Homomorphic Encryption from Ring Learning with Errors

Michael Naehrig

Technische Universiteit Eindhoven michael@cryptojedi.org

joint work with

Kristin Lauter (MSR Redmond)
Vinod Vaikuntanathan (University of Toronto)

MSR Cambridge, 10 January 2012

Homomorphic encryption

Example 1: RSA public key encryption

- ▶ Let $n = p \cdot q$, $p \neq q$ primes, $\varphi(n) = (p-1)(q-1)$,
- ightharpoonup pk = (n, e), gcd $(e, \varphi(n)) = 1$,
- ightharpoonup sk = $d = e^{-1} \mod \varphi(n)$.
- ▶ Encrypt message $m \in \mathbb{Z}_n$:

$$c = m^e \mod n$$
.

- ▶ Decrypt ciphertext c: $m = c^d \mod n$.
- Multiplicative homomorphism: If $c_1 = m_1^e \mod n$, $c_2 = m_2^e \mod n$, then

$$c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod n.$$

Homomorphic encryption

Example 2: ElGamal public key encryption in a group $G = \langle g \rangle$

- ightharpoonup sk = $x \in \mathbb{Z}_{|G|}$,
- $\triangleright \text{ pk} = h = g^x.$
- ▶ Encrypt $m \in G$: choose $r \in \mathbb{Z}_{|G|}$ at random and compute

$$(c,d) = (g^r, m \cdot h^r).$$

- ▶ Decrypt: $m = d \cdot (c^x)^{-1}$.
- Multiplicative homomorphism:

If
$$(c_1, d_1) = (g^{r_1}, m_1 \cdot h^{r_1})$$
, $(c_2, d_2) = (g^{r_2}, m_1 \cdot h^{r_2})$, then

$$(c_1 \cdot c_2, d_1 \cdot d_2) = (g^{r_1} \cdot g^{r_2}, (m_1 \cdot h^{r_1}) \cdot (m_2 \cdot h^{r_2}))$$

= $(g^{r_1+r_2}, (m_1 \cdot m_2)h^{r_1+r_2}).$

Homomorphic encryption

- Many crypto systems have homomorphic properties: RSA, ElGamal, Benaloh, Paillier, but only provide additive or multiplicative homomorphism, not both.
- With addition and multiplication, can do arbitrary computations.
- First system that could do both: Boneh-Goh-Nissim 2005 many additions and one multiplication (uses pairings).
- Fully homomorphic encryption allows to do arbitrary computations on encrypted data without knowing the secret key,
- in particular it allows doing an arbitrary number of additions and multiplications.

Application scenario

operates on encrypted data: e.g. search, statistics, ...

Server never sees data in the clear.

But does a fully homomorphic encryption scheme exist? And if so, is it efficient?

Fully homomorphic encryption

Gentry proposed the first fully homomorphic encryption scheme in 2009 based on ideal lattices.

- The basis is a somewhat homomorphic encryption scheme that can evaluate low-degree polynomials on encrypted data.
- Ciphertexts are "noisy" and the noise grows slightly during addition and strongly during multiplication.
- If the SWHE scheme can evaluate its own decryption circuit, then a bootstrapping step can refresh ciphertexts by homomorphically decrypting using an encrypted secret key.
- Only works by "squashing" the decryption circuit.
- So far quite inefficient.

Fully homomorphic encryption

- Recently, many improvements, but still inefficient.
 Implementation (Gentry, Halevi 2011),
 - toy setting: encrypt a bit in 0.2s, recrypt in 6s, public key: 17MB
 - large setting: encrypt in 3min, recrypt in 31min, public key: 2.3GB
- New variants, mostly following Gentry's blueprint.
- Recent variants based on the LWE problem or RLWE problem.
- Applications might not need fully homomorphic encryption, somewhat homomorphic could be sufficient.
- This talk: somewhat homomorphic encryption scheme by Brakerski and Vaikuntanathan (Crypto 2011) based on RLWE.

The Learning with Errors (LWE) Problem (Regev 2005)

Let $n \in \mathbb{N}$, $q \in \mathbb{Z}$, χ a probability distribution on \mathbb{Z} .

Distinguish the following distributions of pairs $(a_i,b_i)\in\mathbb{Z}_q^n\times\mathbb{Z}_q$:

Uniform distribution

▶ Sample $(a_i,b_i) \in \mathbb{Z}_q^{n+1}$ uniformly at random.

LWE distribution

- ▶ Draw $s \in \mathbb{Z}_q^n$ uniformly at random.
- ▶ Sample $a_i \in \mathbb{Z}_q^n$ uniformly at random,
- ▶ sample $e_i \leftarrow \chi$, $\overline{e_i} \in \mathbb{Z}_q$,
- ightharpoonup set $b_i = \langle a_i, s \rangle + \overline{e_i}$.

The b_i are noisy inner products of random a_i with a secret s.

The Learning with Errors (LWE) Problem

(Regev 2005)

► Regev gave a quantum reduction of certain approximate SVP to LWE, i.e. if one can solve LWE, then there's a quantum algorithm to solve certain approximate SVP.

- ▶ Peikert (2009) gave a reduction using classical algorithms
- Assumption: q prime, χ is a discrete Gaussian error distribution

The Ring Learning with Errors (RLWE) Problem

(Lyubashevsky, Peikert, Regev 2010)

Here: special case.

 $\blacktriangleright \text{ Let } n = 2^k,$

$$f(x) = x^n + 1$$

(2n-th cyclotomic polynomial).

Define ring

$$R = \mathbb{Z}[x]/(f)$$

(ring of integers in 2n-th cyclotomic number field).

▶ Let q be prime, define

$$R_q = R/qR \cong \mathbb{Z}_q[x]/(\overline{f}).$$

Let χ be an error distribution on R.

The Ring Learning with Errors (RLWE) Problem (Lyubashevsky, Peikert, Regev 2010)

Distinguish the following distributions of pairs $(a_i, b_i) \in R_a^2$:

Uniform distribution on \mathbb{R}^2_q

▶ Sample $(a_i, b_i) \in R_q^2$ uniformly at random.

RLWE distribution

- ▶ Draw $s \in R_q$ uniformly at random.
- ▶ Sample $a_i \in R_q$ uniformly at random,
- ▶ sample $e_i \leftarrow \chi$, $\overline{e_i} \in R_q$,
- ightharpoonup set $b_i = a_i \cdot s + \overline{e_i}$.

The b_i are noisy ring (number field) products of random a_i with a secret s.

Toy(!) example parameter setting

Let's take k = 3, i.e. $f = x^8 + 1$, q = 97.

ightharpoonup A typical (random) element in R_q looks like this:

$$a = 27x^7 - 11x^6 - 33x^5 + 41x^4 - 18x^3 - 5x^2 - 37x - 16.$$

► A small element sampled coefficient-wise from a narrow Gaussian, might look like this:

$$e = -2x^6 - 2x^3 + 2x^2 - x + 1.$$

▶ Addition in R_q :

$$a+e = 27x^{7} - 13x^{6} - 33x^{5} + 41x^{4} - 20x^{3} - 3x^{2} - 38x - 15,$$

$$a+a = -43x^{7} - 22x^{6} + 31x^{5} - 15x^{4} - 36x^{3} - 10x^{2} + 23x - 32.$$

▶ Multiplication in R_q :

$$x \cdot a = 27x^8 - 11x^7 - 33x^6 + 41x^5 - 18x^4 - 5x^3 - 37x^2 - 16x$$
$$= -11x^7 - 33x^6 + 41x^5 - 18x^4 - 5x^3 - 37x^2 - 16x - 27.$$

The Ring Learning with Errors (RLWE) Problem

(Lyubashevsky, Peikert, Regev 2010)

- Believed to be as hard as general LWE problem, i.e. would be solved with the same algorithms.
- Though there's a lot more structure!
- Recent results indicate RLWE problem easier than LWE, (Schneider 2011 claims in practice speedup is linear in n).
- But much more efficient.
- Smaller keys, very efficient arithmetic in R_q.

Can be used to build a fully homomorphic encryption scheme.

Slight modifications

- In both LWE and RLWE problems, it is okay to sample $s \leftarrow \chi$ (and not uniformly at random).
 - ▶ Sample until $(a_0, b_0 = a_0 s + e_0)$ with $a_0 \in R_q^*$ (invertible).
 - For every additional sample (a, b = as + e) consider

$$(a',b') = (-a_0^{-1}a, b + a'b_0)$$

$$= (a', as + e + a'(a_0s + e_0))$$

$$= (a', as + e - as + a'e_0) = (a', a'e_0 + e)$$

- If one can solve RLWE with small secret, then one can solve it with uniform secret.
- ▶ It is also okay to use small multiples of the error terms, i.e. samples $(a_i, b_i = a_i \cdot s + te_i)$ are still indistinguishable from random. For example, take t = 2.

(Brakerski, Vaikuntanathan 2011)

SH.Keygen

▶ Sample small $s \leftarrow \chi$. Set secret key sk = s.

Sample RLWE instance:

▶ Sample $a_1 \leftarrow R_q$ unif. rand., small error $e \leftarrow \chi$.

Set public key

$$ightharpoonup$$
 pk = $(a_0 = -(a_1s + te), a_1)$.

In the example setting: t=2

$$e = -2x^6 - 2x^3 + 2x^2 - x + 1.$$

$$a_1 = 27x^7 - 11x^6 - 33x^5 + 41x^4 - 18x^3 - 5x^2 - 37x - 16$$

$$a_0 = 10x^7 - 25x^6 + 46x^5 - 37x^4 + 23x^3 + 27x^2 - 43x + 31,$$

▶ pk =
$$(10x^7 - 25x^6 + 46x^5 - 37x^4 + 23x^3 + 27x^2 - 43x + 31,$$

 $27x^7 - 11x^6 - 33x^5 + 41x^4 - 18x^3 - 5x^2 - 37x - 16).$

(Brakerski, Vaikuntanathan 2011)

Message space:

$$R_t = \mathbb{Z}_t[x]/(x^n + 1),$$

t rel. prime to q, e.g. t=2. Encode messages as elements in R_q with coefficients mod t.

- Can encode n bits at once.
- ► For example encode 01011001 as $m = x^6 + x^4 + x^3 + 1$.

SH.Enc

Given $pk = (a_0, a_1)$ and a message $m \in R_q$,

▶ sample $u \leftarrow \chi$, and $g, h \leftarrow \chi$,

Set ciphertext

ightharpoonup ct = $(c_0, c_1) := (a_0u + tg + m, a_1u + th)$.

Example encryption

Sample small elements

$$u = -2x^{6} + 3x^{5} + 2x^{3} - x,$$

$$g = -x^{6} - x^{2} + 2x,$$

$$h = -x^{7} + x^{5} + x^{4} + x + 1.$$

From $pk = (a_0, a_1)$ as above and $m = x^6 + x^4 + x^3 + 1$ compute

$$c_0 = a_0 \cdot u + 2 \cdot g + m$$

$$= 21x^7 + 2x^6 + 10x^5 + 6x^4 + 9x^3 + 3x^2 - 14x + 1$$

$$c_1 = a_1 \cdot u + 2 \cdot h$$

$$= -44x^7 + 15x^6 - 43x^5 + 37x^4 + 37x^3 - 30x^2 - 22x + 42.$$

The ciphertext is

$$(c_0, c_1) = (21x^7 + 2x^6 + 10x^5 + 6x^4 + 9x^3 + 3x^2 - 14x + 1, -44x^7 + 15x^6 - 43x^5 + 37x^4 + 37x^3 - 30x^2 - 22x + 42).$$

(Brakerski, Vaikuntanathan 2011)

SH.Dec

Given sk = s and a ciphertext $ct = (c_0, c_1)$,

• compute $\widetilde{m} = c_0 + c_1 s \in R_q$.

Output the message

 $ightharpoonup \widetilde{m} \mod t$.

Correctness:

$$\widetilde{m} = c_0 + c_1 s = (a_0 u + tg + m) + (a_1 u + th) s$$

= $-(a_1 s + te) u + tg + m + a_1 u s + th s$
= $m + t(g + hs - eu)$.

Reduction modulo t gives back m as long as the error terms are not too large. Gives bound on standard deviation of the Gaussian.

Example decryption

▶ Use $sk = s = -x^7 - x^6 - x^5 + x^4 + x^3 + x^2 + x - 1$ and ciphertext

$$(c_0, c_1) = (21x^7 + 2x^6 + 10x^5 + 6x^4 + 9x^3 + 3x^2 - 14x + 1, -44x^7 + 15x^6 - 43x^5 + 37x^4 + 37x^3 - 30x^2 - 22x + 42).$$

Compute

$$\tilde{m} = c_0 + c_1 \cdot s$$

= $24x^7 + 21x^6 + 4x^5 + 21x^4 + 15x^3 + 16x^2 - 28x - 21$.

▶ Reduce modulo t = 2 and get

$$x^6 + x^4 + x^3 + 1 = m.$$

(Brakerski, Vaikuntanathan 2011)

Homomorphic operations

SH.Add

Given $ct = (c_0, c_1)$ and $ct' = (c'_0, c'_1)$, set the new ciphertext

$$\mathsf{ct}_{\mathsf{add}} = (c_0 + c'_0, c_1 + c'_1) \\ = (a_0(u + u') + t(g + g') + (m + m'), a_1(u + u') + t(h + h')).$$

SH.Mult

Given ct = (c_0, c_1) and ct' = (c'_0, c'_1) ,

- ► compute $(c_0 + c_1 X)(c_0' + c_1' X) = c_0 c_0' + (c_0 c_1' + c_0' c_1) X + c_1 c_1' X^2$
- $ct_{\mathsf{mlt}} = (c_0 c'_0, c_0 c'_1 + c'_0 c_1, c_1 c'_1)$

Errors multiply!

$$(m + t(g + hs - eu))(m' + t(g' + h's + eu')) = mm' + t(...)$$

(Brakerski, Vaikuntanathan 2011)

- Homomorphic operations increase size of error terms.
- Homomorphic multiplication increases the size of the ciphertext.
- Homomorphic addition, multiplication, and decryption generalize to longer ciphertexts.

SH.Dec

Given sk = s and a ciphertext $ct = (c_0, c_1, \dots, c_{\delta})$,

• compute $\widetilde{m} = \sum_{i=0}^{\delta} c_i s^i \in R_q$.

Output the message

 $ightharpoonup \widetilde{m} \pmod{t}$.

Relinearization

(Brakerski, Vaikuntanathan 2011)

There is a way to go from 3-element ciphertext $\mathsf{ct} = (c_0, c_1, c_2)$ back to a 2-element ciphertext.

We have

$$c_2s^2 + c_1s + c_0 = te_{\mathsf{mult}} + mm'$$

Publish a "homomorphism key"

$$h_i = (a_i, b_i = -(a_i s + t e_i) + t^i s^2)$$
 for $i = 0, ..., \lceil \log_t q \rceil - 1$

▶ Write c_2 in its base-t representation $c_2 = \sum c_{2,i}t^i$.

Relinearization

(Brakerski, Vaikuntanathan 2011)

▶ Replace ct by $(c_0^{\text{relin}}, c_1^{\text{relin}})$ with

$$c_1^{\mathsf{relin}} = c_1 + \sum_{i=0}^{\lceil \log_t q \rceil - 1} c_{2,i} a_i, \quad c_0^{\mathsf{relin}} = c_0 + \sum_{i=0}^{\lceil \log_t q \rceil - 1} c_{2,i} b_i$$

Then

$$\begin{split} c_0^{\text{relin}} + c_1^{\text{relin}} s &= c_0 + c_1 s + c_2 s^2 - t e_{\text{relin}} \\ c_0^{\text{relin}} + c_1^{\text{relin}} s &= t (e_{\text{mult}} - e_{\text{relin}}) + mm' \end{split}$$

- Okay, ciphertext is smaller, but error has increased!
- ▶ Decryption still correct if final error $e_{\rm mult} e_{\rm relin}$ is small enough.

Specific parameter choices

Choosing parameters to "guarantee" security and correctness.

Correctness:

- q must be large enough when compared to the size of the error terms and t.
- I.e. parameters are chosen s.t. the scheme can evaluate polynomials of a certain fixed degree D
 (D-1 multiplications and a bunch of additions).

Security:

- Against distinguishing attack with advantage 2⁻³² by Micciancio/Regev 2009.
- Adjust analysis of Lindner/Peikert 2011 to our setting.
- Still assume RLWE is no easier than LWE.

Specific parameters, key and ciphertext sizes

t	D	n	$\lceil \lg(q) \rceil$	$\lg(T)$	$l_{R_q}/10^3$	$(2 + \log_t q)$
						$\cdot l_{R_q} / 10^3$
2	1	512	19	123	10	205
	2	1024	38	107	39	1557
	3	2048	64	134	132	8651
	5	4096	120	145	492	59966
	10	8192	264	117	2163	575276
1024	1	1024	30	164	31	154
	2	2048	58	164	119	927
	3	4096	95	215	390	4475
	5	8192	171	242	1401	26756
	10	16384	368	214	6030	233938

Message encoding

Homomorphic operations reflect operations in R_t .

- Want operations on integers.
- ▶ Encode an integer $m = (m_0, m_1, \dots, m_l)_2$, $m_i \in \{0, 1\}$ as a polynomial of degree l with coefficients m_i . Get back m by evaluating at 2.
- t=2 not useful for addition and multiplication since operations mod 2 are different from integer operations.
- ► Choose *t* large enough to allow for enough additions.
- ▶ Reduction modulo $x^n + 1$ screws up integer multiplication.
- Choose l small enough to allow a certain number of multiplications before reaching degree n.

Reference implementation

Implementation using the computer algebra system Magma

- Uses polynomial arithmetic in Magma,
- no specific optimization for multiplication, no DFT,
- no optimization for specific parameters (sizes),
- decryption for arbitrary length ciphertexts.

Big potential to improve efficiency

▶ Main cost is polynomial multiplication modulo $x^n + 1$ in R_q .

Timings

Intel Core 2 Duo @ 2.1 GHz

				S_χ	Enc	Dec		Mult	Mult
					prec.	deg 1	deg 2		degred
t	D	n	$\lceil \lg(q) \rceil$	ms	ms	ms	ms	ms	s
2	1	512	19	27	2	2	_	_	_
	2	1024	38	55	9	6	10	15	0.3
	3	2048	64	110	29	18	33	56	2.0
	5	4096	120	223	85	49	94	163	10.6
	10	8192	264	438	425	227	454	887	114.6
1024	1	1024	30	54	5	4	_	_	_
	2	2048	58	110	24	15	26	41	0.2
	3	4096	95	221	81	46	88	154	1.0
	5	8192	171	440	275	148	288	526	5.3
	10	16384	368	868	1260	664	1300	1593	48.2

- ➤ Compute the ciphertext of the sum of 100 numbers of size 128 bits from the single ciphertexts (for mean computation): < 20ms
- ➤ Ciphertexts for the sum and sum of squares of 100 such numbers (for mean and variance): < 6s

Questions?

- Regev: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography, STOC 2005, J. ACM 2009.
- Lyubashevsky, Peikert, Regev: On Ideal Lattices and Learning with Errors Over Rings, Eurocrypt 2010.
- Brakerski, Vaikuntanathan: Fully Homomorphic Encryption from Ring LWE and Security for Key Dependent Messages, Crypto 2011.
- ▶ Lauter, N., Vaikuntanathan: Can homomorphic encryption be practical?, ACM CCSW 2011.
- michael@cryptojedi.org