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Homomorphic encryption

Example 1: RSA public key encryption
> Letn=p-q,p#qprimes, o(n) =(p—1)(¢—1),
> pk = (n,e), ged(e, p(n)) =1,
» sk=d=e"! mod ¢(n).
» Encrypt message m € Z,:

c=m® mod n.

» Decrypt ciphertext ¢: m = ¢ mod n.

» Multiplicative homomorphism:
If ¢, =m§{ mod n, co =m§ mod n, then

c1-co = (m1-m2)® mod n.



Homomorphic encryption

Example 2: EIGamal public key encryption in a group G = (g)
> sk =x € Zq)s
» pk=h = g°.
» Encrypt m € G: choose r € Z g at random and compute

(c,d) = (g",m-h").

v

Decrypt: m =d - (%)~ L.

v

Multiplicative homomorphism:
If (Cl, dl) = (g”,ml . h?“1), (Cg,dg) = (g”,ml . hTz), then

(c1-ca,dy-dg) = (g™ g™, (my-h")- (mg-h"))
— (gT1+T2’(m1'm2)hT1+T2).



Homomorphic encryption

» Many crypto systems have homomorphic properties: RSA,
ElGamal, Benaloh, Paillier, but only provide additive or
multiplicative homomorphism, not both.

» With addition and multiplication, can do arbitrary
computations.

» First system that could do both: Boneh-Goh-Nissim 2005
many additions and one multiplication (uses pairings).

» Fully homomorphic encryption allows to do arbitrary
computations on encrypted data without knowing the
secret key,

» in particular it allows doing an arbitrary number of additions
and multiplications.



Application scenario

encrypted data operates on

- P encrypted data:
erver e.g. search,
encrypted results statistics, ...

v

Server never sees data in the clear.

But does a fully homomorphic encryption scheme exist?
And if so, is it efficient?



Fully homomorphic encryption

Gentry proposed the first fully homomorphic encryption
scheme in 2009 based on ideal lattices.

» The basis is a somewhat homomorphic encryption scheme
that can evaluate low-degree polynomials on encrypted
data.

» Ciphertexts are “noisy” and the noise grows slightly during
addition and strongly during multiplication.

» If the SWHE scheme can evaluate its own decryption
circuit, then a bootstrapping step can refresh ciphertexts
by homomorphically decrypting using an encrypted secret
key.

» Only works by “squashing” the decryption circuit.

» So far quite inefficient.



Fully homomorphic encryption

» Recently, many improvements, but still inefficient.
Implementation (Gentry, Halevi 2011),

» toy setting: encrypt a bit in 0.2s, recrypt in 6s,
public key: 17MB

» large setting: encrypt in 3min, recrypt in 31min,
public key: 2.3GB

» New variants, mostly following Gentry’s blueprint.

» Recent variants based on the LWE problem or RLWE
problem.

» Applications might not need fully homomorphic encryption,
somewhat homomorphic could be sufficient.

» This talk: somewhat homomaorphic encryption scheme by
Brakerski and Vaikuntanathan (Crypto 2011) based on
RLWE.



The Learning with Errors (LWE) Problem

(Regev 2005)

Letn € N, ¢ € Z, x a probability distribution on Z.
Distinguish the following distributions of pairs (a;, b;) € Zg x Zg:

Uniform distribution
» Sample (a;, b;) € Z*! uniformly at random.

LWE distribution
» Draw s € Zg; uniformly at random.
» Sample a; € Zj uniformly at random,
> sample e; < x, & € Zg,
> setb; = (a;,s) + €.
The b; are noisy inner products of random a; with a secret s.



The Learning with Errors (LWE) Problem
(Regev 2005)
» Regev gave a quantum reduction of certain approximate
SVP to LWE, i.e. if one can solve LWE, then there’s a
qguantum algorithm to solve certain approximate SVP.
» Peikert (2009) gave a reduction using classical algorithms
» Assumption: ¢ prime, x is a discrete Gaussian error
distribution




The Ring Learning with Errors (RLWE) Problem

(Lyubashevsky, Peikert, Regev 2010)

Here: special case.
> Letn = 2%,
flx)=2"+1
(2n-th cyclotomic polynomial).
» Define ring
R =Z[x]/(f)
(ring of integers in 2n-th cyclotomic number field).
» Let g be prime, define

Ry = R/qR = Zy[z]/(f).

» Let x be an error distribution on R.



The Ring Learning with Errors (RLWE) Problem

(Lyubashevsky, Peikert, Regev 2010)

Distinguish the following distributions of pairs (a;, b;) € Rg:

Uniform distribution on R2
» Sample (a;, b;) € R? uniformly at random.

RLWE distribution

» Draw s € R, uniformly at random.

» Sample a; € R, uniformly at random,

» sample e; < x, & € Ry,

> setb;, =a;-s+e.
The b; are noisy ring (number field) products of random a; with
a secret s.



Toy(!) example parameter setting
Let's take k = 3,i.e. f=xz%+1, ¢ =97.
> A typical (random) element in R, looks like this:
a=27x" —112° — 332° + 412* — 1823 — 52 — 37z — 16.

» A small element sampled coefficient-wise from a narrow
Gaussian, might look like this:

e=—22%—22% + 227 —z + 1.
» Addition in R,:

a+e = 2727 —132°% — 332 + 412* — 202% — 32 — 38z — 15,
a+a = —4327 —2225+312° — 152 — 362 — 1022 + 23z — 32.

» Multiplication in R,:

z-a = 272% —1127 — 3325 + 412° — 182* — 52% — 372% — 162
= —1127 — 3325 + 412° — 182* — 52% — 372% — 162 — 27.



The Ring Learning with Errors (RLWE) Problem

(Lyubashevsky, Peikert, Regev 2010)

» Believed to be as hard as general LWE problem, i.e. would
be solved with the same algorithms.

» Though there’s a lot more structure!

» Recent results indicate RLWE problem easier than LWE,
(Schneider 2011 claims in practice speedup is linear in n).

» But much more efficient.
» Smaller keys, very efficient arithmetic in R,.

Can be used to build a fully homomorphic encryption scheme.



Slight modifications

» In both LWE and RLWE problems, it is okay to sample
s < x (and not uniformly at random).

» Sample until (ag, bo = ags + eo) with ag € R;; (invertible).
» For every additional sample (a,b = as + e) consider

(a',b) = (—agta,b+a'by)
= (d,as+e+a'(aps + €p))
= (d,as+e—as+dey) = (a',a'eq+e)
» |f one can solve RLWE with small secret, then one can
solve it with uniform secret.

» It is also okay to use small multiples of the error terms, i.e.
samples (a;, b; = a; - s + te;) are still indistinguishable from
random. For example, take ¢t = 2.



Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

SH.Keygen

» Sample small s «— x. Set secret key sk = s.
Sample RLWE instance:

» Sample a; «— R, unif. rand., small error e « x.
Set public key

» pk = (ag = —(a1s + te),ay).

In the example setting: ¢t = 2
> s=—a' —ab — Bt 4+ 2+ -1,
> e=—220-22% + 222 — x4+ 1,
> a; = 2727 — 1128 — 332 + 412* — 1823 — 52% — 37z — 16,
> ag = 1027 — 2528 + 462° — 372 + 2323 + 2722 — 43 + 31,

> pk = (1027 — 2525 + 462° — 372 + 2323 4 2722 — 432 + 31,
2727 — 1125 — 332° + 412* — 1823 — 52% — 37z — 16).



Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

Message space:
Ry = Zylz]/ (2™ + 1),
t rel. prime to ¢, e.g. t = 2. Encode messages as elements in
R, with coefficients mod ¢.
» Can encode n bits at once.
» For example encode 01011001 as m = z% + z* + 23 + 1.

SH.Enc

Given pk = (ag,a1) and a message m € Ry,
» sample u < x, and g, h < ¥,

Set ciphertext
> ct = (co,c1) = (apu +tg +m,aru + th).



Somewhat homomorphic encryption

Example encryption
» Sample small elements

u = —225432°% + 2% — 1,
g = —z%—2%+ 22,
h = —2"+a%+2* +2+1.
» From pk = (ag,a1) as above and m = 2% + 2% + 2% + 1
compute
co = ag-u+2-g+m
= 212" +22% + 1025 + 62 +92° + 32% — 14z + 1
ct = a1 -u+2-h

= 442" + 152% — 4325 + 372" + 3723 — 3027 — 222 + 42.
» The ciphertext is
(co,c1) = (2127 + 225 + 1025 + 62 4 923 + 322 — 142 + 1,
—4427 4+ 1525 — 4325 + 372 + 3723 — 302% — 222 + 42).



Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

SH.Dec

Given sk = s and a ciphertext ct = (cg, ¢1),
> compute m = co + c15 € R,.
Output the message

» m mod t.
Correctness:

m=co+cs = (au+tg+m)+ (au+th)s
= —(as+te)u+tg+m+ajus+ths
= m+t(g+ hs —eu).

Reduction modulo ¢ gives back m as long as the error terms
are not too large. Gives bound on standard deviation of the
Gaussian.



Somewhat homomorphic encryption

Example decryption

» Usesk=s=—a" -2 — 25+ 2t + 23+ 22+ 2 —1and

ciphertext
(co,c1) = (2127 + 225 + 1025 + 62* 4 923 + 327 — 142 + 1,
—442" + 1525 — 4325 + 372* + 3723 — 3027 — 222 + 42).
» Compute
m = c¢+tci-S

2427 4 212% + 42° + 212* + 152° + 1627 — 28x — 21.
» Reduce modulo ¢t = 2 and get

24+t +22+1=m.



Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

Homomorphic operations

SH.Add
Given ct = (¢o, 1) and ct’ = (¢, ¢} ), set the new ciphertext
> Ctadd = (co + ¢f,c1 + )
= (ap(u+u)+t(g+9)+ (m+m'),a1(u+u)+t(h+1')).
SH.Mult
Given ct = (g, c1) and ct’ = (¢, ¢}),
» compute
(co + 1 X)(ch + ¢, X) = cocly + (coc) + cher) X + e1dy X2
> Ctmir = (cocg, cocy + cher, eicy)
Errors multiply!
(m+1t(g+hs —euw)(m' +t(g +Ns+eu)) =mm' +t(..)



Somewhat homomorphic encryption
(Brakerski, Vaikuntanathan 2011)

» Homomorphic operations increase size of error terms.

» Homomorphic multiplication increases the size of the
ciphertext.

» Homomorphic addition, multiplication, and decryption
generalize to longer ciphertexts.

SH.Dec

Given sk = s and a ciphertext ct = (cg, c1,...,¢s),
» compute i = Y0, ¢is' € Ry,
Output the message

» m (mod t).



Relinearization
(Brakerski, Vaikuntanathan 2011)

There is a way to go from 3-element ciphertext ct = (cg, ¢1, c2)
back to a 2-element ciphertext.

» We have
c98% + €18 + co = temu + mm’

» Publish a “homomorphism key”
h; = (a;,b; = —(ais+tei)+ti32) fori=0,...,[log,q] — 1

» Write ¢, in its base-t representation co = ) cgﬂ-ti.



Relinearization
(Brakerski, Vaikuntanathan 2011)

» Replace ct by (cf'i, c¢felin) with

[log, q]—1 [log, q]—1
relln relin
=c+ E C24iQi, Cy = Co+ § 621 i
» Then
relln + crellns =co+c18+ 628 — terelin
relin relin !
Co +c s = t(emult - erelin) +mm

» Okay, ciphertext is smaller, but error has increased!

» Decryption still correct if final error eyt — €relin 1S Small
enough.



Specific parameter choices

Choosing parameters to “guarantee” security and correctness.
Correctness:

» ¢ must be large enough when compared to the size of the
error terms and ¢.

» |.e. parameters are chosen s.t. the scheme can evaluate
polynomials of a certain fixed degree D
(D — 1 multiplications and a bunch of additions).

Security:

» Against distinguishing attack with advantage 2732 by
Micciancio/Regev 2009.

» Adjust analysis of Lindner/Peikert 2011 to our setting.
» Still assume RLWE is no easier than LWE.



Specific parameters, key and ciphertext sizes

t D n Ng(@)] | 18(T) | g, /10°  (2+log,q)
1R, /103

2 1 512 19 123 10 205
2 1024 38 107 39 1557

3 2048 64 134 132 8651

5 4096 120 145 492 59966

10 8192 264 117 2163 575276

1024 | 1 1024 30 164 31 154
2 2048 58 164 119 927

3 4096 95 215 390 4475

5 8192 171 242 1401 26756

10 16384 368 214 6030 233938




Message encoding

Homomorphic operations reflect operations in R;.
» Want operations on integers.

» Encode an integer m = (mg, m1,...,m;)2, m; € {0,1} asa
polynomial of degree [ with coefficients m,. Get back m by
evaluating at 2.

» t = 2 not useful for addition and multiplication since
operations mod 2 are different from integer operations.

» Choose t large enough to allow for enough additions.
» Reduction modulo z™ + 1 screws up integer multiplication.

» Choose [ small enough to allow a certain number of
multiplications before reaching degree n.



Reference implementation

Implementation using the computer algebra system Magma
» Uses polynomial arithmetic in Magma,
» no specific optimization for multiplication, no DFT,
» no optimization for specific parameters (sizes),
» decryption for arbitrary length ciphertexts.

Big potential to improve efficiency
» Main cost is polynomial multiplication modulo 2™ + 1 in R,.



Timings

Intel Core 2 Duo @ 2.1 GHz

Sx Enc Dec Mult Mult

prec. deg 1 deg 2 degred

t D n [g(q)] ms ms ms ms ms s
2 1 512 19 27 2 2 — — —
2 1024 38 95 9 6 10 15 0.3

3 2048 64 110 29 18 33 56 2.0

) 4096 120 | 223 85 49 94 163 10.6

10 8192 264 | 438 425 227 454 887 114.6

1024 1 1024 30 o4 5 4 - - -
2 2048 58 110 24 15 26 41 0.2

3 4096 95 221 81 46 88 154 1.0

5 8192 171 | 440 275 148 288 526 5.3

10 16384 368 | 868 1260 664 1300 1593 48.2

» Compute the ciphertext of the sum of 100 numbers of size 128
bits from the single ciphertexts (for mean computation): < 20ms

» Ciphertexts for the sum and sum of squares of 100 such
numbers (for mean and variance): < 6s




Questions?

» Regev: On Lattices, Learning with Errors, Random Linear
Codes, and Cryptography, STOC 2005, J. ACM 2009.

» Lyubashevsky, Peikert, Regev: On Ideal Lattices and
Learning with Errors Over Rings, Eurocrypt 2010.

» Brakerski, Vaikuntanathan: Fully Homomorphic Encryption
from Ring LWE and Security for Key Dependent
Messages, Crypto 2011.

» Lauter, N., Vaikuntanathan: Can homomorphic encryption
be practical?, ACM CCSW 2011.

» michael@cryptojedi.org



