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Abstract—This paper describes an ECC implementation
computing the X25519 key-exchange protocol on the ARM
Cortex-M4 microcontroller. This software comes with ex-
tensive mitigations against various side-channel and fault
attacks and is, to our best knowledge, the first to claim
affordable protection against multiple classes of attacks that
are motivated by distinct real-world application scenarios.
We also present the results of a comprehensive side-channel
evaluation. We distinguish between X25519 with ephemeral
keys and X25519 with static keys and show that the overhead
to protect the two is about 36% and 239% respectively. While
this might seem to be a high price to pay for security, we also
show that even our (most protected) static implementation is
as efficient as widely-deployed ECC cryptographic libraries,
which offer much less protection.

Index Terms—Elliptic Curve Cryptography, Side-Channel
Analysis, Fault Injection

1. Introduction

Elliptic-curve cryptography (ECC) presents the current
state of the art in public-key cryptography, both for key
agreement and for digital signatures. The reason for ECC
getting ahead of RSA is mainly in its suitability for con-
strained devices due to much shorter keys and certificates,
which results in ECC consuming much less energy and
power than RSA. Also, ECC has an impressive security
record: while certain classes of elliptic curves have shown
to be weak [79], [104], attacks against ECC with a conser-
vative choice of curve have not seen any substantial im-
provement since ECC was proposed in the mid-80s inde-
pendently by Koblitz [66] and Miller [81]. The best known
attack against ECC is still the Pollard rho algorithm [92]
and its parallel version by van Oorschot and Wiener [111].

The situation is different for implementation attacks
against elliptic-curve cryptosystems. Since Kocher put for-
ward the concept of side-channel analysis (SCA) against
cryptographic implementations and fault injection (FI)
analysis, i.e., the Bellcore attacks, was introduced in the
late 90s [22], [67], [68], research into attacks against
implementations of ECC and suitable countermeasures has
been a very active area. The most common forms of SCA
are Simple Power Analysis (SPA) and Differential Power
Analysis (DPA), both introduced in [68], and profiled

attacks. SPA involves visually interpreting power con-
sumption traces over time to recover the secret key while
DPA relies on performing a statistical analysis between
intermediate values of cryptographic computations and the
corresponding side-channel traces1. Profiling attacks, most
notably template attacks (TAs), were introduced in [27].
Here the adversary first uses a device (for instance, a copy
of the attacked device) that is under their full control to
characterize device leakage; this characterization informa-
tion is called a template for TAs. Then the adversary uses
that information to efficiently recover the secret data from
the device under attack.

We will review the relevant classes of attacks later in
the paper, but to name a few recent real-world examples
of such implementation attacks against ECC consider the
“Minerva” timing attack against multiple implementations
of ECDSA [62], or the power-analysis attack recovering
the secret key from a TREZOR hardware bitcoin wal-
let [55]. In fact, the research area has been so active that it
produced at least four survey papers reviewing the state of
the art in attacks and countermeasures at different points
in time [1], [32], [38], [39].

We also will survey the state of the art in attacks
and countermeasures and consequently parts of this paper
have the character of a SoK paper. However we go further
than just systematizing knowledge: In this paper we aim
at consolidating knowledge by bringing together (and
extending) the state of the art through implementations
of one of the most widely used ECC primitives with
extensive SCA and FI countermeasures. We admit that
most individual countermeasures used by us have been
proposed before – the contribution is to carefully ana-
lyze, combine, and implement these. For example, as the
Montgomery ladder operates on x-coordinates only, point
blinding is not straightforward; also multiplicative scalar
blinding is non-standard but more efficient because of the
special shape of the group order.

Complete, specific, additive, and public. The survey by
Fan and Verbauwhede from 2013 [39] concludes that a
side-channel-protected implementation of ECC needs to
satisfy three properties:

1. Nowadays DPA is rarely used in favor of an improved method
called Correlation Power Analysis (CPA) [23] that replaces difference
of means with Pearson correlation.
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• the protection mechanisms need to be complete,
i.e., protect against all relevant attacks;

• they need to be specific to the application scenario
and resulting attacker model; and

• they need to additive, i.e., combined in a way that
does not introduce new vulnerabilities.

In this work we add a fourth attribute to this list: to
enable independent verification of these properties, the
implementation needs to be public.

Surprisingly, despite the extensive body of literature
on implementation attacks on ECC, we are not aware of a
single paper describing an implementation fulfilling these
four properties or even making somewhat substantiated
claims to do so. For a more detailed discussion see the
section on related work below.

There are implementations of ECC that claim to fulfill
the three properties introduced in [39]. For example, NXP
advertises the SmartMX2-P40 “secure smart card con-
troller” as supporting “DES, AES, ECC, RSA cryptogra-
phy, hash computation, and random-number generation”
and claims that the protection mechanisms are “neutral-
izing all side channel and fault attacks as well as reverse
engineering efforts” [88]. However, like essentially all
commercial smart cards, all implementation details are
kept secret, which actively prevents academic discourse
and public evaluation of these claims. As a result of this
situation many papers are presenting side-channel attacks
against ECC implementations that never claimed protec-
tion against such attacks; see [46], [98], for example.

We do not mean to say that there are no public
implementations of ECC including certain countermea-
sures against some specific attacks. On the contrary: most
papers describing attacks also suggest countermeasures
and some of these papers also present implementations
of those countermeasures; see the section on related work
below. However, more than 3 decades after the invention
of ECC and 2 decades after the invention of side-channel
attacks we still do not know the cost of ECC implementa-
tions with complete, specific, and additive SCA counter-
measures, or if such implementations are even achievable
with respect to the budgets in area, memory, power and
energy that are typically sparse for low-cost devices.

In this paper we present the first—to our knowledge—
publicly available implementation of a widely used ECC
primitive claiming to fulfill the three properties for a
concrete real-world scenario and assuming a rather strong
adversarial model on both, side-channel and fault analysis.

The overhead required by our protected implementa-
tions is about 36% for the ephemeral implementation and
239% for the static one. While this might seem a hefty
price to be paid, note that it is rather modest in comparison
to securing AES on ARM architectures. In particular,
Schwabe and Stoffelen [102] showed that masked bitsliced
AES has an overhead of 458% compared to unprotected
bitsliced AES and of 1339% compared to a table-based
AES; all on the same ARM Cortex-M4 platform we con-
sider in this paper. Moreover, we show in Subsection 5.1
that even our most protected implementation is at least as
efficient as widely-deployed ECC cryptographic libraries,
which provide much less SCA protections. The reason
for the exceptional performance of our implementations
is careful optimizing on the assembly level. We identify

synergies between SCA protections and performance, for
example in carefully tuning register allocation to minimize
memory access.

Security evaluation vs. formal proofs. The current state
of the art of formally verifying side-channel protection
of asymmetric crypto is to prove the absence of timing
leakage with tools such as ct-verif [4] (on LLVM IR level)
or Binsec/Rel [70] (on binary level). Computer-verified
proofs of side-channel protections beyond timing-attack
resistance are much further in the symmetric-crypto realm
(see, e.g., [8], [9], [13], [36], [83]) and we believe that it
is a very important direction of research to extend such
results also to asymmetric cryptography. In particular, we
consider proving that our static X25519 implementation is
secure against first-order DPA attacks to be future work,
as it would require significant advances of the currently
available tools for formal verification.

Moreover, for many attacks that we aim to pro-
tect against in this paper because of their real-world
importance—most notably profiling attacks and fault-
injection attacks—we are not even aware of a widely
accepted sound and complete definition of what it means
for an implementation to be secure. This is why we follow
the current state of the art in practical security evaluation
and provide extensive experimental evidence to evaluate
the security of our implementations.

Application scenario. Long-term secrets as used in au-
thentication protocols typically form the most precious
assets of any security infrastructure. Today, sophisticated
communication capabilities are incorporated in more and
more systems that formerly used to operate in a stand-
alone setting. One prominent example are Internet-of-
Things (IoT) devices, serving applications both for indus-
try as well as consumer applications. Most of these devices
today do not incorporate dedicated cryptographic hard-
ware designed for adequately protecting long-term-keys.

Moreover, physical access to many devices cannot
be effectively restricted, making installations significantly
more vulnerable to implementation attacks exploiting all
kinds of leakage such as electromagnetic emanation,
power consumption etc., than typical for the traditional
office or server-room setting. This notably applies to large-
scale or de-centralized industrial plants such as common
in petrochemistry or local drinking-water wells.

In most critical-infrastructure systems, conventional
smart-card circuits cannot not be used, specifically when
considering constraints imposed by power-budget or rough
environmental conditions or frequent update requirements.

For instance, wireless modules for off-the shelf indus-
trial sensors often have to operate within a power budget
of less than 2 mW [51] clearly exceeded by most off-the-
shelf smart-card chips. Appliances for medical use or for
production of food and drugs might have to withstand
high sterilization temperatures. Conventional smart-card
circuits are typically not designed for these environments,
forcing implementers to choose conventional microcon-
trollers specifically designed for the respective constraints.

It is also worth noting that in many consumer applica-
tions, commercial pressure pushes designers to use con-
ventional microcontrollers for cryptographic operations
instead of dedicated smart-card circuitry.



Another aspect which should be considered is that cus-
tomization of typical smart-card chipsets is often impos-
sible. For high-volume applications specialized software,
e.g., Java Card applets, is common. However, the access to
freely programmable circuits is limited. For applications
with smaller market volumes tailored solutions mostly
could not be realized. Conversely, the common "turn-key"
smart-card products often allow only for very limited flex-
ibility regarding the supported cryptographic protocols.

Why consider software only? The side-channel and
fault-attack-protected implementation of X25519 that we
present in this paper is a software-only implementa-
tion targeting the ARM Cortex-M4 microcontroller. Some
would argue that applications that are seriously concerned
about side-channel security will rely, at least to some
extent, on countermeasures implemented in hardware.

The main reason that we go for a software-only im-
plementation is the aforementioned application scenario,
which cannot afford specialized hardware2. Clearly this
approach calls for an evaluation of how far we can go in
software-only countermeasures. We also stress that, while
we use this application as a motivation, there are other
scenarios—for example, many open-source projects—that
cannot afford producing special-purpose hardware.

Another reason for following a software-only approach
is to encourage independent evaluation of our implemen-
tations. Development boards featuring our target plat-
form are available for around US$ 20, allowing any side-
channel researcher to try to attack our implementation.

Finally, we choose Cortex-M4 as our platform due
to its popularity, for example, it is a software platform
of choice for recent NIST competitions. Moreover, we
believe that our implementations can be relatively easily
adjusted for other ARM architectures (for example, the
Cortex-M33 and Cortex-M4 instructions are very similar).

Why target X25519? The concrete primitive we target
with side-channel and fault-attack protections in this pa-
per is the X25519 elliptic-curve key-exchange originally
proposed under the name “Curve25519” by Bernstein
in [16]. To avoid confusion between naming of the specific
elliptic-curve used in the protocol and the protocol itself,
Bernstein later suggested to call the curve Curve25519
and the protocol X25519 [17].

One reason to target this primitive is its widespread
use in many state-of-the-art security protocols like in
TLS [87], SSH [2], the Noise Framework [109, Sec. 12],
the Signal protocol [106], and Tor [76]. For a more exten-
sive list see [57]. Moreover, X25519 is now also consid-
ered as primitive for the OPC/UA protocol family [40] by
the OPC/UA security working group, specifically targeting
IoT applications with both increased protection demands
and low computational resources.

Another reason is that in this paper we make an at-
tempt to settle discussions about the cost of SCA-protected
X25519 implementations. On the one hand it is generally
acknowledged that the “Montgomery ladder” (see Sec-
tion 2), which is typically used in X25519 implementa-
tions, is a good starting point for SCA protected imple-

2. While we concentrate on software only, note that our implementa-
tion can be relatively easily modified to use a hardware co-processor for
modular arithmetic instead of our assembler arithmetic routines, without
modifying higher-level SCA countermeasures.

mentations. On the other hand, during standardization of
Curve25519 for TLS, concerns were expressed about the
structure of the underlying finite field and group order [72,
Sec. 3.1] leading to a significant increase of the cost
of side-channel protections. The main argument refers to
the presumed need of significantly larger scalar blinding.
We show that these concerns can be resolved without
excessive performance penalties in comparison to curves
over fields without structure allowing for fast reduction.

Also the fact that the full group of curve points has a
co-factor of 8 has raised concerns in the SCA context [47].
As one way to alleviate these subgroup concerns it is
often suggested to validate inputs [5], [7], [35]; however
Bernstein’s Curve25519 FAQ [15] states “How do I val-
idate Curve25519 public keys? Don’t.”. For the sake of
security we have decided to include a full on-curve check
for the static implementation and an early-abort strategy
on certain malicious inputs for the ephemeral case.

Related work. There is a vast amount of literature de-
voted to the topic of side-channel-secure implementations
of ECC in both, software and hardware. Most related
work considers different types of curves, but on the same
platform, e.g., FourQ on the ARM Cortex-M4 micro-
controller [71], or the same curve but without such a
comprehensive side-channel protection [45], [99].

A range of high-speed implementations [71] are
proposed for the FourQ elliptic curve of Costello
and Longa on various embedded devices, including
scalar multiplication, ECDH key exchange, and digital
signatures. Many countermeasures to thwart various types
of SCA are added. All implementations are constant
time and include countermeasures such as scalar and
projective-coordinate randomizations and point blinding.
The implementation with the countermeasures resulted
in a slowdown of factor 2 for the ARM platform.
To validate the effectiveness of the countermeasures,
leakage detection is performed using test vector leakage
assessment (TVLA) [14]. They show an improved
side-channel resistance, as expected, and DPA also failed
when countermeasures were deployed. However, active
and profiling adversaries are not considered. Hence, this
work does not offer a comprehensive evaluation but
rather a solid benchmark in evaluating trade-offs for
certain side-channel attacks (namely, SPA and DPA).

Fujii and Aranha [45] present an X25519 implemen-
tation that is protected against timing attacks by constant-
time execution: randomized projective coordinates and
constant-time conditional swaps were implemented. How-
ever, the authors do not specify any details about those
countermeasures and they do not consider protection
against other side-channel attacks.

Considering hardware implementations, Sasdrich and
Güneysu performed extensive investigations of costs for
countermeasures in hardware, i.e., on an FPGA platform
for Curve 25519 and Curve448 [100], [101]. In both cases,
the Montgomery ladder was deployed to provide a basic
protection against timing and SPA. To offer some DPA
protection, point randomization and scalar blinding were
added, increasing the amount of look-up tables (LUTs)
by 5% and of flip-flops (FFs) by 40% and increasing
the overall latency in terms of clock cycles by 45% for
Curve448. For Curve25519 the performance penalty was



30% with a similar increase in required LUTs and FFs. In
addition, the authors add memory address scrambling to
secure the memory accesses against side-channel attacks
and correspondingly make DPA more complex. For this
purpose 26 different random addresses were used.

A protected FPGA implementation of the complete
formulas for Weierstrass curves by Renes, Costello, and
Batina [94] has been presented by Chmielewski, Costa
Massolino, Vliegen, Batina, and Mentens [28], Three dif-
ferent versions were evaluated: (1) an unprotected archi-
tecture; (2) an architecture protected through coordinate
randomization; and (3) an architecture with both coor-
dinate randomization and scalar splitting. The evaluation
is done through timing analysis and TVLA. The results
show that applying an increasing level of countermeasures
leads to an improved resistance against SCA, but they only
consider a side-channel adversary of a limited capacity i.e.
being only passive and not capable of profiling.

Software availability. We place all software described in
this paper into the public domain. It is available from
an anonymous repository at: https://anonymous.4open.
science/r/40fe2d05-17f5-439c-9e89-7a4737e3322e/.

2. Preliminaries

In this section we introduce the necessary background
on the X25519 key-exchange and on the ARM Cortex-M4
microcontroller. We also introduce our attacker model.

2.1. X25519 key-exchange

In the elliptic-curve Diffie-Hellman key-exchange,
each party generates a private and public key pair and
distributes the public key. Then the parties can compute
a shared key offline using scalar multiplication and the
private scalar. The shared secret can be used, for instance,
as the session key for a symmetric cipher.

The X25519 elliptic-curve key-exchange is based on
arithmetic on the elliptic curve in Montgomery form [82]:

E : y2 = x3 + 486662x2 + x

over the finite field Fp with p = 2255 − 19. The group of
Fp-rational points on E has order 8·`, where ` is a 252-bit
prime. The central operation of shared-key computation
is scalar multiplication smult(k, xP ), which receives as
input two 32-byte arrays k and xP . Each of those arrays
is interpreted as a 256-bit integer in little-endian encoding;
the integer xP is further interpreted as an element of Fp.
The smult routine first sets the most significant bit of xP

to zero (ensuring that xP ∈ {0, . . . , 2255−1} and sets the
least significant 3 bits of k and the most significant bit of
k to zero, and the second-most significant bit of k to one
(ensuring that k ∈ 8 ·{2251, . . . , 2252−1}). This operation
on bits of the input k is often referred to as “clamping”;
in our pseudocode we denote it by clamp. Subsequently,
smult outputs the x-coordinate x[k]P of the point [k]P
where P is one of the two points with x-coordinate xP

on E (if there are such points) or the quadratic twist of E
(otherwise), and where [k] denotes scalar multiplication
by k. The smult operation is commonly implemented
using the Montgomery ladder [82] using a projective

Algorithm 1 The Montgomery ladder for x-coordinate-
based scalar multiplication on E : y2 = x3+486662x2+x

Input: k ∈ {0, . . . , 2255 − 1} and the x-coord. xP of a point P
Output: x[k]P , the x-coordinate of [k]P

X1 ← 1; Z1 ← 0; X2 ← xP ; Z2 ← 1, p← 0
for i← 254 downto 0 do

c← k[i]⊕ p . b[i] denotes bit i of k
p← b[i]
(X1, X2)← cswap(X1, X2, c)
(Z1, Z2)← cswap(Z1, Z2, c)
(X1, Z1, X2, Z2)← ladderstep(xP , X1, Z1, X2, Z2)

end for
return (X1, Z1)

representation (X : Z) of an x-coordinate x = X/Y .
Pseudocode for this ladder is given in Algorithm 1.

This algorithm uses two sub-routines cswap and
ladderstep. The cswap (“conditional swap”) routine swaps
the first two inputs iff the last input is 1. The ladderstep
computes (X[2]P , Z[2]P , XP+Q, ZP+Q) on input coordi-
nates xQ−P , XP , ZP , XQ, ZQ. This takes 5 multiplica-
tions, 4 squarings, one multiplication by a small constant,
and a few additions and subtractions in F2255−19.

The key-exchange protocol uses this smult function
and the fixed basepoint xB = [9, 0, . . . , 0] and proceeds
with straight-forward elliptic-curve Diffie-Hellman.

2.2. The ARM Cortex-M4 microcontroller

Our target platform is the ARM Cortex-M4 micropro-
cessor, which implements the ARMv7ME 32-bit RISC
architecture [105]. The most relevant features of this
platform for our software are the following:

• 16 general-purpose 32-bit registers, out of which
14 are freely usable (one is used as instruction
pointer and one as stack pointer); and

• a single-cycle 32 × 32-bit multiplier producing a
64-bit result, which can be accumulated for free
through a fused multiply-accumulate instruction.

The Cortex-M4 features a three-stage pipeline. Recent
findings [77], [103], [119] indicate that specific properties
of the internal pipeline architecture are highly relevant
for the amount of generated side-channel leakage. In the
instruction set, input and output operands of the ALU are
retrieved from and stored to the register file. However,
based on the analysis of [119] and own findings, we
presume that the Cortex-M4 features also shortcut data
paths which generate additional leakage when the result
of a first arithmetic or logic instruction in the pipeline
is required as input operand for a subsequent instruction
within the pipeline.

Randomness generation. The side-channel countermea-
sures require a source of uniformly random bytes.
Random-number generation is not part of the Cortex-
M4, however the specific STM32F407 device that we
used for evaluation features a hardware random number
generator, which generates 4 random bytes every 40 clock
cycles [105]. We use this hardware RNG for all ran-
domness generation. In some contexts we need uniformly
random values modulo p or modulo `. In those cases we
sample a 512-bit integer and reduce modulo q or `. This

https://anonymous.4open.science/r/40fe2d05-17f5-439c-9e89-7a4737e3322e/
https://anonymous.4open.science/r/40fe2d05-17f5-439c-9e89-7a4737e3322e/


approach is also used, for example, for sampling close-to-
uniform random values modulo ` in the Ed25519 signature
scheme [18], [19]. Compared to a software RNG, the hard-
ware RNG provides faster and higher quality randomness.

Fast X25519 on the Cortex-M4. Multiple earlier papers
describe optimized implementations of X25519 on the
ARM Cortex-M4 [44], [45]. The speed-record within the
scientific literature is currently held by an implementation
by Haase and Labrique [52]. They report 625 358 cycles
for one scalar multiplication on an STM32F407 running at
16MHz. The optimized routines for field arithmetic from
this implementation are in the public domain and available
from https://github.com/BjoernMHaase/fe25519. They are
the starting point for our protected implementations.

2.3. Attacker model

Our attacker model is motivated by typical capabili-
ties of a real-world attacker. We assume that an attacker
controls the input to the scalar multiplication and obtains
the contents of the output buffer after the computation has
finished. Furthermore, we assume certain capabilities with
respect to the side-channel leakage that becomes available
(passive attacker) and FI capability (active attacker).

Passive side-channel attacker. We assume that an at-
tacker can collect sufficiently many traces of power or EM
leakage together with the chosen input and corresponding
output. In addition, we allow for the attacker to generate
templates (as in profiled attacks) for self-controlled inputs
on a device of the same make and model as the target
device. For our experiments we generate templates on the
same device as the one we target in the attack.

As mentioned above, instead of proving the side-
channel security of our implementation in a certain model
(e.g., the noisy leakage model [93]), we use the TVLA
methodology (t-test analysis) to show the absence of
leakage in traces collected from an actual device running
our implementation. This kind of analysis, although not
perfect, is standard for security evaluation labs [58], [115].

A limited fault attacker. A software-only implementa-
tion, such as the one we describe in this paper, cannot be
protected against arbitrarily powerful fault attackers. The
reason is that such an attacker could simply skip the exe-
cution of the program over any dedicated countermeasure
or rewrite values in registers and memory to eliminate all
effects of fault-attack countermeasures. The fault attacker
we consider in this paper is therefore limited to injecting
only one fault per scalar multiplication. We assume that
this fault may either skip a short block of consecutive
instructions, set an arbitrary register value to zero, or set
an arbitrary register value to a random value not controlled
by or known to the attacker. These faults are the most
common to occur in practice based on our experience and
on reviewed literature; see, for example, [108].

Restricting instruction skips to “short” blocks is mo-
tivated by the fact that in practice single fault attacks
are typically able to skip only up to 2–3 instructions.
Furthermore, allowing arbitrarily long blocks of code to
be skipped would enable trivial attack skipping all crypto-
graphic computations. For similar reasons we also exclude
the instruction pointer from the set of “arbitrary” registers

that the attacker may fault. Note also that we consider
attacks skipping over the function call to our protected
implementations out of scope – such attacks need to be
protected by the surrounding context.

3. SCA-protected ephemeral X25519

In this section we describe our implementation of
X25519 protected against side-channel and fault attacks
when deployed in an ephemeral key-exchange scenario.
In such a scenario each secret scalar is used only twice,
once in public-key generation and once in the computation
of the shared secret key. By itself such an ephemeral
key exchange makes little sense in most communication
scenarios because communication partners are unauthen-
ticated. However, combined with either signatures in a
SIGMA-style protocol [69] or in combination with static
key exchanges in, for example, 3DH [75], it is a critical
building block to achieve forward secrecy.

The goal of SCA and FI attackers against the
ephemeral key-exchange is to learn the shared secret.
This goal can be achieved either by learning the secret
scalar or by influencing the scalar multiplication through
fault injection during both key generation and shared-key
computation (and scalar multiplication is the main part
of those) to an easily guessable value. The advantage of
having two instead of just one trace is very small for a
passive attacker – it is certainly too few traces to allow
any kind of differential attacks, which we only consider
for the static key-exchange in Section 4.

As we focus on protecting the scalar multiplication, we
consider generation of the 32-byte scalar as out-of-scope
and assume that it is provided by the user of the library.

We list the most relevant passive attacks in Subsec-
tion 3.1 and the most relevant active attacks in Subsec-
tion 3.2, for the ephemeral setting. Due to space con-
straints we do not list all possible attacks, but only focus
on the most relevant ones; for a complete list of attacks
see the surveys [39], [64]. Finally, in Subsection 3.3 we
explain our implementation and how it protects against
the listed attacks.

3.1. Relevant passive attacks

SPA. Simple power analysis (SPA) [68] is one of the most
common forms of SCA. Note that we do not emphasize on
the word “power”, but also include attacks that use a trace
of electromagnetic radiation or any other side-channel.
Modern definitions of SPA often include any attack that
works with side-channel information of a single execu-
tion. This definition would include horizontal and certain
template attacks. We discuss those separately and hence
define SPA attacks in the more classical sense as attacks
that visually identify secret-data-dependent control flow.
Simply speaking, SPA attacks typically target instruction-
dependent leakages that are often data-dependent.

Horizontal (collision) attacks. Single-trace attacks be-
yond SPA are often called horizontal attacks. These at-
tacks trace back to the Big-Mac attack [112], and were
applied against ECC implementations [12], [30], [53]. The
main idea of horizontal collision is to use key-dependent

https://github.com/BjoernMHaase/fe25519


collisions of the same values across multiple iterations of
the scalar multiplication loop. Consider, e.g., an attacker
able to distinguish whether two finite-field multiplications
have an input in common. If this is the case then the
attacker can learn whether two scalar multiplication iter-
ations share the same scalar bit. Such single-trace attacks
have been described against RSA [112] and ECC [53].

Horizontal correlation attacks. Horizontal correlation
attacks [30] are based on predictions of intermediate arith-
metic results within a single trace. Although this method
is effective against private-key blinding countermeasures,
other mitigation methods, e.g., coordinate or point ran-
domization, prevent this horizontal attack.

Template attacks. Template attacks (TAs) [27] require
a profiling stage in which the adversary estimates the
probability distribution of the leaked information to use
information present in each sample. Traditionally, TA is
considered the best attack technique from an information-
theoretic point of view, but it makes strong assumptions on
the attacker, e.g., that they can collect an unbounded num-
ber of template traces and the noise is close to Gaussian.

Medwed and Oswald [78] introduced a TA targeting
the internal state of the ECC ladder after a few scalar bits
are processed. In our context if the single-trace TA is suc-
cessful then the few bits are recovered and the attack can
continue on the subsequent bits targeting the same trace.

Another relevant profiling attack is the TA targeting
the conditional move (cmov) instruction [86]. The cmov
instructions are often used to implement cswap. The idea
of this attack in our context is to learn about the behavior
of cswap and create the corresponding templates (from
multiple traces). Subsequently, the templates can be used
to recover scalar bits from all cswap operations used in a
single scalar multiplication. The attack is complex, but it
can be successful even against a single trace.

The third relevant class for TA targets key-
transfer [89]. Note that in most implementations the scalar
is copied, from flash to RAM or within RAM, just before
the scalar multiplication is executed. This might allow the
attacker to template the copy process and try to recover
information about the scalar or the session key (i.e., the
output of the scalar multiplication) from a single trace.

Deep-learning attacks. A recent class of profiled attacks,
similar to TAs, are deep-learning (DL) side-channel at-
tacks [25], [65], [74]. These attacks use algorithms like
multilayer perceptron (MLP) or convolutional neural net-
works (CNNs) to recover the secret keys from crypto-
graphic implementations. Their main advantage over TAs
is that they do not require pre-processing of leakage traces,
require less trace alignment, and make the attack simpler
to run. They can be applied to attack ECC as demonstrated
in several articles [113], [114], [121]. Deep learning was
also used to attack ECC in the unsupervised setting [91].

Online template attacks. Online template attacks (OTA)
use horizontal techniques to exploit the fact that an in-
ternal state of scalar multiplication depends only on the
scalar and the known input [11], [34], [97] or output [24].
Advanced types of those attacks need only one leakage
trace and can defeat implementations protected with scalar
blinding or splitting. OTA traces back and extends the
doubling and collision attacks [43], [56].

If an attacker has only access to the affine, and not pro-
jective, input and output points then since OTA depends
on predictability of the internal state, it is thwarted by
randomizations, like point blinding, projective coordinate
randomization [31], or coordinate re-randomization [86].

Horizontal cmov attacks. Horizontal cmov attacks [85]
are similar to the aforementioned single-trace TA [86], but
they are unsupervised. They combine a heuristic approach
based on clustering with multiple-trace points-of-interest
selection. Due to the relaxation of the attack setting, these
attacks have slightly lower success rate and their complex-
ity is increased in comparison to the profiled approaches.

3.2. Relevant active attacks

Weak curve attacks. The first weak-curve attack [20] on
ECC made use of invalid points. The key observation is
that a6 in the definition of a secure curve E is not used in
the addition. Hence, the addition formula for the curve E
generates correct results for any curve E′ that differs from
E only in a6: y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a′6.
Thus, the attacker can provide a point P on an insecure
curve E′ and solve ECDLP on E′ to find out the scalar.

Moving a scalar multiplication from a strong curve to a
weak curve often requires fault injection. With the help of
faults, the attacker can employ invalid points [20], invalid
curves [29], and twist curves [41] to hit a weak curve.

Loop-abort attacks. A rather simple fault-injection attack
is to jump out of the scalar multiplication main loop after
only a few iterations or completely skip over the loop,
which makes the resulting output easily predictable. An
attacker against an ephemeral key exchange who is able to
jump out of the loop in the same iteration in both key gen-
eration and shared-key computation can force the device
into generating a weak, easily predictable shared key.

Key shortening. Another simple fault-injection attack
aims to shorten the scalar. The attacker uses FI to stop the
copy loop of the scalar before it is in the scalar multiplica-
tion. This way entropy in the scalar is reduced, if the pre-
vious memory content is predictable (e.g., if it is zeroed).

Fixing scalar-multiplication output. A straightforward
attack to enforce predictable output is to prevent copying
of the final result or use a fault to directly write, e.g., zero
values, to the output buffer.

3.3. Protected implementation

We extend the approach Algorithm 1 with SCA and
FI protections. Algorithm 2 presents a pseudocode of
our protected implementation of ephemeral X25519. Like
most previous X25519 implementations it is running in
“constant time”, i.e., is not leaking any information about
the scalar through timing. Furthermore, we add a number
of countermeasures, including re-randomizing the projec-
tive representation in the cswaprr procedure for the SCA
resistance and a flow-counter to improve the FI resistance.

The strategy of our cswaprr, which merges condi-
tional swapping with projective re-randomization, takes
into account that memory access leaks significantly more
than register operations. We thus fetch input words from



memory, conditionally swap and randomize in registers
and then store the results back. Randomization here means
multiplying both the X and the Z coordinate by a 29-bit
random value. We also considered the risk of increased
leakage due to shortcut data paths in the core’s pipeline.
We avoided using a result from an immediately preced-
ing instruction as input for the subsequent operations if
operands hold information on the secret scalar.

We moreover take into account that the CPU core
always processes 32 bits simultaneously in its single-cycle
multiplication and logic instructions. We aim at increasing
the noise level by embedding random data into unused
operand bits in addition to the confidential information.
For instance, conditional moves are implemented on a
half-word basis by using two multiplicative masks M1,M2

having random data in bits 16 to 31. Bits 15 to 0 are
zeroed and the condition (M1) and negated condition
(M2) is held in bit 0. For inputs A,B, the calculation
A′ ←M1 ·A+M2 ·B;B′ ←M1 ·B+M2 ·A; yields the
swapped lower half-words of the inputs in bits 0 to 15.

In order to protect against FI, e.g., loop-abort attacks,
we employ a flow-counter countermeasure [116]. Specifi-
cally, we use a single counter monotonously incremented
throughout the scalar multiplication to detect changes in
the execution flow. If the value of this counter does not
match the expected value at the end of the computation
then we return a random value.

We need to emphasize that we make an efficiency
vs. security trade-off for the ephemeral implementation:
namely, we protect it less than the static one. In particular,
we do not employ the address randomization, storage and
scalar blinding (for details, see Section 4). However, note
that it would be easy to add some of those countermea-
sures based on the static implementation. Alternatively,
for the best protection the static routine can be used in
the ephemeral scenario at the cost of slowing down the
computation by a factor of ≈ 2.5 (for exact numbers, see
Table 1).

Below we explain why our implementation is resistant
to the passive and active attacks listed above.

SPA attacks are thwarted by using secret-independent
control flow. This is rather clearly achieved in the Mont-
gomery ladder, as long as the conditional-swap operation
(implemented by us in cswaprr) is carefully implemented
without conditional branches.

Using a ladder to compute the scalar multiplication is
a commonly recommended countermeasure against “clas-
sical” SPA attacks; see, for example, [68].

Horizontal correlation attacks rely on the fact that
identical values (i.e., field elements) are used across two
or more loop iterations. In our implementation, this class
of attacks is thwarted by re-randomizing the projective
representation of the two points in the state in each
iteration. This re-randomization is merged into the cswaprr
operation as detailed above. Each re-randomization is
using 29 bits of randomness, which leaves a small chance
that occasionally this random value is of a special form
that does not fully remove correlation (e.g., the randomizer
could be 1 or 2). We do not expect this to be a problem
in practice, as an attacker would only very occasionally
be able to learn one or two bits of an ephemeral scalar by
exploiting these rare correlations.

Horizontal, template, deep-learning, and online tem-
plate attacks extract information about the secret scalar
by identifying temporary values used in the computa-
tion through matching against templates. As a recom-
mended [10], [11] countermeasure against online-template
attacks we employ projective randomization [84] with a
full-size randomizer chosen uniformly random from Fp.
This countermeasure also stops template attacks that are
based on exploiting the internal ladder state leakage.

However, that countermeasure does not stop the
single-trace attacks. Therefore, the following attacks might
be feasible: single-trace TA or DL targeting cswaprr
(see [86], for example) and single-trace TA or DL tar-
geting key loading. The ephemeral implementation does
not explicitly protect against such attacks, as shown by the
evaluation in Section 5.2. However, the static implementa-
tion adds additional protections; for details, see Section 4.

Weak curve attacks. Since we are implementing
Curve25519, many weak-curve attacks are not possible;
for example, see the paragraph on small-subgroup attacks
in [16, Sec. 3]. However, an attacker can try to insert a
point in the order-8 subgroup; such inputs are mapped to
the neutral element (represented by ZP = 0) through the
three doubling steps in lines 5–7 of Algorithm 2. Lines
9–10 detect this neutral element and abort. In typical
X25519 implementations those doublings are performed
at the end of the scalar-multiplication loop, because the
lowest 3 bits of the scalar are set to zero through clamping.
Moving them to the beginning ensures that the input to
the main loop is either of order ` or of order 1; even if
an attack skips the early-abort through an injected fault.

Loop-abort attacks. We employ a flow-counter counter-
measure [116] against the loop-abort attacks.

Key Shortening. There are two ways how a fault-injection
attacker can reduce entropy in the secret scalar: either
by setting parts of the key to zero or by skipping over
instructions that copy the scalar. We do not implement
any particular countermeasure against those attacks for the
following reasons. First, as we are on a 32-bit architecture,
an attacker can set at most 32 out of the 256 bits to
zero with a single fault, which is not sufficient to allow
any practical attacks. Second, we have verified that the
copying loop is unrolled by the compiler so again, an
attacker can control at most 32 bits of the scalar with
single FI. We did consider duplicating the scalar-copy
operation, but while this would help against fault-injection
attacks, it would make SCA easier.

Fixing scalar-multiplication output. To prevent an at-
tacker from directly influencing the values in the output
buffer, we set its content to a random value before starting
with the main computation and only copy the result to
this buffer if the flow-counter check was successful. An
attacker who is restricted to one fault can prevent either
randomization or copying of the valid result, but not both
– which would be required to obtain a predictable value.

Combined active/passive attacks. An advanced attacker
can try to combine SCA and FI attacks, as presented
in [37] for example. This specific attack is disabled by
randomization of point coordinates and point blinding.
Another strategy for such an attacker could be to use FI to



Algorithm 2 Pseudocode of side-channel and fault-attack protected ephemeral X25519
Input: A 255-bit scalar k and the x-coordinate xP of some point P
Output: x[k]P
1: ctr ← 0 . Initialize iteration counter
2: xP

$← {0, . . . , 2256 − 1} . Initialize output buffer to random bytes
3: k ← clamp(k)
4: k ← k/8 . Divide scalar k by 8 to account for initial 3 doublings
5: Increase(ctr)
6: (XP , ZP )← montdouble(xp, 1)
7: (XP , ZP )← montdouble(Xp, ZP )
8: (XP , ZP )← montdouble(Xp, ZP ) . 3 doublings to multiply by co-factor 8
9: Increase(ctr)

10: if ZP = 0 then
11: go to Line 27 . Early-abort if input point is in order-8 subgroup
12: end if
13: xP ← XP · Z−1

P . Return to affine x-coordinate
14: X1 ← 1, Z1 ← 0

15: Z2
$← {0, . . . , 2255 − 20}, X2 ← xP · Z2 . Initial randomization of projective representation

16: k ← k ⊕ 2k . Precompute condition bits for cswap
17: Increase(ctr)
18: for i from 252 downto 1 do . Main scalar-multiplication loop
19: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, k[i]) . projective re-randomization merged with cswap
20: (X1, Z1, X2, Z2)← ladderstep (xP , X1, Z1, X2, Z2)
21: Increase(ctr)
22: end for
23: (X1, Z1, X2, Z2)← cswaprr ((X1, Z1, X2, Z2), k[0])
24: xP ← X2 · Z−1

2
25: Increase(ctr)
26: if ! Verify(ctr) then . Detected wrong flow, including iteration count
27: xP

$← {0, . . . , 2256 − 1} . Set output buffer to random bytes
28: end if
29: return xP

disable some SCA countermeasures and then proceed with
SCA. In this paper we consider such an attacker largely
out of scope, but in particular the re-randomization of
the projective coordinates in every loop iteration makes
such a combined attacker hard: skipping over one re-
randomization step would only help in recovering one
scalar bit and skipping over re-randomization in multiple
steps would require more than one fault.

4. SCA-protected static X25519

This section describes our implementation of X25519
protected against SCA and FI attacks when deployed in
an static key-exchange scenario. In this scenario the secret
scalar can be used an arbitrary number of times, contrary
to the ephemeral implementation from Section 3.

The goal of an attacker against the static key exchange
is to either obtain the long-term secret key or the output,
i.e., session key. This goal can be either achieved by
learning the scalar or by influencing scalar multiplication
through FI during both key generation and shared-key
computation to an easily guessable value.

The static scalar in our library is protected with static
masks. The scalar and these masks need to be gener-
ated by the user and then stored in the library. Then
the static masks are automatically updated during scalar-
multiplication executions and should not be modified or
accessed by the user. If possible they should be stored in
the memory isolated from the user. The Cortex-M4 does
not feature memory isolation, thus for this work we con-
sider protecting the private key in memory out of scope.

Below we list the most relevant passive attacks in
Subsection 4.1 and the most relevant active attacks in
Subsection 4.3. Note that these lists are extensions of

the lists from Section 3. Moreover, since the static imple-
mentation implements scalar blinding, a countermeasure
that randomizes the scalar in each execution, most of the
attacks are effectively reduced to the ephemeral case.

4.1. Relevant passive attacks

First-order and higher-order DPA attacks. With the
first publication introducing DPA [68] it was clear that
the technique applies to all cryptosystems relying on long-
term secrets. The idea is based on the fact that the same
secret is used over and over again, which allows the
attacker to build a statistical attack. The only requirement
is to identify the so-called selection function that takes as
inputs some known data and the secret the attacker aims at
recovering. In a static key exchange, the secret is typically
the scalar i.e. the private key and the known input is the
point it gets multiplied with. Considering this scenario, the
attacker can recover the secret key bit by bit, by simply
collecting enough traces for each loop of scalar multipli-
cation and making the hypothesis on intermediate results.

There also exist higher-order multivariate DPA [26],
[80], which can combine multiple samples coming from
many traces to derive side-channel information.

Cross-correlation attacks. Cross-correlation exploits col-
lisions in subsequent additions and doubling of a scalar
multiplication algorithm using many traces [117]. The
horizontal correlation attacks from Section 4.3 can be
traced back to this multi-trace attack.

Special-point attacks. A refined power analysis (RPA)
attack exploits the existence of special points: (x, 0) and
(0, y). Feeding to a device a point P that leads to a
special point R(0, y) (or R(x, 0)) at step i under the



assumption of processed bits of the scalar will generate
exploitable side-channel leakage [50]. A zero-value point
attack (ZPA) [3] is an extension of RPA. Not only consid-
ering the points generated at step i, a ZPA also considers
values of auxiliary registers. For some special points P ,
some auxiliary registers might predictably have zero value
at step i. The attacker can then use the same procedure
of RPA to incrementally reveal the whole scalar.

Carry-based attacks. Carry-based attacks [42] do not
attack the scalar multiplication itself but its countermea-
sures. It relies on the carry propagation occurring when
long-integer additions are performed as repeated sub-word
additions. Let us consider scalar blinding k′ = k + r#E,
where k is the scalar, r is the blinding and #E is the
curve order. This blinding is normally implemented with
repeated 8-bit additions on 8-bit processors. We denote
ki and ri#E as the i-th sub-word of k and ri#E,
respectively. Note that ki is fixed and ri#E is random in
different executions. The crucial observation here is that,
when adding ki to ri#E, the probability of the carry out
c = 1 depends mainly on the value of ki. The adversary
can then monitor the outgoing carry bit of the adder to
estimate the probability of c = 1. With this probability,
the value of ki can be guessed reliably.

Address-bit DPA. The address-bit DPA [31] explores the
link between the register address and the key and it was
successfully applied to ECC [59]. This attack is applicable
if the addresses of coordinates processed in the ladder step
depend in some way on the corresponding scalar bit. Es-
sentially, the scalar bit can be recovered if the attacker can
distinguish between data read from different addresses.

Address template attacks. The leakage used by address-
bit DPA can be also exploited using a TA. Observe that
when attacking a single trace, this attack is essentially
equivalent to the TA targeting the cswap [86] (see Sub-
section 3.1), even if the leakage is not coming from the
address but from the cswap logic. Therefore, when we talk
about the address leakage, we also include to the cswap
leakage in this context.

4.2. Relevant active attacks.

Safe-error attacks. The concept of safe-error was intro-
duced by Yen and Joye [63], [120]. Two types of safe-
errors are reported: C safe-error and M safe-error. The
C safe-error attack exploits dummy operations which are
usually introduced to achieve SPA resistance, like add-
and-double-always, for example. The adversary tries to in-
duce temporary faults during the execution of the dummy
operation. If the result is unaffected then it means that
a dummy operation was affected and in case of different
result, a real operation was affected. This is enough to
learn a scalar bit in the attacked iteration. The M safe-
error attack exploits the fact that faults in some memory
blocks will be cleared. These attacks were first applied to
RSA [63], but they can also be applied to scalar multipli-
cation. The goal of the attack is to affect memory that is
only overwritten if a scalar bit has a certain value, e.g., 1.

Differential fault analysis. The Differential Fault Attacks
(DFA) on scalar multiplication [20], [21] use the differ-
ence between the correct results and the faulty results to

deduce certain scalar bits. These attacks require multiple
correct and incorrect results of scalar multiplications to
learn the static scalar. Since we randomize the scalar, as
described later, these attacks are not applicable and we do
not detail on them here due to the space constraints.

4.3. Protected implementation

The static protected scalar multiplication is presented
in Algorithm 3. We implement all protections from
Algorithm 2 including re-randomization of the projective
representation using cswaprr and the control-flow
counter. Additionally, to prevent key-transfer attacks, we
implement scalar storage blinding: the scalar k is stored as
kf−1 = k · f−1 together with f , which is a 64-bit random
blinding. To protect against attacks that use special points
as input, we also use static random points R and S
for input point blinding, where S = [−k]R. All these
blindings f , R, S and the blinded scalar kf−1 are always
securely re-randomized at the end of scalar multiplication.
They should also be stored securely as they can be used
to recover the private scalar. In particular, if possible in
the given architecture, they should be stored in a secure
memory not accessible to users of the library. That is why
we mark these values as secure input in Algorithm 3.

To further improve security, we generate a random 64-
bit value r and we blind the scalar with its inverse r−1 at
the beginning of each scalar multiplication. Then we re-
move the blinding by performing an additional scalar mul-
tiplication by r. This way scalar multiplication does not
depend on stored values but it always freshly randomized.

During scalar blinding operations we compute inverses
using the extended Euclidean algorithm. We protect these
computations by additional multiplicative blinding.

To limit address leakage we implement the address-
randomization technique [54], [60]. This countermeasure
adds additional random cswaprr executions to make the
cswaprr sequence in the scalar multiplication independent
from the scalar itself. Although this countermeasure is
called address-randomization for historical reasons, it also
can thwart cswap-like leakage as shown in [54].

Below we explain why our static implementation is
resistant to the passive and active attacks listed above.

First-order and higher-order DPA attacks. To prevent
DPA, Coron [31] suggested three countermeasures for an
EC-based key exchange: randomizing a point, projective
coordinates, and the scalar for every protocol execution.
We implement all these methods in our implementation
and, as confirmed by the evaluation in Section 5, we
show its DPA-resistance. Note that since higher-order DPA
employs multiple traces, these type of the attacks are also
stopped by the Coron’s countermeasures.

Cross-correlation attacks are essentially reduced to the
horizontal correlation due to the usage of scalar blinding.
Horizontal correlation is not possible due to employment
of the projective re-randomization.

Special-point attacks are prevented by the initial point
blinding with R: S = [−k]R. This ensures that the point
used in each ladder iteration is independent from the input.

Carry-based attacks are thwarted by the usage of the
storage scalar blinding. Essentially the scalar is re-blinded



Algorithm 3 Pseudocode of side-channel and fault-attack protected static X25519
Input: the x-coordinate xP of P . Secure Input: a 64-bit blinding f , blinded scalar kf−1 = k · f−1, and blinding points R,S = [−k]R
Output: x[k]P
1: ctr ← 0 . Initialize iteration counter
2: xP

$← {0, . . . , 2256 − 1} . Initialize output buffer to random bytes
3: Copy kf to internal state while increasing ctr. . Updating ctr in a loop makes sure that copying cannot be affected by faults
4: yP ← ycompute(xP )
5: Increase(ctr)
6: (XP , YP , ZP )← ecadd((xP , yP ), R) . Point blinding, output of addition of R is projective
7: (XP , YP , ZP )← ecdouble((XP , YP , ZP ))
8: (XP , YP , ZP )← ecdouble((XP , YP , ZP ))
9: (XP , YP , ZP )← ecdouble((XP , YP , ZP )) . 3 doublings to multiply by co-factor 8

10: r
$← {1, ..., 264 − 1} . Sample 64-bit non-zero random value for scalar blinding

11: b
$← {0, ..., `} . Sample blinding factor of non-constant-time inversion

12: t← r · b mod ` . Invert using extended binary gcd
13: s← t−1 · b mod ` . Unblind result of inversion
14: k′

f−1 ← kf−1 · s mod l . Multiplicatively blind scalar kf−1

15: k′ ← k′
f−1 · f mod l . Multiplicatively unblind scalar k′f−1 with f

16: Increase(ctr)
17: xP ← XP · Z−1

P . Return to affine x-coordinate
18: yP ← YP · Z−1

P . Return to affine y-coordinate
19: X1 ← 1, Z1 ← 0

20: Z2
$← {0, . . . , 2255 − 20}, X2 ← xP · Z2 . Initial randomization of projective representation

21: k′ ← k′ ⊕ 2k′ . Precompute condition bits for cswap
22: a

$← {0, ..., 2253 − 1} . Sample mask for address-randomization
23: k′ ← k′ ⊕ a . Mask the scalar
24: Increase(ctr)
25: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, a[252]) . projective re-randomization merged with cswap based on mask.
26: for i from 252 downto 0 do . scalar multiplication by k′ = k · r−1

27: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, k′[i]) . projective re-randomization merged with cswap based on masked k
28: if i ≥ 1 then
29: (X1, Z1, X2, Z2)← ladderstep (xP , X1, Z1, X2, Z2)
30: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, a[i− 1]) . projective re-randomization merged with cswap based on mask
31: Increase(ctr)
32: end if
33: end for
34: yP ← yrecover(X1, Z1, X2, Z2, xP , yP )
35: xP ← X2 · Z−1

2
36: X1 ← 1, Z1 ← 0

37: Z2
$← {0, . . . , 2255 − 20}, X2 ← xP · Z2 . Again randomize projective representation

38: a′
$← {0, ..., 265 − 1} . Sample additional mask for address-randomization

39: r ← r ⊕ 2r . Precompute condition bits for cswap
40: r ← r ⊕ a′ . Mask the random scalar r
41: Increase(ctr)
42: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, a′[64]) . projective re-randomization merged with cswap based on mask
43: for i from 64 downto 0 do . scalar multiplication by r
44: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, r[i]) . projective re-randomization merged with cswap based on masked r
45: if i ≥ 1 then
46: (X1, Z1, X2, Z2)← ladderstep (xP , X1, Z1, X2, Z2)
47: (X1, Z1, X2, Z2)← cswaprr (X1, Z1, X2, Z2, a′[i− 1]) . projective re-randomization merged with cswap based on mask
48: Increase(ctr)
49: end if
50: end for
51: Y2 ← yrecover(X1, Z1, X2, Z2, xP , yP )
52: (X2, Y2, Z2)← ecadd((X2, Y2, Z2), S) . Remove point blinding, add in S = [−k]R
53: xP ← X2 · Z−1

2
54: Increase(ctr)
55: if ! Verify(ctr) then . Detected wrong flow, including iteration count
56: xP

$← {0, . . . , 2256 − 1} . Set output buffer to random bytes
57: end if
58: Update(R,S) . Perform double-and-add scalar multiplication with the same 8-bit random number on both R and S
59: Randomize(kf−1 , f) . Generate new 64-bit random value f , securely compute f−1 and update kf−1

60: Save(R,S, kf−1 , f)
61: return xP



after every usage and therefore, no single guess about k or
ki can be made between multiple blinding computations.

Address-bit DPA is not possible since the scalar is freshly
randomized in each scalar multiplication execution.

Address template attacks. Only single-trace attacks are
applicable due to the employed randomizations. The
single-trace horizontal, template, and DL attacks can di-
rectly target whatever instructions involve the scalar bits.
Thus, these attacks are much harder to defeat. To thwart
them we implement the address-randomization [54], [60]
and we evaluate its effectiveness in Section 5.2.

Another effective countermeasure against these attacks
was implemented for Curve25519 cswap [73]. However,
the proposed cswap implementation does not consider the
risk of correlation between memory loads and stores of
the unchanged sub-words, before and after swapping. We
choose the more conservative option of storing condition-
ally swapped operands only after having them projectively
re-randomized first. Therefore, we avoid the risk of cor-
relation between loaded and stored (swapped) operands.

Safe-error attacks and differential fault analysis. Due
to the scalar blinding, these attacks are not applicable.

5. Evaluation

In this section we present benchmark results of our
implementations in Subsection 5.1 and our side-channel
evaluation results in Subsection 5.2.

5.1. Performance Evaluation

We measured clock cycles of the implementations
on an STM32F407 Discovery development board and
applied the common practice of clocking it down to at
24 MHz for obtaining reproducible cycle counts that are
not significantly affected by wait cycles of the memory
subsystem [52]. We use the gcc compiler, version 10.2.1
20201103 (release), GNU Arm Embedded Toolchain 10-
2020-q4-major with the -O2 optimization flag. The above
details are important for performance numbers because
while all low-level arithmetic functions are implemented
in assembly, the high-level code is still in C. Compiler
optimizations influencing ordering of instructions (e.g.,
unrolling or inlining) might influence FI resistance. The
performance evaluation results are presented in Table 1.

We see that both SCA and FI protections come at a sig-
nificant cost. However, the protections for the ephemeral
implementation, mostly the projective re-randomization,
only incur a relatively small penalty. The additional
protections included in the static implementation,
mainly against single-trace profiled attacks, have a more
significant cost even when implemented with efficiency in
mind. The total overhead to protect the ephemeral imple-
mentation is about 36% and the overhead of protecting the
static one is 239% in comparison to the unprotected case.

Comparison. As expected, our countermeasures signif-
icantly reduce the speed. Still we believe our protected
implementations to be highly competitive. For the purpose
of comparison we have benchmarked several commonly
used speed-optimized versions of unprotected off-the-shelf

TABLE 1. PERFORMANCE EVALUATION (IN CLOCK CYCLES).

Implementation / Countermeasure Cycles:
Complete unprotected: 683 061
Complete ephemeral: 930 915
Complete static: 2 316 986

Cost per cswaprr iteration (ephemeral & static): 1041
Randomized Addressing (static): 330 481
Update static blinding points (static): 153 911
Update static scalar (static): 199 947
Blinding of the scalar (static): 197 376
Additional 64-bit scalar multiplication (static): 331 742

cryptographic libraries. We choose the libraries for their
wide-spread use (boringSSL) or because they claim to be
targeting smaller embedded systems (bearSSL, wolfSSL,
ARM MBed TLS). We included both, publicly available
commercial libraries and open source implementations.
Table 2 reports the cycle counts, obtained using the same
ARM Cortex-M4 and parameters as used in our work,
and whether the libraries are constant time.

TABLE 2. PERFORMANCE OF RELATED CRYPTO LIBRARIES.

Library Constant Time Cycles:
wolfSSL [118] size: yes 45 930 947
wolfSSL [118] speed: yes 1 974 047
bearSSL i31 [107]: yes 2 576 639
boringSSL [49]: fixed base yes 1 591 407
boringSSL [49]: var. base yes 2 516 476
ARM MBed TLS [6] no 6 438 233

We see that the considered libraries require between
1 974k and 2 576k CPU cycles on our target platform.
They are, thus, more than two times slower than our pro-
tected ephemeral and about as fast as our fully protected
static implementation while providing much less SCA and
FI protections. A detailed security analysis of the consid-
ered cryptographic libraries is presented in Appendix A.

5.2. Side-channel Evaluation

This subsection presents our SCA setup and the evalu-
ation of the unprotected, ephemeral, and static implemen-
tations. We also discuss the resistance to profiled attacks.

Side-channel analysis setup. We run our side-channel
experiments using a Cortex-M4 on an STM32F407IGT6
board clocked at 168 MHz. We measure current with the
Riscure Current Probe [95] and record traces using the
LeCroy WaveRunner 610Zi oscilloscope. For analysis of
the traces we use the Inspector software by Riscure [96].

For all the results presented in this section we com-
pile the code using the -O2 optimization flag. However,
we also performed every test without any optimizations
(-O0), since using no optimizations often inflates existing
leakage. The results are consistent for both optimization
flags with respect to detected leakage.

We performed our leakage detection experiments in
the following four scenarios:

• The unprotected implementation, without any
countermeasures except constant-time operations,
including field arithmetic and Montgomery ladder;



• The ephemeral implementation, with all
countermeasures enabled (see Algorithm 2);

• The static implementation as in Algorithm 3,
with all countermeasures enabled (projective
re-randomization, randomized addressing, point,
scalar, and storage blinding);

• A static implementation modified for the profiled-
attacks evaluation with scalar and storage blinding
disabled. We test this setting with and without the
randomized addressing countermeasure to verify
increased resistance to profiled attacks.

We compare power profiles of our standard unprotected,
ephemeral, and static implementations in Appendix B.

We apply a commonly-used TVLA methodology [14],
[48], [61], [110] to our implementations using the afore-
mentioned measurement settings. Following this evalua-
tion methodology, we use three sets of traces that are equal
in size: One third of the traces is taken with a fixed input
and a fixed scalar (group 0), another third with a random
input and the fixed scalar (group 1), and the last group
with the fixed input and a random scalar (group 2). If the
null hypothesis holds and no leakage is detected then there
should be little differences in the Welch t-test statistics
measured between group 0 and 1, and between 0 and 2.

Initially [61], [110] the TVLA confidence threshold
to detect leakage in the t-test statistic was set to 4.5,
which lead to many false positives. Thus, we compute the
confidence threshold for our experiments using the thresh-
old formula by Ding, Zhang, Durvaux, Standaert, and
Fei [33], following the approach by Papachristodoulou,
Fournaris, Papagiannopoulos, and Batina [90]. The thresh-
old computed this way is more accurate and ensures that
false positives are avoided. For all our experiments the
computed threshold is between 7 and 7.3; we therefore
assume that peaks above 7 indicate leakage.

In our evaluation we concentrate not only the Mont-
gomery ladder executions, but we also analyze the rest of
the trace. Note that we usually expect to see leakage at
the beginning of the trace, due to varying input or scalar,
and at the end due to varying output.

The leakage is usually detected only around the area
that we align on3. This is caused by jitter and, especially
for the static case, by blinding the inverse operations.
Therefore, it might happen that if the trace is aligned at the
beginning of trace then the leakage is only detected there,
even if leakage is present everywhere. To avoid that we
align the traces in multiple locations (usually at the begin-
ning, middle, and end of computational blocks). Due to the
space constraints, we report only the meaningful results
when leakage is detected or no leakage is confirmed.

In the following subsections we always first analyze
the difference between groups 0 and 1. The goal is to
evaluate the correlation of the implementation leakage to
a fixed or a random input point; such leakage, if present,
can be used to mount CPA. Secondly we concentrate on
groups 0 and 2. The aim is typically to check whether the
private key (i.e, scalar) leaks directly; such leakage might
be used to mount a template attack.

3. We align the traces by choosing a distinctive pattern from the first
trace and matching it to all subsequent traces by shifting them hori-
zontally. For matching quality we use Pearson correlation – we simply
choose the shift in the trace with the maximum correlation coefficient.

TVLA of the unprotected implementation. Figure 1
depicts the results of the t-tests for groups 0 and 1.
Alignment at different locations shows similar results. The
result for groups 0 and 2 is similar and is enclosed in
Appendix B. Each group consists of 1000 traces.

The highest peak is reaching 71 for groups 0 and
1, and 65 for 0 and 2. Therefore, we conclude that our
unprotected baseline implementation leaks significantly.

Figure 1. TVLA results for the unprotected implementation: fixed vs
random point. The red color marks the alignment.

TVLA of the ephemeral scalar implementation. Sim-
ilarly to the unprotected implementation we perform the
TVLA on the ephemeral one, but this time due to the
countermeasures, we expect less leakage. Therefore, we
also increase the size of each group to 2000 traces.

In Figure 2 we present the t-test results and we see
that the leakage is less significant than for the unprotected
case. The highest peak is reaching 15 for groups 0 and 2,
but it is to be expected since the ephemeral scalar should
vary between execution. As we see if the same scalar is
used multiple times then the leakage can be detected.

Figure 2. TVLA for the ephemeral implementation (0.9ms-2.0ms): fixed
vs random point (top) and fixed vs random scalar (bottom).

For groups 0 and 1 the highest peak reaches 19. This
seems unexpected since we employ the projective re-
randomization. However, this peak can be attributed to the
repeated use of the non-randomized public x-coordinate
in each invocation of ladderstep. Such “leakage” of public
inputs is not exploitable but obviously generates a t-test
peak, since the input is a TVLA parameter. Essentially,
what we encounter here is a well-know limitation of
TVLA [14].

To validate the above hypothesis we have modified
the implementation by removing the following line of the
ladder step: fe25519_mul(b4,b1,&pState->x0),
where &pState->x0 is the affine coordinate of the input
xP . Note that this operation leakage is not exploitable
since xP is public and constant per execution and the other
parameter b1 to fe25519_mul, and therefore its output
b4 too, are randomized. The results produced by this
implementation are incorrect, but we only use it for the
purpose of evaluation. The result of t-test for this modified



implementation shows that the leakage is not present
anymore, because the highest peak does not reach 4.4; for
the corresponding t-test plot see Appendix B. Therefore,
we conclude that the first order leakage is not present.

The leakage present for groups 0 and 1 suggests
that the ephemeral implementation might be vulnerable
to single-trace profiled attacks. For example, it might be
possible to learn some information during copying of
the ephemeral scalar. However, the consequences of this
attack would not be severe since the scalar is ephemeral
and copying is done in 32-bit chunks, which is expected to
leak relatively little information4. Note that we implement
countermeasures against these attacks in the static case.

Observe that we were able to find out the aforemen-
tioned leakage only due to using the same scalar multiple
times and it does not imply that the single-trace attack
would be successful if the ephemeral scalar is not re-used.

TVLA of the static implementation. First we run t-test
for the traces collected from the static scalar multiplication
that are aligned at the beginning. For groups 0 and 1 we
notice leakage at the beginning of the execution, when
the input point is being processed. For groups 0 and 2
we detect no leakage (the highest peak is less than 4.6),
due to the scalar being stored blinded. The corresponding
t-test plot is presented in Appendix B.

For the static traces there are significant misalignments
due to jitter, but also due to the used countermeasures.
Therefore, we perform another t-test for which we align
the traces at the beginning of the main scalar multiplica-
tion and the result is depicted in Figure 3; it is zoomed in
around the alignment moment. We note that the peaks in
both experiments are below 4.3, and therefore, no leakage
is detected. We also align at various other locations: the
middle and the end of the main scalar multiplication, and
at the beginning of the additional scalar multiplication. No
leakage during both scalar multiplications is detected.

Figure 3. TVLA for the static implementation (2.9ms-4.0ms): fixed vs
random point (top) and fixed vs random scalar (bottom).

However, we have detected leakage in both cases just
after the scalar multiplication is finished: around 14.5ms.
This leakage is caused by computing the final affine
output. After the output is computed, the static key is
updated and finally the output is sent. We aligned the
traces at the key update procedure and we detected no
leakage. At the end of the execution we discovered the
leakage corresponding to sending the output (17ms). Such
output leakage might be used for a sing-trace attack to

4. Since 32-bit words of the scalar are being copied, we expect that
only the corresponding 32-bit Hamming weights might be leaking.

recover the output point (and effectively the session key).
Although this may be possible, this cannot be avoided
since the library returns the unmasked output.

In this section we have shown that the static imple-
mentation is resistant not only to standard attacks, like
DPA and CPA, but also to multiple-trace attacks exploiting
horizontal leakage, like cross-correlation and OTA.

Profiled attacks. The relevant profiling attack is a TA
targeting the cswap [86]. Note that in our context this
attack is already hard because both the blinded scalar
and the additional 64-bit scalar blinding would need to
be recovered from a single trace for the attack to succeed.

We verify the resistance of our implementation to
this attack by performing a TVLA experiment on an
implementation with all scalar randomizations (i.e., scalar
and storage blinding) turned off. In this setting we check
whether turning on the randomized addressing counter-
measure prevents scalar leakage from occurring.

Figure 4 depicts the t-test results for groups 0 and
1 for the implementation with the scalar and address ran-
domizations turned off. The highest t-test peak is reaching
12.5. This leakage might be used by the aforementioned
TA to recover the scalar from the cswaprr instructions. For
groups 0 and 1, as expected, we do not see any leakage,
i.e., the peak is under 4.5; the plot of the t-test values for
this case is presented in Appendix B.

Figure 4. TVLA for static implementation (no blindings and address ran-
domization) aligned at 1.65ms (1.7ms-4.3ms): fixed vs random scalar.

To validate whether the address randomization works
correctly we turned on this countermeasure. We have
discovered that if all scalar blinding countermeasures are
turned off, but the address randomization is turned on, no
leakage usable for the TA [86] is present. The correspond-
ing t-test plot is presented in Appendix B.

Although we have discovered that the leakage ex-
ploitable by the “standard” TA [86] is not present, a more
complex profiled attack, DL-based for example, might
still be theoretically feasible. However, we believe that
the absence of the “classical” leakage suggests that even
more complex profiled attacks would not achieve sufficient
success rates (per single traces) to recover the scalar.

Another profiled attack, which we have not discussed
here yet, is against the scalar transfer. Observe that the
blinded scalar is copied just before the scalar multiplica-
tion. We have verified that the scalar data is being copied
word by word in the disassembled code. Therefore, we
can expect that even a successful attack on key-transfer
would recover the Hamming weight of 32-bit chunks of
the blinded scalar. Furthermore, single traces need to be
attacked, since a blinded scalar is stored together with
the blinding and these values are updated for every scalar
multiplication. Therefore, we conclude that it would be
hard to mount a profiled attack on the scalar transfer.



6. Conclusions and Future Work

We have implemented and described software com-
puting the X25519 key-exchange on the ARM-Cortex M4
microcontroller. This software comes with extensive pro-
tections against both side-channel and fault attacks while
being at least as efficient as widely-deployed ECC li-
braries. It is, to the best of our knowledge, the first to claim
such protections motivated from a real-world application.
We present an extensive side-channel and fault-injection
analysis and we also perform in-depth side-channel evalu-
ation that shows strong resistance of our implementation.

We leave a detailed investigation into single-trace
complex profiled attacks, including deep-learning ones,
and the corresponding protections for future work. Fur-
thermore, formally proving that our implementations are
side-channel resistant, including resistance against first-
order DPA attacks, is a potential research direction.
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Appendix A.
Security properties of related crypto-libraries

None of the other implementations we benchmarked
exceeds the protection level of conventional constant-time
execution. According to our assessment, the ARM Mbed
TLS library even fails to provide constant execution tim-
ing as detailed below. Regarding the security properties,
boringSSL and bearSSL roughly should be comparable
to our unprotected baseline algorithm, while ARM MBed
TLS does not even reach that level.
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The fixed-basepoint algorithm from boringSSL uses
arithmetic on the Edwards curve and large precomputed
tables, a strategy which we do not believe suitable for
smaller embedded targets due to code-size limitations. All
other implementations use the Montgomery ladder strat-
egy on the Montgomery curve in projective coordinates.
The implementations differ in the way field elements are
represented and reduction is carried out, and how aggres-
sively they optimize for code size and speed. For instance,
the arithmetic of boringSSL and the speed-optimized strat-
egy for wolfSSL represent field elements by using a 10-
limb representation using 10 32-bit words, where field
multiplication and reduction is merged together. BearSSL
uses a 9-limb representation with 9 words of 31 bits each,
resulting in somewhat less memory consumption.

None of wolfSSL, bearSSL, and boringSSL include
any SCA countermeasures. ARM Mbed TLS on the other
hand integrates projective randomization also for public
input points. As ARM MBed TLS uses an early-abort
multiplication strategy that does not execute in constant
time we presume that this projective randomization was
considered to provide a mitigation for fending off simple
timing-based SPA attacks. Unfortunately, as input points
are not validated in ARM MBed TLS, this mitigation strat-
egy does not actually work here. Simple timing attacks
using the strategy used by Genkin, Valenta, and Yuval [47]
become feasible if the adversary inserts a low-order point,
because multiplications by zero could be distinguished due
to the early-abort multiplication strategy. As a result we
conclude that the projective randomization substep used in
ARM MBed TLS adds additional computational overhead
(to the already slow implementation) without actually
providing a proper mitigation against timing attacks.

We communicated our concerns to the developers of
ARM Mbed TLS [6] and suggested different strategies
for mitigating the problem. They acknowledged the issue
and implemented countermeasures in version 3.0.0: https:
//github.com/ARMmbed/mbedtls/releases/tag/v3.0.0.

Appendix B.
Supplementary Material for SCA Evaluation

Power profiles of all three implementations are pre-
sented in Figure 5. As mentioned before the ephemeral im-
plementation is only slightly slower than the unprotected
one. In both cases, as marked in red, the implementations
consists mainly of the scalar multiplication. In the static
case, the trace consist of initial randomizations, two scalar
multiplications (marked red), and the final update of the
static blinded key and points.

Figure 6 depicts the results of the t-tests for groups
0 and 2 (fixed versus random scalar) for the unprotected
implementation. A strong leakage is clearly present.

The t-test result for the modified ephemeral imple-
mentation for groups 0 and 1 (fixed vs random point) is
presented in Figure 7. As we can see the leakage is not
present anymore, because the highest peak does not reach
4.7. We performed also TVLA for groups 0 and 2 and in
this case the leakage was still present, as expected.

Figure 8 depicts the results of t-test for the traces
collected for the static implementation; these traces are
aligned at the beginning.

Figure 5. Power profiles of unprotected (top), ephemeral (middle), and
static (bottom) implementations.

Figure 6. Unprotected implementation TVLA: fixed vs random scalar.

Figure 7. Modified ephemeral implementation TVLA: (0.9ms-2.0ms):
fixed vs random point.

Figure 8. Static implementation TVLA: fixed vs random point (top) and
fixed vs random scalar (bottom).

Figure 9 presents detected leakage after the static
scalar multiplication is finished — around 14.5ms. This
leakage is caused by computing the affine output.

Figure 10 presents TVLA results for groups 0 and 1
(fixed vs. random point) for the static implementation with
all scalar blindings and address randomization turned off.

Figure 11 shows TVLA results for groups 0 and 2 for
the static implementation without scalar blindings, but
with the address randomization turned on. For groups 0
and 1 we also do not detect leakage.

https://github.com/ARMmbed/mbedtls/releases/tag/v3.0.0
https://github.com/ARMmbed/mbedtls/releases/tag/v3.0.0


Figure 9. Static implementation TVLA (14.4-14.5ms), aligned at
13.0ms: fixed vs random point (top) and fixed vs random scalar (bottom).

Figure 10. Static impl. with blindings and address randomization dis-
abled TVLA (1.7-4.3ms), aligned at 1.65ms: fixed vs random point.

Figure 11. Static impl. with blindings turned off and the address rand.
turned on TVLA (1.7-7.8ms), aligned at 1.65ms: fixed vs random scalar.
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