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Pairings
A pairing is a bilinear, non-degenerate map
e G1 X G2 — Gg,

where (G, +), (G2, +), (Gs, -) are abelian groups.
» bilinear:

e(Pr+ P, Q1) = e(Pr,Qr)e(Pa, Q),
e(P, Q1+ Q2) = e(P,Q1)e(Pr,Qo),

i.e.e(aP,Q) =e(P,Q)* =e(P,aQ), a € Z.
» non-degenerate: given 0 # P € GGy thereisa @ € G,
with e(P, Q) # 1.

Cryptographic applications require e to be efficiently
computable and the DLPs in GG, G5, GG3 to be hard.



Applications of pairings in cryptography

» Attack DL-based cryptography on elliptic curves
(Menezes-Okamoto-Vanstone-1993,
Frey-Ruck-1994) .

» Construct crypto systems with certain special
properties:
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One-round tripartite key agreement (Joux-2000),
Identity-based, non-interactive key agreement
(Ohgishi-Kasahara-2000),

Identity-based encryption (Boneh-Franklin-2001),
Hierarchical IBE (Gentry-Silverberg-2002),

Short signatures (Boneh-Lynn-Shacham-2001),
Searchable encryption

(Boneh-Di Crescenzo-Ostrovsky-Persiano-2004),
Non-interactive proof systems (Groth-Sahai-2008),
much more ...



Elliptic curves

Take an elliptic curve E over F, (char(F,) = p > 3) with
» Weierstrass equation

E:y*=a2%+ax +0b,

E(Fy) ={(z,y) € F2 : y* = 2® + ax + b} U {0},
n=#EF,) =q+1—-t [t| <24

and r | n a large prime divisor of n (r # p).
ForIF O IF,:

E(F) = {(z,y) € F?: y* = 23 + ax + b} U {O},
E = E(F,), F, an algebraic closure of F,.

E is an abelian group (written additively) with neutral
element O.
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Torsion points and embedding degree

The set of r-torsion points on E is
Elr|={PeE|[r|lP=0}y=2Z/rZ x Z/rL.

Since r | #E(F,), we have E(F,)[r] # 0.
The embedding degree of E w.r.t. r is the smallest integer
k with

r|qk—1.

For £k > 1 we have

Elr] ¢ E(F),



The reduced Tate pairing

Let £ > 1. The reduced Tate pairing

tr: E(Fg)[r] x E(Fge) /[ E(Fgp) —  pr CFp,
(P.Q) = fr(@Q
is a non-degenerate, bilinear map, where
» f.pis afunction with divisor (f, p) = r(P) —r(0O),
» 1, IS the subgroup of r-th roots of unity in Foe.

The computation of the pairing has two stages:
» evaluation of the Miller function f, p at @,
» the final exponentiation to the power (¢* —1)/r.



Specific parameters for crypto

» k should be small,
» DLPs in all groups must be hard,
» for efficiency reasons balance the security.

Security | Extension field | EC base point | ratio
level (bits) | size of ¢* (bits) | order r (bits) | p- k
80 1248 160 7.8
112 2432 224 10.9
128 3248 256 12.7
192 7936 384 20.7
256 15424 512 30.1

ECRYPT Il recommendations (2009), p = log(q)/ log(r).



Small embedding degree

The embedding degree condition says

" =1, rtq" -1, m<k

or
=1 (modr), ¢"#1 (modr), m<k.
This means:
» k is the (multiplicative) order of ¢ modulo r,
> k|r—1.

There are only ¢(k) < k elements of order £ mod r. Given
r and g, it is very unlikely that ¢ is one of them.
(Note: r has at least 160 bits.)



Pairing-friendly curves

Fix a suitable value for £ and find primes r,p and a
number n with the following conditions:

»n=p+1—t,|t| <2/,
> r|n,

> pf =1,

>

t* —4p= Dv* <0, D,v € Z, D < 0 squarefree, |D|
small enough to compute the Hilbert class polynomial
in Q(vD).

Given such parameters, a corresponding elliptic curve
over I, can be constructed by the CM method.

See Freeman, Scott, and Teske (A taxonomy of
pairing-friendly elliptic curves) for an overview of
construction methods and recommendations.



MNT curves and Freeman curves

» MNT curves (2001): p~ 1 and k € {3,4,6}.

k| p(u) t(u)

3 12u° -1 —1+6u

4| v*+u+1|—uoru+1
6| 4u?+1 1+2u

» Freeman curves (2006): p ~ 1 and k£ = 10.

p(u) = 25u* + 25u® + 25u® + 10u + 3,
t(u) = 10u®+ 5u+ 3.

» In both families, curves are very rare. Need to solve a
Pell equation to find curves.

» D is variable.



BN curves
(Barreto-N., 2005)

If w € Z such that

p = pu) = 36u*+36u’ + 24u* + 6u + 1,
n = 36u’ + 36u® + 18u* + 6u + 1
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are both prime, then there exists an ordinary elliptic curve
» with equation F : y> =23 + b, b € F,,
» r=n=#E(F,) is prime,i.e. p~ 1,
» the embedding degree is k£ = 12,
> 12— 4p(u) = —3(6u® + 4u + 1)%
BN curves are ideal for the 128-bit security level.



Specific parameters

Security | Family r k p | p-k D

level (bits) (bits) (bits)
80| MNT | 208 6| 1.00 6| 1248

112 Fre 244 | 10| 1.00 10 2440

128 BN 256 |12 |1.00| 12| 3072

192 | KSS | 384 |16 |1.25| 20| 7680

192 | KSS | 384 |18 |1.33| 24| 9216

256 | Cyc 512 |24 |1.25| 30 | 15360




Three groups

In practice, restrict the arguments of the Tate pairing to
groups of prime order r.
Assume 72| |#E(F,.), k > 1. Define:

> Gy = E(Fy)[r] Nker(gp — [1]) = E(F,)[r],

> Gy = E(F,r)[r] Nker(¢, — [p]),

> G3 = pr C F;k
¢, is the p-power Frobenius on E, i.e. ¢,(z,y) = (2P, y"). It
is E(F,r)r] = Gi @ Go.

» If P € E(F,)[r], thent.(P,P) = 1. Take Q ¢ (P) = G;.

» Can compute the Tate pairing on GG; x G5 or on
G2 X Gl.



Two choices

» The reduced Tate pairing:
tT1G1XG2 — Gg,
pk—l
(P,Q) — frp(@) 7 .

» The ate pairing: Let T'=1¢ — 1.

CLTZGQXGl — Gg,
pkl

(@Q.P) — fra®) 7.




Miller's algorithm (Tate)

Input: P € G1,Q € Gy,r = (1,

pF-1
Output: ¢.(P,Q) = f.p(Q) +
R+ P, f1
for (i <= m —1; i >0; i — —) do

2lr,R(Q)
fo U[z]R(Q)

R« [Q]R
if (r; =1) then
[ fored
R+ R}iijP
end if
end for

return f
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Miller’s algorithm (ate)

Input: P € Gy,Q € Go, T = (L, . ..

k

Output: ar(P,Q) = fro(P) =
R—Q, 1
for (i <~m—1;7>0; i——)do

2 lr,r(P)
S I @)

R «— [Q]R
if (t;, =1) then
f e fomael
vR+Q (P
R— R+ Q
end if
end for

return f



Line functions

» Line functions correspond to the lines in the point
doubling/addition,

» lp, p,: line through P, and P, tangent if P, = P,
vp,: vertical line through P = P, + P.
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The final exponentiation

Let &, be the d-th cyclotomic polynomial.

» We have
Xt —1=]]®uX).
dlk

»r|pf =1, ripl—1ford <k < r| ®u(p).
» Write the final exponent as:

-1 H Ba(p) - (I)k(P)'

r r
dlk, d#k

Lete | k, e # k, then a®* -1/ = 1 for all & € F,. since
(r°—1)| Hd\k, d#k Py(p).
Factors in proper subfields of IF,,» are mapped to 1 by the
final exponentiation.



The final exponentiation (k£ even)

-1 (p/? — 1)pk/2 +1 ‘?k(p).
r dy(p) r

» Use F. = Fi2(), o = 3, 3 anon-square in F .
For f = fo+ fia € Fyt (fo + i)’ = fo = fray
and (fo + fia)? PP = (fo — fra)/(fo + frar).

» (p/? +1)/®.(p) is a sum of p-powers, use the
p-power Frobenius automorphlsm.
k=12 fO*+D/r — $*+1) plop?in

= ((fP)P . f)'=P*+1)/r,
» The last part is done with multi-exponentiation or by
finding a good addition chain for ®(p)/r.



Using a twist to represent G

Here: A twist £’ of £ is a curve isomorphic to £ over F ..
» A twist is given by
B y? =2+ (a/wh)z + (b/w?), w € Fp
with isomorphism

Vv E — B, (2,y) — (W, %).
» If £’ is defined over F.,« and ¢ is defined over F
and no smaller field, d is called the degree of £'.
» Define G, := E'(Fk/q)[r], then ¢ : GY, — G is a group
isomorphism.
» Points in GG, have a special form.



Maximal possible twist degrees

d J(E) fields of definition
a, b for powers of w

2 ¢ {0,1728} w® € F iy
a7é0,b7é0 w3€Fqk\Fqk/2

4 1728 wte Fqk/4, w? e Fqk/z
a#O,b:O w3€Fqk\Fqk/2

6 0 wb e Fqk/a L wl e Fqk/s
a:O,byéO w2€Fqk/2

B y? =2* 4 (a/w*)z + (b/w®)

V:E — B, (2,y) — (W, 0%




Advantages of using twists

If £ has a twist of degree d and d | k:

» Replace all curve arithmetic in G, (over IF,x) by curve
arithmetic in G, (over FF/a)

» For d > 2, curve arithmetic is faster since a = 0 or
b=0.

» For even k, the z-coordinates of points in G lie in
[F,«/2, i. €. the vertical line function values
vp,(Q) = 2g — 3 lie in F .2 and can be omitted.

» Can use the twisted ate pairing
(e=k/dand T, = (t — 1)¢ mod r):

nr, : Gl X GQ — Gg, (P, Q) = fTevp(Q)(pk_l)/r'

For d > 2, can have log(T.) < log(r).



Loop shortening

There are several possibilities to reduce the number of
iterations in Miller’s algorithm:

» Cantake 7/ mod r for1 < j < d — 1instead of T, in
the twisted ate pairing. Choose the shortest
non-trivial power.

» For the ate pairing, can replace 7" by 7 mod r for
1 <j <k —1to possibly get a shorter loop.

» More combinations are possible, often leading to
optimal pairings with a minimal loop length of
log(r)/¢(k).

» For BN curves, the R-ate pairing is optimal:

(»'2-1)/n
R(Q,P) = (fc.,Q(P)(fc,Q(P)l[c]Q,Q(P))p'ld>p([c]Q+Q),[c]Q(P)) r

where ¢ = 6u + 2.



Line functions for ate pairings

f—[f-lre(P), R—R+Q

Do curve arithmetic in Miller’'s algorithm in GG,,. Replace
points R, ) € G, by corresponding points R/, Q' € G,,.
» Using the slope on the twist:

3 3
- w =W / /= /
\ YR —YQ 2yR 2yQ Yr —YQ \
TR —IQ WTR — wWaxQ TR — Xy

» Computing the line function on the twist:
lrq(P) = yr—yp— Mzr—2p)
== w?’yR/ — w3yp/ — CL))\/(CL)2.Z'R/ — L(JQ;EP/)

= W3(ZUR/ —yp — Map —xpr)) = w? - lr g (P')



Choice of coordinates

For “real” implementations, one tries to avoid inversions
by using projective coordinates.

» Can do pairing computation with only 1 finite field
inversion (needed in the final exponentiation).

» Can avoid inversions completely when using
compressed representation of pairing values.

» The best choice of coordinates is different for
different classes of curves.

» For the fastest explicit formulas to compute the DBL
and ADD steps in Miller’s algorithm on curves with
twists of degree d > 2, see preprint Faster Pairing
Computations on Curves with High-Degree Twists
(joint work with Craig Costello and Tanja Lange, will
be out soon).



Thanks for your attention

» Database and web interface to get and compute
parameters of BN curves:
http://www.ti.rwth-aachen.de/research/cryptography/bncurves.php

» C-Implementation of several pairings on BN curves:
http://www.cryptojedi.org/crypto
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