is at least 96% for
exactly matching y-coordinate of the template point and >91% for almost
matching y-coordinate. For the non-matching template point the pattern
match is at most 84%.

Fig. 2: Pattern Matching QQQ to P ′P ′P ′ and RRR to P ′P ′P ′ coming from the same card

5 Countermeasures and Future Work

Coron’s first and second DPA countermeasures result in scalar or point
being blinded to counteract the statistical analysis of DPA attacks [12].
Given that an attacker needs to predict the intermediate state of an algo-
rithm at a given point in time, we can assume that the countermeasures
that are used to prevent DPA will also have an effect on the OTA. All
proposed countermeasures rely on some kind of randomization, which can
be of either a scalar, a point or the algorithm itself. However, if we as-
sume that the attacker has no technical limitations, i.e an oscilloscope
with enough memory to acquire the power consumption during an entire
scalar-multiplication, it would be possible to derive the entire scalar being
used from just one acquisition. Therefore, if one depends on scalar blind-
ing [12,26], this method provides no protection against our attack, as the
attacker could derive a value equivalent to the exponent used.

There are methods for changing the representation of a point, which
can prevent OTA and make the result unpredictable to the attacker. Most
notably those countermeasures are randomizing the projective randomiza-
tion and randomizing the coordinates through a random field isomorphism
as described in [20]. However, inserting a point in affine coordinates and
changing to (deterministic) projective coordinates during the execution
of the scalar multiplication (compressing and decompressing of a point),
does not affect our attack.

We aim exclusively at the doubling operation in the execution of each
algorithm. Since most of the blinding techniques are based on the cyclic
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property of the elliptic curve groups, attacking the addition operation
would be an interesting future research topic.

6 Conclusions

In this paper we presented a new side-channel attack technique, which can
be used to recover the private key during a scalar-multiplication on ECC
with only one target trace and one online template trace per bit. Our
attack succeeds against a protected target implementation with unified
formulas for doubling and adding and against implementations where the
point is given in affine coordinates and changes to projective coordinates
representation. By performing our attack on two physically different de-
vices, we showed that key-dependent assignments leak, even when there
are no branches in the cryptographic algorithm. This fact enhances the
feasibility of OTA and validates our initial claim that one target trace is
enough to recover the secret scalar.
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